数学(文)文档版(有答案)-2013年普通高等学校招生统一考试
- 格式:doc
- 大小:462.60 KB
- 文档页数:10
2013年普通高等学校招生全国统一考试(山东卷)文科数学参考公式:如果事件B A ,互斥,那么)()()(B P A P B A P +=+ 一.选择题:本题共12个小题,每题5分,共60分。
1、复数)()2(2为虚数单位i ii z -=,则=||z ( ) (A)25 (B)41 (C)6 (D) 5【答案】C 【命题立意】本题考查复数的运算【解析】 2(2)3434,|||34|5,i iz i z i C i i--===--=--=所以故选 【失分警示】计算不准导致错误【难易度评价】容易题2、已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U AB =ð,{1,2}B =,则U A B =ð ( )(A){3} (B){4} (C){3,4} (D)∅ 2、【答案】A 【解析】{}{}{}{}()41,2,343,U U U A B B A B A B A==∈==因为C ,,所以3而C ,,所以C 故选【失分点】概念不清,没有弄懂补集的概念 【难易度评价】容易题3、已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( ) (A)2 (B)1 (C)0 (D)-2 【答案】A【解析】 ()(1)=(1)=2f x f f ---因为为奇函数,所以【易错点】没有理解奇函数的定义导致错误或者性质运用不够熟练导致错误理解 【难易度评价】容易题4、一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是 ( )(A) (B) 83 (C) 81),3(D) 8,8【答案】B 【解析】118=8=42=233V B ⨯⨯⨯侧由题意可以得到原四棱锥的底面边长为2,四棱锥的高为2,S 体积为,故选;【失分点】空间想象能力不好导致错误 【难易度评价】容易题 5、函数()f x =的定义域为 ( ) (A)(-3,0] (B) (-3,1] (C) (,3)(3,0]-∞-- (D) (,3)(3,1]-∞--【答案】A【解析】0120,,0,330x x x A x x ⎧-⎧⎨⎨>-+>⎩⎩由题意可以得到所以则-3<故选………【易错点】没有注意到分母不为0导致错误【难易度评价】中档题6、执行右边的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为 ()(A)0.2,0.2 (B) 0.2,0.8 (C) 0.8,0.2 (D) 0.8,0.8【答案】C 【解析】1.2110.8 1.21a a a a a a a a a =-=+=+===-当时,执行循环体,得到a=-0.2,然后再次执行循环体,得到,便输出;当时,执行循环体,得到a=0.2,便输出;故选C;【易错点】因错误识图导致计算错误 【难易度评价】中档题7、ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =c =(A) (B) 2(C) (D)1 【答案】B 【解析】1=,=,cos sin sin sin sin 22,,2,63BC AC A A B A A B ABC c B ππ===由题意利用正弦定理得到:即:所以则A=则三角形为直角三角形,所以故选;【易错点】没有注意到三角形内角之和为0180导致错误。
2013年普通高等学校招生全国统一考试文科数学 第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){0}(B ){-1,,0}(C ){0,1}(D ){-1,,0,1}2.212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i - 3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )164.已知双曲线2222:1x y C a b -=(0,0)a b >>,则C 的渐近线方程为( )(A )14y x =±(B )13y x =±(C )12y x =±(D )y x =±5.已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧ (B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝6.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =-(C )43n n S a =- (D )32n n S a =-7.执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-8.O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )(A )2(B )(C )(D )49.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )10.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10(B )9(C )8(D )511.某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+12.已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A },则A∩B= ( ) (A ){1,4} (B ){2,3} (C ){9,16} (D ){1,2} (2)1+2i(1-i)2=()(A )-1-12i(B )-1+12i(C )1+12i(D )1-12i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12(B )13(C )14(D )16(4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )(A )y =±14x (B )y =±13x(C )y =±12x(D )y =±x(5)已知命题p :∀x ∈R,2x ><3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是:()(A ) p ∧q(B )¬p ∧q(C )p ∧¬q(D )¬p ∧¬q(6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ()(A )S n =2a n -1 (B )S n =3a n -2 (C )S n =4-3a n (D )S n =3-2a n(7)执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于 ( ) (A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5](8)O 为坐标原点,F 为抛物线C :y ²=42x 的焦点,P 为C 上一点,若|PF|=42,则△POF 的面积为( )(A )2 (B )2 2 (C )2 3 (D )4(9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( )A B C D(10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos²A+cos2A=0,a=7,c=6,则b=( ) (A )10 (B )9 (C )8 (D )5(11)某几何函数的三视图如图所示,则该几何的体积为 (A )16+8π (B )8+8π (C )16+16π (D )8+16π(12)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1) x >0,若| f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年普通高等学校招生统一考试(上海卷)数学(文科)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式12-x x <0的解为 )21,0( . 【答案】 )21,0(【解析】)21,0(0)12(∈⇒<-x x x2.在等差数列{}n a 中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3= 15 . 【答案】 15【解析】 1530)(232324321=+⇒=+=+++a a a a a a a a3.设m ∈R,m 2+m-2+( m 2-1)i 是纯虚数,其中i 是虚数单位,则m= . 【答案】 -2【解析】 20102)1(22222-=⇒⎪⎩⎪⎨⎧≠-=-+⇒-+-+m m m m i m m m 是纯虚数4.已知1x 12=0,1x 1y=1,则y= 1 .【答案】 1 【解析】111 2021 12 =-==⇒=-=y x yx x x x ,又已知,1,2==y x 联立上式,解得5. 已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ab+b 2-c 2=0,则角C 的大小是π32. 【答案】 π32【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a6. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 78 . 【答案】 78【解析】 7880100607510040=⋅+⋅=平均成绩7. 设常数a ∈R.若52x ⎪⎭⎫ ⎝⎛+x a 的二项展开式中x 7项的系数为-10,则a= -2 .【答案】 -2 【解析】10,110)()()(15752552-==⇒-=⇒+-a C r x xa x C x a x r r r 2,105-=-=⇒a a 8. 方程x 31139x=+-的实数解为 4log 3 . 【答案】 4log 3 【解析】⇒>+±=⇒±=-⇒-=-⇒=+-01333131313931139x x x xxx 4log 433=⇒=x x9. 若cosxcosy+sinxsiny=31,则cos(2x-2y)= 97- . 【答案】 97- 【解析】971)(cos 2)(2cos 31)cos(sin sin cos cos 2-=--=-⇒=-=+y x y x y x y x y x10. 已知圆柱Ω的母线长为l ,底面半径为r,O 是上底面圆心,A 、B 是下底面圆周上的两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则r l3 .【答案】3【解析】 3336tan =⇒==rll r π由题知,11. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是75(结果用最简分数表示).【答案】75 【解析】考查排列组合;概率计算策略:正难则反。
2013年普通高等学校招生全国统一考试新课标卷(II)(数学文)Word版含答案7绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合,,则()(A)(B)(C)(D)2、()(A)(B)(C)(D)3、设满足约束条件,则的最小值是()(A)(B)(C)(D)4、的内角的对边分别为,已知,,,则的面积为()(A)(B)(C)(D)5、设椭圆的左、右焦点分别为,是上的点,,,则的离心率为()(A)(B)(C)(D)6、已知,则()(A)(B)(C)(D)7、执行右面的程序框图,如果输入的,那么输出的()(A)(B)(C)(D)8、设,,,则()(A)(B)(C)(D)9、一个四面体的顶点在空间直角坐标系中的坐标分别是,,,,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()(A) (B) (C) (D)10、设抛物线的焦点为,直线过且与交于,两点。
若,则的方程为()(A)或(B)或(C)或(D)或11、已知函数,下列结论中错误的是()(A),(B)函数的图象是中心对称图形(C)若是的极小值点,则在区间单调递减(D)若是的极值点,则12、若存在正数使成立,则的取值范围是()(A)(B)(C)(D)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
第22题~第24题为选考题,考生根据要求作答。
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A },则A∩B= ( ) (A ){1,4} (B ){2,3} (C ){9,16} (D ){1,2}(2) 1+2i(1-i)2= ( )(A )-1-12i (B )-1+12i (C )1+12i (D )1-12i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12 (B )13(C )14 (D )16(4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )(A )y =±14x (B )y =±13x (C )y =±12x (D )y =±x(5)已知命题p :∀x ∈R,2x ><3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是:()(A ) p ∧q(B )¬p ∧q(C )p ∧¬q(D )¬p ∧¬q (6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ()(A )S n =2a n -1 (B )S n =3a n -2 (C )S n =4-3a n (D )S n =3-2a n(7)执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于 ( ) (A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5](8)O 为坐标原点,F 为抛物线C :y ²=42x 的焦点,P 为C 上一点,若|PF|=42,则△POF 的面积为( ) (A )2 (B )2 2 (C )2 3 (D )4 (9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( )(10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos²A+cos2A=0,a=7,c=6,则 b=( ) (A )10 (B )9 (C )8 (D )5(11)某几何函数的三视图如图所示,则该几何的体积为 (A )16+8π (B )8+8π (C )16+16π (D )8+16π(12)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1)x >0,若| f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1](C)[-2,1](D)[-2,0]侧视图俯视图第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号. 2. 本卷共8小题, 每小题5分, 共40分. 参考公式:如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+ ·棱柱的体积公式V = Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞(B) [1,2](C) [-2,2](D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 则输出n 的值为(A) 7 (B) 6 (C) 5 (D) 4 (4) 设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充要条件(D) 既不充分也不必要条件(5) 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =(A) 12- (B) 1(C) 2(D)12(6) 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是 (A) 1- (B) 2-(C)2(D) 0(7) 已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞上单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是(A) [1,2](B) 10,2⎛⎤⎥⎝⎦(C) 1,22⎡⎤⎢⎥⎣⎦(D) (0,2](8) 设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则 (A) ()0()g a f b << (B) ()0()f b g a << (C) 0()()g a f b <<(D) ()()0f b g a <<2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分. (9) i 是虚数单位. 复数(3 + i )(1-2i ) = .(10) 已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 .(11) 已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE =u u u r u u u r, 则AB 的长为 .(13) 如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 .(14) 设a + b = 2, b >0, 则1||2||a a b+的最小值为 .三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 产品编号A 1 A 2 A 3 A 4 A 5 质量指标(x , y , z ) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1)产品编号A 6 A 7 A 8 A 9 A 10 质量指标(x , y , z ) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取2件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率. (16) (本小题满分13分)在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a = 3,2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.(17) (本小题满分13分)如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点.(Ⅰ) 证明EF //平面A 1CD ;(Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1;(Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为3, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为43. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左,右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=u u u r u u u r u u u r u u u r, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 证明13*)61(n n S n S +≤∈N .(20) (本小题满分14分)设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩(Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>.2013年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考答案一、选择题:本题考查基本知识和基础运算。
