UWB antenna history
- 格式:pdf
- 大小:319.43 KB
- 文档页数:5
UWB的名词解释无线超宽带(Ultra-Wideband,简称UWB)是一种现代通信技术,通过发送短脉冲信号来传输数据。
这种技术使用了宽带频谱,以更高的速率传输信息,其主要特点是信号的带宽远远超过传统无线通信技术。
传统的无线通信技术一般采用单一频带传输数据,而UWB则在较大的频谱范围内传输数据,这使得UWB具有很强的抗干扰能力。
由于UWB信号的短暂性质,它几乎不会与其他无线设备发生冲突,从而能够在复杂的无线环境中工作。
UWB技术的广泛应用领域之一是室内定位。
传统的室内定位技术往往需要在建筑物内放置大量基站,这对于成本和布局来说都是具有挑战性的。
而UWB可以在室内通过对信号传播的时间、相位和强度的测量,实现高精度的定位,不仅可以用于室内导航,还可以用于安全监控和物品追踪等领域。
此外,UWB还广泛应用于雷达系统中。
传统雷达系统一般使用脉冲信号来探测目标并测量其距离,但在这种技术中,多个目标的重叠距离难以精确测量。
而UWB雷达在测量目标之间的距离时,可以通过测量信号传播的时间差来实现高精度的距离测量。
除了室内定位和雷达系统,UWB还可以用于短距离通信。
由于UWB信号的高速率和低功率特性,它可以用于短距离高速数据传输。
这不仅在个人消费电子设备中有应用前景,也在无线传感器网络和工业自动化等领域具有潜力。
然而,尽管UWB在多个领域都显示出巨大的潜力,但目前其广泛应用仍面临着一些挑战。
首先,由于UWB技术属于新兴技术,其标准化和认证仍在进行中。
这使得不同厂商的产品可能并不兼容,限制了UWB技术的普及和应用。
其次,UWB技术的高频段使用可能会干扰其他无线设备,因此需要对频谱资源进行合理的规划和管理。
这需要制定相关的法规和标准来确保不同无线设备之间的和谐共存。
最后,UWB技术在室外环境中没有明显优势,因为其高速率和高精度的特性在较远距离下可能无法有效利用。
因此,在选择使用UWB技术时,需要综合考虑其性能和应用场景的匹配程度。
UWB(定位技术)超宽带无线通信技术一、UWB调制技术超宽带无线通信技术(UWB)是一种无载波通信技术,UWB不使用载波,而是使用短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。
它源于20世纪60年代兴起的脉冲通信技术。
传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。
现在的无线广播,4G通信,WIFI等都是采用该方式进行无线通信。
下图是一个使用调幅方式传递语音信号的的连续波信号产生示意图。
图1 连续波调幅信号而脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。
需要传送信息可以通过改变脉冲的幅度,时间,相位进行加载,进而实现信息传输。
下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。
图2 IR-UWB调相信号从频域上看,连续波信号将能量集中于一个窄频率内,而UWB信号带宽很大,同时在每个频点上功率很低,如图3所示。
图3 IR-UWB信号频谱在无线定位中,使用IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分立无线传输中的首达信号和多径反射信号,而窄带信号不具备该能力。
主要有三种应用:成像、通信与测量和车载雷达系统,再宏观一点,可以分为定位、通信和成像三种场景。
·通信:因为大带宽,所以UWB一度被认为是USB数据传输的无线替代方案,蓝牙的问题是传输速度太慢。
UWB还常用于军用保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它无线电系统监听到。
UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s至2Gbit/s 的数据传输速率。
而且具有穿透力强、功耗低、抗干扰效果好、安全性高、空间容量大、能精确定位等诸多优点,可以说是个超级“潜力股”,很有可能在将来成为家庭主用的无线传输技术。
UWB技术应用介绍UWB技术(Ultra-Wideband)是一种具有超宽带特性的无线通信技术,其频率范围非常广泛,一般包括从几百兆赫兹到数千兆赫兹,甚至数十千兆赫兹的频段。
相比传统无线通信技术,UWB技术具有更高的数据传输速率,更低的功耗以及更广泛的应用领域。
在UWB技术的应用中,最重要的是其高速数据传输能力。
由于UWB技术的频率范围广泛,因此可以提供更高的传输带宽,一般能够达到数千兆比特每秒的传输速率。
这种超高速传输能力使得UWB技术在实时高清视频传输、无线VR/AR应用以及大规模数据传输等领域有着广泛的应用前景。
第二个重要的应用领域是室内定位和跟踪。
UWB技术可以实现非常精确的距离测量,其测距精度一般可达到几乎厘米级别。
这使得UWB技术能够在室内环境中实现高精度的定位和跟踪,例如在仓库管理、智能家居以及智能医疗设备中应用。
此外,UWB技术还可以实现室内环境中的人员密度检测和人员流量管理等功能。
UWB技术还可以实现无线电频谱的共享和利用。
由于UWB技术的频率范围非常广泛且无需占用特定频段,因此可以有效利用频谱资源,避免不同无线设备之间的干扰。
与传统的频谱共享技术相比,UWB技术可以实现更高的频谱利用效率。
这使得UWB技术在军事应用、无人驾驶以及物联网等领域有着广泛的应用前景。
总结起来,UWB技术是一种具有超宽带特性的无线通信技术,具有高速数据传输能力、精确定位和跟踪能力以及频谱共享和利用能力。
应用领域包括高清视频传输、室内定位和跟踪、雷达和无线通信、无线电频谱共享和利用等。
随着技术的进一步发展,UWB技术有望在更多领域得到广泛应用。
超宽带 ( UWB ) 系统具有高传输速率、低功耗、探测精度高、穿透性强、安全性高等优势,在军事、雷达、生物探测、短距通信及室内室外高精度定位等场景有着广泛的应用。
