On End-to-End Architecture for Transporting MPEG-4 Video Over the Internet
- 格式:pdf
- 大小:477.95 KB
- 文档页数:19
Seismic Collapse Safety of Reinforced ConcreteBuildings.II:Comparative Assessment of Nonductile and Ductile Moment FramesAbbie B.Liel,M.ASCE 1;Curt B.Haselton,M.ASCE 2;and Gregory G.Deierlein,F.ASCE 3Abstract:This study is the second of two companion papers to examine the seismic collapse safety of reinforced concrete frame buildings,and examines nonductile moment frames that are representative of those built before the mid-1970s in California.The probabilistic assessment relies on nonlinear dynamic simulation of structural response to calculate the collapse risk,accounting for uncertainties in ground-motion characteristics and structural modeling.The evaluation considers a set of archetypical nonductile RC frame structures of varying height that are designed according to the seismic provisions of the 1967Uniform Building Code.The results indicate that nonductile RC frame structures have a mean annual frequency of collapse ranging from 5to 14×10À3at a typical high-seismic California site,which is approximately 40times higher than corresponding results for modern code-conforming special RC moment frames.These metrics demonstrate the effectiveness of ductile detailing and capacity design requirements,which have been introduced over the past 30years to improve the safety of RC buildings.Data on comparative safety between nonductile and ductile frames may also inform the development of policies for appraising and mitigating seismic collapse risk of existing RC frame buildings.DOI:10.1061/(ASCE)ST.1943-541X .0000275.©2011American Society of Civil Engineers.CE Database subject headings:Structural failures;Earthquake engineering;Structural reliability;Reinforced concrete;Concrete structures;Seismic effects;Frames.Author keywords:Collapse;Earthquake engineering;Structural reliability;Reinforced concrete structures;Buildings;Commercial;Seismic effects.IntroductionReinforced concrete (RC)frame structures constructed in Califor-nia before the mid-1970s lack important features of good seismic design,such as strong columns and ductile detailing of reinforce-ment,making them potentially vulnerable to earthquake-induced collapse.These nonductile RC frame structures have incurred significant earthquake damage in the 1971San Fernando,1979Imperial Valley,1987Whittier Narrows,and 1994Northridge earthquakes in California,and many other earthquakes worldwide.These factors raise concerns that some of California ’s approxi-mately 40,000nonductile RC structures may present a significant hazard to life and safety in future earthquakes.However,data are lacking to gauge the significance of this risk,in relation to either the building population at large or to specific buildings.The collapse risk of an individual building depends not only on the building code provisions employed in its original design,but also structuralconfiguration,construction quality,building location,and site-spe-cific seismic hazard information.Apart from the challenges of ac-curately evaluating the collapse risk is the question of risk tolerance and the minimum level of safety that is appropriate for buildings.In this regard,comparative assessment of buildings designed accord-ing to old versus modern building codes provides a means of evalu-ating the level of acceptable risk implied by current design practice.Building code requirements for seismic design and detailing of reinforced concrete have changed significantly since the mid-1970s,in response to observed earthquake damage and an in-creased understanding of the importance of ductile detailing of reinforcement.In contrast to older nonductile RC frames,modern code-conforming special moment frames for high-seismic regions employ a variety of capacity design provisions that prevent or delay unfavorable failure modes such as column shear failure,beam-column joint failure,and soft-story mechanisms.Although there is general agreement that these changes to building code require-ments are appropriate,there is little data to quantify the associated improvements in seismic safety.Performance-based earthquake engineering methods are applied in this study to assess the likelihood of earthquake-induced collapse in archetypical nonductile RC frame structures.Performance-based earthquake engineering provides a probabilistic framework for re-lating ground-motion intensity to structural response and building performance through nonlinear time-history simulation (Deierlein 2004).The evaluation of nonductile RC frame structures is based on a set of archetypical structures designed according to the pro-visions of the 1967Uniform Building Code (UBC)(ICBO 1967).These archetype structures are representative of regular well-designed RC frame structures constructed in California between approximately 1950and 1975.Collapse is predicted through1Assistant Professor,Dept.of Civil,Environmental and Architectural Engineering,Univ.of Colorado,Boulder,CO 80309.E-mail:abbie .liel@ 2Assistant Professor,Dept.of Civil Engineering,California State Univ.,Chico,CA 95929(corresponding author).E-mail:chaselton@csuchico .edu 3Professor,Dept.of Civil and Environmental Engineering,Stanford Univ.,Stanford,CA 94305.Note.This manuscript was submitted on July 14,2009;approved on June 30,2010;published online on July 15,2010.Discussion period open until September 1,2011;separate discussions must be submitted for individual papers.This paper is part of the Journal of Structural Engineer-ing ,V ol.137,No.4,April 1,2011.