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅2、已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213- (B )513- (C )513 (D )12133、已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n(A )4- (B )3- (C )-2 (D )-14、不等式222x -<的解集是(A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,25、()862x x +的展开式中的系数是 (A )28 (B )56 (C )112 (D )2246、函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 (A )()1021x x >- (B )()1021x x ≠- (C )()21x x R -∈ (D )()210x x -> 7、已知数列{}n a 满足12430,,3n n a a a ++==-则{}n a 的前10项和等于 (A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3 8、已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于 A B 、两点,且3AB =,则C 的方程为(A )2212x y += (B )22132x y += (C )22143x y += (D )22154x y +=9、若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则(A )5 (B )4 (C )3 (D )210、已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,(A )9 (B )6 (C )-9 (D )-611、已知正四棱锥1111ABCD A B C D -中,12,AA AB =则CD 与平面1BDC 所成的角的正弦值等于(A )23 (B(C)3 (D )1312、已知抛物线2:8C y x =与点()2,2M -,C 的焦点,且斜率为k 的直线与C 交于A,B 两点,若0MA MB =,则k = (A)12 (B)2 (C(D )2二、填空题:本大题共4小题,每小题5分.13、设()f x 是以2为周期的函数,且当[)1,3x ∈时,()=2f x x -,则()1f -= .14、从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)15、若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为 .16、已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.n n n nb b n S na =求数列的前项和18.(本小题满分12分)设△ABC 的内角A,B,C 的对边分别为,,a b c ,()()a b c a b c ac ++-+= (Ⅰ)求;B(Ⅱ)若1sin sin ,4A C =求C. 19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 则1312312B B B B B B B B =⋅+⋅⋅+⋅,所以1312312()()()()P B P B B P B B B P B B =⋅+⋅⋅+⋅1312312()()()()()()()()P B P B P B P B P B P B P B P B =⋅+⋅⋅+⋅ 11154848=++= 21.(本小题满分12分) 已知函数()32=33 1.f x x ax x +++(I )求()f ;a x =的单调性;(II )若[)()2,0,.x f x a ∈+∞≥时,求的取值范围22.(本小题满分12分)已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且 11,AF BF -证明:22.AF AB BF 、、成等比数列。
2013年普通高等学校夏季招生全国统一考试数学文史类(大纲卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013大纲全国,文1)设全集U ={1,2,3,4,5},集合A ={1,2},则U A =( ).A .{1,2}B .{3,4,5}C .{1,2,3,4,5}D .∅ 答案:B解析:由题意得U A ={3,4,5}.故选B .2.(2013大纲全国,文2)已知α是第二象限角,sin α=513,则cos α=( ). A .1213- B .513- C .513 D .1213答案:A解析:∵α是第二象限角,∴cos α=1213==-.故选A .3.(2013大纲全国,文3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-1 答案:B解析:∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=0. ∴|m |2-|n |2=0,即(λ+1)2+1-[(λ+2)2+4]=0. ∴λ=-3.故选B .4.(2013大纲全国,文4)不等式|x 2-2|<2的解集是( ).A .(-1,1)B .(-2,2)C .(-1,0)∪(0,1)D .(-2,0)∪(0,2) 答案:D解析:|x 2-2|<2⇒-2<x 2-2<2⇒0<x 2<4⇒0<|x |<2⇒-2<x <0或0<x <2.故选D .5.(2013大纲全国,文5)(x +2)8的展开式中x 6的系数是( ).A .28B .56C .112D .224 答案:C解析:T 2+1=28C x 8-2·22=112x 6.故选C .6.(2013大纲全国,文6)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x ≠0) C .2x -1(x ∈R ) D .2x-1(x >0) 答案:A解析:由y =f (x )=21log 1x ⎛⎫+ ⎪⎝⎭⇒1+1x =2y⇒x =121y-. ∵x >0,∴y >0. ∴f -1(x )=121x -(x >0).故选A .7.(2013大纲全国,文7)已知数列{a n }满足3a n +1+a n =0,243a =-,则{a n }的前10项和等于( ).A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10) 答案:C解析:∵3a n +1+a n =0⇒a n +1=13-a n , ∴{a n }是以13-为公比的等比数列. 又∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C .8.