并且随着半导体技术的发展,基于 CMOS 的 UWB 雷达芯片成为研究热点。
国内外众多学者及商业公司提出各具优势的 UWB 芯片及系统。
来自西安电子科技大学与军事科学院的研究团队在《电子与信息学报》发表最新文章,从UWB 系统、UWB 芯片架构中关键电路和关键技术的研究现状和发展进行综述。
什么是超宽带雷达(UWB)20 世纪 60 年代超宽带 ( Ultra-Wide Band,UWB ) 的构想首次在 "time-domain electromagnetics" 中被提出,采用一种无载波的窄脉冲信号进行通信。
由于其具有较好的安全性,高传输速率以及高距离分辨率,使其在军事及雷达等领域有着重要的应用价值。
2002 年 2 月,美国联邦通信委员会(Federal Communications Commission,FCC)正式批准超宽带民用,规定超宽带的工作频率为 3.1~10.6 GHz,发射带宽大于 500 MHz,但为了防止超宽带与其他通信带宽产生干扰,对发射机发射功率进行了限制,即有效全向辐射功率小于– 41.2 dBm/MHz。
因此超宽带技术的高速传输速率是以非常宽的带宽为代价,同时超宽带脉冲雷达技术是发射机发射持续时间极短的脉冲信号,而收发机的重频周期较长,因此单位时间内消耗的功耗极低,适合今后低功耗的应用场景要求。
UWB 系统在军事雷达领域应用之外,在生物探测、室内定位等商业应用场景的得到重要的应用。
图 1 展示的是 UWB 系统的优势和应用场景。
图 1 UWB 系统的优势与应用场景UWB 雷达芯片中的关键技术UWB 雷达芯片关键技术主要包括了信号产生技术、超宽带功率放大器、超宽带低噪声放大器、高速量化技术等。
美国时域公司高精度UWB定位系统介绍一:该系统特点精度高,定位精度2-5厘米标签位置稳定不飘标签发射状态和频率可动态更新美国时域公司的UWB系统具有部署简单,性能价格比高,精度高,标签位置稳定不飘移,信号抗干扰能力强,标签发射状态和频率可以动态更新等突出特点。
标签确认点TAP 向标签发射2.4 GHz 信号,可以动态地改变标签的发射频率(1~10Hz)和操作模式(活跃或者待机)。
这种设计可以使标签在非工作时间内处于待机状态,节省电池消耗,延长电池寿命。
8000+最多可以追踪8000 个标签标签可以几年不充电更抗干扰二:系统构成服务器显示器时间同步器定位基站定位标签12345三、标签、基站标签是一个超宽频信号发射装置,每秒发射1~10 次信号。
定位基站接收标签发来的标签识别号,记录到达时间(TOA),然后传给同步器进行同步处理,解析出到达时间差(TDOA),然后把以上信号和其他一些验证信号例如信号强度等打包通过网络协议发送给服务器进行处理,就可以计算出标签(也就是需要被跟踪的人员或者物体)所处位置以及运动轨迹。
四、定位原理通过在固定场所布设定位接收装置,被定位人员佩戴射频信号发射标签的方式,实现指定区域内人员的实时精确定位并且被定位人员的坐标数据通过以太网实时传输给上层应用系统的要求。
标签位置偏差通常情况下不超过正负5cm。
如果部署在室外,标签的防护等级为IP64,满足建设要求。
信号中心频率为7.3GHz,带宽大约为1GHz;该频段为我国无线电管理开放频段,不会和现有通讯设备相互干扰,符合我国无线电管理规定。
五、系统特点(1)支持多种模式,包括0 维(粗略模式),1 维(流水线/走廊配置),2 维(精确平面定位)和2.5 维(精确平面定位加上楼层区域信息);(2)室内定位精度误差一般在正负5厘米之内;(3)最多可以追踪8000 个标签;(4)电池供电的有源标签更新频率为1 赫兹~10 赫兹,使用时间至少1 年以上;(5)室内穿墙操作;(6)到达时间差定位法(TDOA)定位和跟踪;(7)到达时间(TOA)的原始数据可以通过以太网接口传送;(8)使用屏蔽双绞线电缆(CAT5E)向阅读器网络提供电力,数据和时间同步信息;(9)FCC(联邦通讯委员会)认证;(10)ETL(美国电子测试实验室)认证。
UWBAntennaPrinted circular disc monopole antennafor ultra-wideband applicationsJ.Liang,C.C.Chiau,X.Chen and C.G.PariniA novel and simple design of a printed circular disc monopole antennafor ultra-wideband applications is presented.The parameters whichaffect the performance of the antenna are investigated.Good agree-ment is achieved between simulation and experiment.Introduction:With the de?nition and acceptance of ultra-wideband (UWB)impulse radio technology in the USA[1],there is increasing demand for antennas capable of operating at an extremely wide frequency range.In recent years,several broadband monopole con?g-urations,such as circular,square,elliptical,pentagonal and hexago-nal,have been proposed for UWB applications[2–5].These broadband monopoles feature wide operating bandwidths,satisfactory radiation properties,simple structures and ease of