©ASCE,ISSN 0733-9445/2011/4-492–502/$25.00.492/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .nonlinear dynamic analysis of the archetype nonductile RC frames,using simulation models capable of capturing the critical aspects of strength and stiffness deterioration as the structure collapses.The outcome of the collapse performance assessment is a set of measures of building safety and relating seismic collapse resistance to seismic hazard.These results are compared with the metrics for ductile RC frames reported in a companion paper (Haselton et al.2011b ).Archetypical Reinforced Concrete Frame StructuresThe archetype nonductile RC frame structures represent the expected range in design and performance in California ’s older RC frame buildings,considering variations in structural height,configuration and design details.The archetype configurations explore key design parameters for RC components and frames,which were identified through previous analytical and experimental studies reviewed by Haselton et al.(2008).The complete set of archetype nonductile RC frame buildings developed for this study includes 26designs (Liel and Deierlein 2008).This paper focuses primarily on 12of these designs,varying in height from two to 12stories,and including both perimeter (P )and space (S )frame lateral resisting systems with alternative design details.All archetype buildings are designed for office occupancies with an 8-in.(20-cm)flat-slab floor system and 25-ft (7.6-m)column spacing.The 2-and 4-story buildings have a footprint of 125ft by 175ft (38.1m by 53.3m),and the 8-and 12-story buildings measure 125ft (38.1m)square in plan.Story heights are 15ft (4.6m)in the first story and 13ft (4.0m)in all other stories.Origi-nal structural drawings for RC frame buildings constructed in California in the 1960s were used to establish typical structural configurations and geometry for archetype structures (Liel and Deierlein 2008).The archetypes are limited to RC moment frames without infill walls,and are regular in elevation and plan,without major strength or stiffness irregularities.The nonductile RC archetype structures are designed for the highest seismic zone in the 1967UBC,Zone 3,which at that time included most of California.Structural designs of two-dimensional frames are governed by the required strength and stiffness to satisfy gravity and seismic loading combinations.The designs also satisfy all relevant building code requirements,including maximum and minimum reinforcement ratios and maximum stirrup spacing.The 1967UBC permitted an optional reduction in the design base shear if ductile detailing requirements were employed,however,this reduction is not applied and only standard levels of detailing are considered in this study.Design details for each structure areTable 1.Design Characteristics of Archetype Nonductile and Ductile RC Frames Stucture Design base shear coefficient a,bColumn size c (in :×in.)Column reinforcementratio,ρColumn hoop spacing d,e (in.)Beam size f (in :×in.)Beam reinforcementratios ρ(ρ0)Beam hoop spacing (in.)Nonductile2S 0.08624×240.0101224×240.006(0.011)112P 0.08630×300.0151530×300.003(0.011)114S 0.06820×200.0281020×260.007(0.014)124P 0.06824×280.0331424×320.007(0.009)158S 0.05428×280.0141424×260.006(0.013)118P 0.05430×360.0331526×360.008(0.010)1712S 0.04732×320.025926×300.006(0.011)1712P 0.04732×400.032930×380.006(0.013)184S g 0.06820×200.028 6.720×260.007(0.014)84S h 0.06820×200.0281020×260.007(0.014)1212S g 0.04732×320.025626×300.006(0.011)1112S h 0.04732×320.025926×300.006(0.011)17Ductile2S 0.12522×220.017518×220.006(0.012) 3.52P 0.12528×300.018528×280.007(0.008)54S 0.09222×220.016522×240.004(0.008)54P 0.09232×380.016 3.524×320.011(0.012)58S 0.05022×220.011422×220.006(0.011) 4.58P 0.05026×340.018 3.526×300.007(0.008)512S 0.04422×220.016522×280.005(0.008)512P0.04428×320.0223.528×380.006(0.007)6aThe design base shear coefficient in the 1967UBC is given by C ¼0:05=T ð1=3Þ≤0:10.For moment resisting frames,T ¼0:1N ,where N is the number of stories (ICBO 1967).bThe design base shear coefficient for modern buildings depends on the response spectrum at the site of interest.The Los Angeles site has a design spectrumdefined by S DS ¼1:0g and S D1¼0:60g.The period used in calculation of the design base shear is derived from the code equation T ¼0:016h 0:9n ,where h n isthe height