(2013大纲全国,文8)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( ).A .22x +y 2=1 B .22132x y += C .22143x y += D .22154x y += 答案:C解析:如图,|AF 2|=12|AB |=32,|F 1F 2|=2, 由椭圆定义得 |AF 1|=2a -32.① 在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=232⎛⎫ ⎪⎝⎭+22.② 由①②得a =2,∴b 2=a 2-c 2=3.∴椭圆C的方程为22143x y +=,应选C .9.(2013大纲全国,文9)若函数y =sin(ωx +φ)(ω>0)的部分图像如图,则ω=( ).A .5B .4C .3D .2 答案:B解析:∵由题中图象可知x 0+π4-x 0=2T .∴π2T =.∴2ππ2ω=.∴ω=4.故选B .10.(2013大纲全国,文10)已知曲线y=x4+ax2+1在点(-1,a+2)处切线的斜率为8,则a=().A.9 B.6 C.-9 D.-6答案:D解析:由题意知y′|x=-1=(4x3+2ax)|x=-1=-4-2a=8,则a=-6.故选D.11.(2013大纲全国,文11)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于().A.23BC.D.13答案:A解析:如图,设AA1=2AB=2,AC交BD于点O,连结OC1,过C作CH⊥OC1于点H,连结DH.∵BD⊥AC,BD⊥AA1,∴BD⊥平面ACC1A1.∵CH⊂平面ACC1A1,∴CH⊥BD.∴CH⊥平面C1BD.∴∠CDH为CD与平面BDC1所成的角.OC1==由等面积法得OC1·CH=OC·CC1,2CH=.∴CH=23.∴sin∠CDH=22313CHCD==.故选A.12.(2013大纲全国,文12)已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A,B两点.若MA·MB=0,则k=().A.12B.2CD.2答案:D解析:设AB:y=k(x-2),代入y2=8x得:k2x2-(4k2+8)x+4k2=0,设A(x1,y1),B(x2,y2),则∴x1+x2=2248kk+,x1x2=4.(*)∵MA·MB=0,∴(x1+2,y1-2)·(x2+2,y2-2)=0,即(x1+2)(x2+2)+(y1-2)(y2-2)=0.∴x1x2+2(x1+x2)+4+y1y2-2(y1+y2)+4=0.①∵11222,2,y k x y k x =(-)⎧⎨=(-)⎩∴y 1+y 2=k (x 1+x 2-4),②y 1·y 2=k 2(x 1-2)(x 2-2)=k 2[x 1x 2-2(x 1+x 2)+4].③ 由(*)及①②③得k =2.故选D .二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,文13)设f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=______.答案:-1解析:∵f (x )是以2为周期的函数,且x ∈[1,3)时,f (x )=x -2, 则f (-1)=f (-1+2)=f (1)=1-2=-1.14.(2013大纲全国,文14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有__________种.(用数字作答)答案:60解析:分三步:第一步,一等奖有16C 种可能的结果;第二步,二等奖有25C 种可能的结果;第三步,三等奖有33C 种可能的结果.故共有123653C C C 60=(种)可能的结果.15.(2013大纲全国,文15)若x ,y 满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z =-x +y 的最小值为______.答案:0解析:z =-x +y ⇒y =x +z ,z 表示直线y =x +z 在y 轴上的截距,截距越小,z 就越小.画出题中约束条件表示的可行域(如图中阴影部分所示),当直线过点A (1,1)时,z min =0.16.(2013大纲全国,文16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于______.答案:16π解析:如图,设MN 为公共弦,长度为R ,E 为MN 中点,连结OE ,EK ,则OE ⊥MN ,KE ⊥MN .∴∠OEK 为圆O 与圆K 所在平面的二面角. ∴∠OEK =60°.又△OMN 为正三角形,∴OE. ∵OK =32,且OK ⊥KE , ∴OE ·sin 60°=32.32=.∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,文17)(本小题满分10分)等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式; (2)设1n nb na =,求数列{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d ,则 a n =a 1+(n -1)d .因为71994,2,a a a =⎧⎨=⎩所以11164,1828.a d a d a d +=⎧⎨+=(+)⎩解得a 1=1,12d =.所以{a n }的通项公式为12n n a +=.(2)因为22211n b n n n n ==-(+)+,所以2222222122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭.18.(2013大纲全国,文18)(本小题满分12分)设△ABC 的内角A,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac .(1)求B ;(2)若sin A sin C C . 解:(1)因为(a +b +c )(a -b +c )=ac , 所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cosA cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C=1+22 =2,故A -C =30°或A -C =-30°, 因此C =15°或C =45°.19.(2013大纲全国,文19)(本小题满分12分)如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD .(2)解:取PD 的中点F ,连结OF ,则OF ∥PB . 由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BDOP= 故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD . 因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1, 所以A 到平面PCD 的距离为1.20.(2013大纲全国,文20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判. (1)求第4局甲当裁判的概率;(2)求前4局中乙恰好当1次裁判的概率.解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2. P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14. (2)记B 1表示事件“第1局比赛结果为乙胜”,B 2表示事件“第2局乙参加比赛时,结果为乙胜”, B 3表示事件“第3局乙参加比赛时,结果为乙胜”, B 表示事件“前4局中乙恰好当1次裁判”. 则B =1B ·B 3+B 1·B 2·3B +B 1·2B .P (B )=P (1B ·B 3+B 1·B 2·3B +B 1·2B )=P (1B ·B 3)+P (B 1·B 2·3B )+P (B 1·2B ) =P (1B )P (B 3)+P (B 1)P (B 2)P (3B )+P (B 1)P (2B )=111484++=58.21.(2013大纲全国,文21)(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1.(1)当a =f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.解:(1)当a =f (x )=x 3-2+3x +1,f ′(x )=3x 2-+3.令f ′(x )=0,得11x =,21x .当x ∈(1)时,f ′(x )>0,f (x )在(1)是增函数;当x ∈11)时,f ′(x )<0,f (x )在11)是减函数;当x ∈1,+∞)时,f ′(x )>0,f (x )在1,+∞)是增函数. (2)由f (2)≥0得54a ≥-. 当54a ≥-,x ∈(2,+∞)时, f ′(x )=3(x 2+2ax +1)≥25312x x ⎛⎫-+ ⎪⎝⎭=312x ⎛⎫- ⎪⎝⎭(x -2)>0,所以f (x )在(2,+∞)是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是5,4⎡⎫-+∞⎪⎢⎣⎭.22.(2013大纲全国,文22)(本小题满分12分)已知双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C (1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.(1)解:由题设知3c a =,即2229a b a+=,故b 2=8a 2. 所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,并求得x =由题设知,=a 2=1.所以a =1,b =(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k (x -3),|k (k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=2268k k -,x 1·x 2=22988k k +-.于是|AF 1|==-(3x1+1),|BF1|=3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=2 3 -.故226283kk=--,解得24 5k=,从而x1·x2=19 9 -.由于|AF2|=1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16.因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.。
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A },则A∩B= ( ) (A ){1,4} (B ){2,3} (C ){9,16} (D ){1,2}(2)错误!未找到引用源。
1+2i(1-i)2= ()(A )-1-12错误!未找到引用源。
i (B )-1+错误!未找到引用源。
i(C )1+错误!未找到引用源。
12i (D )1-12i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12 (B )13错误!未找到引用源。
(C )14错误!未找到引用源。
(D )16错误!未找到引用源。
(4)已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率为错误!未找到引用源。
,则C 的渐近线方程为() (A )y =±错误!未找到引用源。
x (B )y =±错误!未找到引用源。
x(C )y =±错误!未找到引用源。
x (D )y =±x (5)已知命题p :∀x ∈R,2x ><3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是:()(A ) p ∧q(B )¬p ∧q(C )p ∧¬q(D )¬p ∧¬q (6)设首项为1,公比为错误!未找到引用源。
错误!未找到引用源。
的等比数列{a n }的前n 项和为S n ,则 ()(A )S n =2a n -1 (B )S n =3a n -2 (C )S n =4-3a n (D )S n =3-2a n(7)执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于 ( ) (A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5](8)O 为坐标原点,F 为抛物线C :y ²=42x 的焦点,P 为C 上一点,若|PF|=42,则△POF 的面积为( ) (A )2 (B )2 2 (C )2 3 (D )4 (9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( )(10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos²A+cos2A=0,a=7,c=6,则 b=( ) (A )10 (B )9 (C )8 (D )5(11)某几何函数的三视图如图所示,则该几何的体积为 (A )16+8π (B )8+8π (C )16+16π (D )8+16π(12)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1)x >0,若| f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1](C)[-2,1](D)[-2,0]侧视图俯视图第Ⅱ卷本卷包括必考题和选考题两个部分。