fabrication. However,they are not planar structures because their ground planes are perpendicular to the radiators.As a result,they are not suitable for integration with printed circuit boards.This drawback limits practical applications of these broadband monopoles.In this Letter,a novel design of a printed circular disc monopole fed by a microstrip line is proposed based on our previous studies[6].The parameters which affect the operation of the antenna are analysed both numerically and experimentally.It has been demonstrated that the optimal design of this type of antenna can yield an ultra-wide band-width with satisfactory radiation properties over the entire bandwidth.Antenna design:The proposed monopole antenna is illustrated in Fig.1.A circular disc monopole with a radius of R?10mm and a 50O microstrip feed line are printed on the same side of the dielectric substrate(in this study,the FR4substrate of thickness1.5mm and relative permittivity4.7was used).L and W denote the length and the width of the dielectric substrate,respectively.L is constant at50mm in this study.The width of the microstrip feed line is?xed at W1?2.6mm to achieve50O impedance.On the other side of the substrate, the conducting ground plane with a length of L1?20mm only covers the section of the microstrip feed line.h is the height of the feed gap between the feed point and the groundplane.in backFig.1Geometry of proposed printed circular disc monopoleResults and discussion:The simulations are performed using the CST Microwave Studio TM package which utilises the?nite integration technique for electromagnetic computation[7].It has been shown in the simulation that the operating bandwidth of the proposed monopole antenna is critically dependent on the feed gap h and the width of the ground plane W,and these two parameters should be optimised for maximum bandwidth.Fig.2illustrates the simulated return loss curves with different feed gaps(h?0,0.3,0.7,and1.5mm)when W is?xed at42mm.It is observed in Fig.2that theà10dB bandwidth changes signi?cantly with varying feed gap h.This is due to the sensitivity of the impedance matching to the feed gap.The ground plane,serving as an impedance matching circuit,tunes the input impedance and the operating band-width while the feed gap is varied[6].The optimised feed gap is found to be at h?0.3mm.The simulated return loss curves with optimal feed gap h of0.3mm and different widths W of the ground planes,are plotted in Fig.3.It can be seen that the performance of the antenna is heavily dependent on the width W because the current is mainly distributed and transmitted on the upper edge of the ground plane along the y-direction.Simulation shows that the ground plane with a width of W?42mm can achieve the maximum bandwidth.