of the structure in feet,and uses the coefficient for upper limit of calculated period (C u ¼1:4)(ASCE 2002).cColumn properties vary over the height of the structure and are reported here for an interior first-story column.dConfiguration of transverse reinforcement in each member depends on the required shear strength.There are at least two No.3bars at every location.eConfiguration of transverse reinforcement in ductile RC frames depends on the required shear strength.All hooks have seismic detailing and use No.4bars (ACI 2005).fBeam properties vary over the height of the structure and are reported here are for a second-floor beam.gThese design variants have better-than-average beam and column detailing.hThese design variants have better-than-average joint detailing.JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/493D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .summarized in Table 1,and complete documentation of the non-ductile RC archetypes is available in Liel and Deierlein (2008).Four of the 4-and 12-story designs have enhanced detailing,as described subsequently.The collapse performance of archetypical nonductile RC frame structures is compared to the set of ductile RC frame archetypes presented in the companion paper (Haselton et al.2011b ).As sum-marized in Table 2,these ductile frames are designed according to the provisions of the International Building Code (ICC 2003),ASCE 7(ASCE 2002),and ACI 318(ACI 2005);and meet all gov-erning code requirements for strength,stiffness,capacity design,and detailing for special moment frames.The structures benefit from the provisions that have been incorporated into seismic design codes for reinforced concrete since the 1970s,including an assort-ment of capacity design provisions [e.g.,strong column-weak beam (SCWB)ratios,beam-column and joint shear capacity design]and detailing improvements (e.g.,transverse confinement in beam-column hinge regions,increased lap splice requirements,closed hooks).The ductile RC frames are designed for a typical high-seismic Los Angeles site with soil class S d that is located in the transition region of the 2003IBC design maps (Haselton and Deierlein 2007).A comparison of the structures described in Table 1reflects four decades of changes to seismic design provisions for RC moment frames.Despite modifications to the period-based equation for design base shear,the resulting base shear coefficient is relatively similar for nonductile and ductile RC frames of the same height,except in the shortest structures.More significant differencesbetween the two sets of buildings are apparent in member design and detailing,especially in the quantity,distribution,and detailing of transverse reinforcement.Modern RC frames are subject to shear capacity design provisions and more stringent limitations on stirrup spacing,such that transverse reinforcement is spaced two to four times more closely in ductile RC beams and columns.The SCWB ratio enforces minimum column strengths to delay the formation of story mechanisms.As a result,the ratio of column to beam strength at each joint is approximately 30%higher (on average)in the duc-tile RC frames than the nonductile RC frames.Nonductile RC frames also have no special provision for design or reinforcement of the beam-column joint region,whereas columns in ductile RC frames are sized to meet joint shear demands with transverse reinforcement in the joints.Joint shear strength requirements in special moment frames tend to increase the column size,thereby reducing axial load ratios in columns.Nonlinear Simulation ModelsNonlinear analysis models for each archetype nonductile RC frame consist of a two-dimensional three-bay representation of the lateral resisting system,as shown in Fig.1.The analytical model repre-sents material nonlinearities in beams,columns,beam-column joints,and large deformation (P -Δ)effects that are important for simulating collapse of frames.Beam and column ends and the beam-column joint regions are modeled with member end hinges that are kinematically constrained to represent finite joint sizeTable 2.Representative Modeling Parameters in Archetype Nonductile and Ductile RC Frame Structures Structure Axial load a,b (P =A g f 0c )Initial stiffness c Plastic rotation capacity (θcap ;pl ,rad)Postcapping rotation capacity (θpc ,rad)Cyclicdeterioration d (λ)First mode period e (T 1,s)Nonductile2S 0.110:35EI g 0.0180.04041 1.12P 0.030:35EI g 0.0170.05157 1.04S 0.300:57EI g 0.0210.03333 2.04P 0.090:35EI g 0.0310.10043 2.08S 0.310:53EI g 0.0130.02832 2.28P 0.110:35EI g 0.0250.10051 2.412S 0.350:54EI g 0.0290.06353 2.312P 0.140:35EI g 0.0450.10082 2.84S f 0.300:57EI g 0.0320.04748 2.04S g 0.300:57EI g 0.0210.03333 2.012S f 0.350:54EI g 0.0430.09467 2.312S g 0.350:54EI g 0.0290.06353 2.3Ductile2S 0.060:35EI g 0.0650.100870.632P 0.010:35EI g 0.0750.1001110.664S 0.130:38EI g 0.0570.100800.944P 0.020:35EI g 0.0860.100133 1.18S 0.210:51EI g 0.0510.10080 1.88P 0.060:35EI g 0.0870.100122 1.712S 0.380:68EI g 0.0360.05857 2.112P0.070:35EI g0.0700.1001182.1a Properties reported for representative interior column in the first story.