第(13)题-第(21)题为必考题,每个考生都必须作答。
第(22)题-第(24)题为选考题,考生根据要求作答。
二.填空题:本大题共四小题,每小题5分。
(13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____.(14) 设x ,y 满足约束条件⎩⎪⎨⎪⎧1≤x ≤3-1≤x -y ≤0,则z =2x -y 的最大值为______.(15)已知H 是球O 的直径AB 上一点,AH :HB=1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.(16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cosθ=______.三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求数列{1a 2n -1a 2n +1}的前n 项和18(本小题满分共12分)为了比较两种治疗失眠症的药(分别成为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h )实验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°.A 药B 药0. 1. 2. 3.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程; (Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.请考生在第(22)、(23)、(24)三题中任选一题作答。
注意:只能做所选定的题目。
如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑。
(22)(本小题满分10分)选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D 。
(Ⅰ)证明:DB=DC ;(Ⅱ)设圆的半径为1,BC=错误!未找到引用源。
,延长CE 交AB 于点F ,求△BCF 外接圆的半径。
(23)(本小题10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为⎩⎨⎧x =4+5costy =5+5sint(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)(24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>-1,且当x∈[-错误!未找到引用源。
错误!未找到引用源。
,错误!未找到引用源。
)时,f(x)≤g(x),求a的取值范围.参考答案一、选择题 (1)A ;(2)B ;(3)B ;(4)C ;(5)B ;(6)D ;(7)A ;(8)C ;(9)C ;(10)D ;(11)A ;(12)D ;二.填空题:本大题共四小题,每小题5分。
(13)2; (14) 3;(15)92π;(16) ; 三.解答题(17)(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+。
由已知可得111330,1, 1.5105,a d a d a d +=⎧==-⎨+=-⎩解得{}n =2-.n a a n 故的通项公式为(2)由(I )知212111111(),(32)(12)22321n n a a n n n n -+==-----从而数列21211n n n a a -+⎧⎫⎨⎬⎩⎭的前项和为1111111-+-++)2-1113232112n n n n -=--- (.18(本小题满分共12分)(1) 设A 药观测数据的平均数为 ,B 药观测数据的平均数为 ,又观测结果可得120x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+3.0+3.1+3.2+3.5)=2.3, 1(0.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.1202.4 2.5 2.6 2.73.2 1.6y =+++++++++++++++++++= 由以上计算结果可得x>y,因此可看出A 药的疗效更好(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎2.3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好。
19.【答案】(I )取AB 的中点O ,连接OC O 、1OA O 、1A B ,因为CA=CB ,所以OC AB ⊥,由于AB=A A 1,∠BA A 1=600,故,AA B ∆为等边三角形,所以OA 1⊥AB.因为OC ⨅OA 1=O ,所以AB ⊥平面OA 1C.又A 1CC 平面OA 1C ,故AB ⊥AC 。
(II)由题设知12ABC AA B ∆∆与都是边长为的等边三角形,12AA B 都是边长为的等边三角形,所以2211111.OC OA AC AC OA OA OC ===+⊥又,故111111111,--= 3.ABC ABC OC AB O OA ABC OA ABC A B C ABC S A B C V S OA =⊥∆=⨯= 因为所以平面,为棱柱的高,又的面积ABC 的体积12120()()2 4.(0)4,(0)4,4,8,4;f x e ax a b x f f b a b a b =++--===+===()解:(I )由已知得故从而 (II) 由(I )知,2)4(1)4,xf x e x x x =+--(11()4(2)244(2)().2x x f x e x x x e =+--=+-令1()0=-1n2x=-2.f x x =得,或从而当11(,2)(10;(22,),12))()x n f x x n f x >∈--+∞-∈-∞- 当时,(时,<0.故()--2-12+-2-12f x n n ∞∞在(,),(,)单调递增,在(,)单调递减. 当2=-2-2=41-)x f x f e -时,函数()取得极大值,极大值为()(. (21)解:由已知得圆M 的圆心为M (-1,0),半径11r =;圆N 的圆心为N (1,0),半径23r =. 设知P 的圆心为P (x,y ),半径为R.(I ) 因为圆P 与圆M 外切并且与圆N 内切,所以1212()()4PM PN R r r R r r +=++-=+=.有椭圆的定义可知,曲线C 是以M,N 为左.右焦点,长半轴长为2外),其方程为221(2)43x y x +=≠-。