---eturnloss,dBfrequency, GHzFig.2Simulated return loss for different feed gaps with W?42mm------returnloss,frequency, GHzFig.3Simulated return loss for different width of ground plane with h?0.3mmThe prototype of the printed circular disc monopole antenna with optimal design,i.e.h?0.3mm and W?42mm,as shown in Fig.1, was tested in the laboratory at Queen Mary,University of London (QMUL).The return losses were measured using an HP8720ES network analyser and the radiation pattern measurements were carried out inside an anechoic chamber.Fig.4shows the simulated and measured return loss curves.The measured return loss agrees well with the simulation.The measured operating bandwidth ofà10dB is from2.78to9.78GHz,and in simulation from2.69to10.16GHz.The measurement con?rms the UWB characteristic of the proposed printed circular disc monopole,as predicted in the simulation.--------returnloss,dBfrequency, GHzFig.4Simulated and measured return loss curves with W?42mm and h?0.3mmThe measured and simulated radiation patterns at3and9GHz are plotted in Figs.5and6,respectively.The patterns obtained in the measurement are close to those in the simulation.It can be seen that the proposed antenna is omnidirectional over the entire operating bandwidth.ELECTRONICS LETTERS30th September2004Vol.40No.20330300270240210180150120906030330300270240210180150120906030-40-30-20-10a b-40-30-20-100Fig.5Simulated and measured radiation patterns with W?42mm and h?0.3mm at3GHza E-planeb H-plane——simulated-------measured330300270240210180150120906030-40-30-20-100a330300270240210180150120906030-40-30-20-100bFig.6Simulated and measured radiation patterns with W?42mm and h?0.3mm at9GHza E-planeb H-plane——simulated-------measuredConclusion:A printed circular disc monopole antenna fed by micro-strip line is proposed and investigated.It has been shown that the operating bandwidth of the antenna is heavily dependent on the feed gap due to the impedance matching.The width of the ground plane also plays an important role in determining the performance of the antennabecause the current is mainly distributed along the y-direction on the ground plane.It has been demonstrated numerically and experimen-tally that the proposed printed circular disc monopole can yield an ultra-wide bandwidth,from2.78to9.78GHz,covering the frequency bands of most commercial wireless systems.It is also observed that the radiation patterns are similar to those of a traditional monopole.The results show this antenna is a good candidate for future UWB applica-tions.Acknowledgments:The authors wish to thank J.Dupuy of the Department of Electronic Engineering,QMUL,for his help inthe fabrication and measurement of the antenna.They acknowledge Computer Simulation Technology(CST),Germany,for the compli-mentary licence of the Microwave Studio TM package.#IEE200424June2004Electronics Letters online no:20045966doi:10.1049/el:20045966J.Liang, C.C.Chiau,X.Chen and C.G.Parini(Department of Electronic Engineering,Queen Mary,University of London,MileEnd Road,London E14NS,United Kingdom)E-mail:jianxin.liang@/doc/3d5769781.html References1FCC Report and Order for Part15acceptance of Ultra Wideband(UWB) systems from3.1–10.6GHz,February,2002,FCC website2Ammann,M.J.,and Chen,Z.N.:‘Wideband monopole antennas for multi-band wireless systems’,IEEE Antennas Propag.Mag.,2003,45,(2), pp.146–1503Agrawall,N.P.,Kumar,G.,and Ray,K.P.:‘Wide-band planar monopole antennas’,IEEE Trans.Antennas Propag.,1998,46,(2),pp.294–2954Antonino-Daviu,E.,Cabedo-Fabre’s,M.,Ferrando-Bataller,M.,and Valero-Nogueira,A.:‘Wideband double-fed planar monopole antennas’, Electron.Lett.,2003,39,(23),pp.1635–16365Chen,Z.N.,Chia,M.Y.W.,and Ammann,M.J.:‘Optimization and comparison of broadband monopoles’,IEE Proc.Microw.Antennas Propag.,2003,150,(6),pp.429–4356Liang,J.,Chiau,C.C.,Chen,X.,and Parini,C.G.:‘Analysis and designof UWB disc monopole antennas’.IEE Seminar on Ultra Wideband Communications Technologies and System Design,Queen Mary, University of London,July2004(accepted for presentation)7CST-Microwave Studio,User’s Manual,4,2002 ELECTRONICS LETTERS30th September2004Vol.40No.20。
uwb高精度定位系统原理UWB高精度定位系统原理UWB(Ultra Wide Band)是一种无线通信技术,它的特点是带宽非常宽广,能够提供高精度的定位和测距功能。
UWB高精度定位系统利用这一特点,通过接收和分析UWB信号,实现对目标位置的精确定位。
本文将介绍UWB高精度定位系统的原理和工作过程。
一、UWB信号的特点UWB信号是一种具有极宽带的无线信号,其带宽通常在几百兆赫兹到几吉赫兹之间。
相比于传统的窄带信号,UWB信号能够提供更高的数据传输速率和更精确的测距能力。
另外,UWB信号的能量非常低,不会对其他无线设备产生干扰。
二、UWB高精度定位系统的组成UWB高精度定位系统主要由UWB标签和UWB基站组成。
UWB标签是被定位的目标,它会发送UWB信号;UWB基站则用来接收和分析UWB信号,计算目标的位置信息。
三、UWB高精度定位系统的工作原理1. UWB标签发送信号:UWB标签会周期性地发送UWB信号,信号中包含了标签的唯一标识符和时间戳等信息。
2. UWB基站接收信号:UWB基站会接收到UWB标签发送的信号,并记录下接收到信号的时间戳。
3. 信号传播时间测量:UWB基站利用接收到信号的时间戳和发送信号的时间戳之差,计算信号的传播时间,从而得到目标与基站之间的距离。
4. 多基站测距:为了提高定位的精度,通常会使用多个UWB基站进行测距,并利用三角定位原理计算出目标的准确位置。
5. 位置计算:根据测得的距离信息和基站的位置信息,利用数学算法计算出目标的具体位置坐标。
四、UWB高精度定位系统的优势1. 高精度定位:由于UWB信号带宽宽广,能够提供精确的距离测量,因此UWB高精度定位系统可以实现厘米级别的定位精度。
2. 抗干扰能力强:UWB信号的能量非常低,不会对其他无线设备产生干扰,因此UWB高精度定位系统具有很好的抗干扰能力。
3. 定位范围广:UWB信号的传输距离较远,可以覆盖较大的区域,因此UWB高精度定位系统可以应用于室内和室外的各种环境。