(Column model properties data from Haselton et al.2008.)bExpected axial loads include the unfactored dead load and 25%of the design live load.cEffective secant stiffness through 40%of yield strength.dλis defined such that the hysteretic energy dissipation capacity is given by Et ¼λM y θy (Haselton et al.2008).eObtained from eigenvalue analysis of frame model.fThese design variants have better-than-average beam and column detailing.gThese design variants have better-than-average joint detailing.494/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .effects and connected to a joint shear spring (Lowes and Altoontash 2003).The structural models do not include any contribution from nonstructural components or from gravity-load resisting structural elements that are not part of the lateral resisting system.The model is implemented in OpenSees with robust convergence algorithms (OpenSees 2009).As in the companion paper,inelastic beams,columns,and joints are modeled with concentrated springs idealized by a trilinear back-bone curve and associated hysteretic rules developed by Ibarra et al.(2005).Properties of the nonlinear springs representing beam and column elements are predicted from a series of empirical relation-ships relating column design characteristics to modeling parame-ters and calibrated to experimental data for RC columns (Haselton et al.2008).Tests used to develop empirical relationships include a large number of RC columns with nonductile detailing,and predicted model parameters reflect the observed differences in moment-rotation behavior between nonductile and ductile RC elements.As in the companion paper,calibration of model param-eters for RC beams is established on columns tested with low axial load levels because of the sparse available beam data.Fig.2(a)shows column monotonic backbone curve properties for a ductile and nonductile column (each from a 4-story building).The plastic rotation capacity θcap ;pl ,which is known to have an important influence on collapse prediction,is a function of the amount of column confinement reinforcement and axial load levels,and is approximately 2.7times greater for the ductile RC column.The ductile RC column also has a larger postcapping rotation capacity (θpc )that affects the rate of postpeak strength degradation.Fig.2(b)illustrates cyclic deterioration of column strength and stiffness under a typical loading protocol.Cyclic degradation of the initial backbone curve is controlled by the deterioration parameter λ,which is a measure of the energy dissipation capacity and is smaller in nonductile columns because of poor confinement and higher axial loads.Model parameters are calibrated to the expected level of axial compression in columns because of gravity loads and do not account for axial-flexure-shear interaction during the analysis,which may be significant in taller buildings.Modeling parameters for typical RC columns in nonductile and ductile archetypes are summarized in Table 2.Properties for RC beams are similar and reported elsewhere (Liel and Deierlein 2008;Haselton and Deierlein 2007).All element model properties are calibrated to median values of test data.Although the hysteretic beam and column spring parameters incorporate bond-slip at the member ends,they do not account for significant degradations that may occur because of anchorage or splice failure in nonductile frames.Unlike ductile RC frames,in which capacity design require-ments limit joint shear deformations,nonductile RC frames may experience significant joint shear damage contributing to collapse (Liel and Deierlein 2008).Joint shear behavior is modeled with an inelastic spring,as illustrated in Fig.1and defined by a monotonic backbone and hysteretic rules (similar to those shown in Fig.2for columns).The properties of the joint shear spring are on the basisofFig.1.Schematic of the RC frame structural analysismodel(a)(b)Fig.2.Properties of inelastic springs used to model ductile and non-ductile RC columns in the first story of a typical 4-story space frame:(a)monotonic behavior;(b)cyclic behaviorJOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/495D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .selected subassembly data of joints with minimal amounts of trans-verse reinforcement and other nonductile characteristics.Unfortu-nately,available data on nonconforming joints are limited.Joint shear strength is computed using a modified version of the ACI 318equation (ACI 2005),and depends on joint size (b j is joint width,h is height),concrete compressive strength (f 0c ,units:psi),and confinement (γ,which is 12to 20depending on the configu-ration of confining beams)such that V ¼0:7γffiffiffiffif 0c p b j h .The 0.7modification factor is on the basis of empirical data from Mitra and Lowes (2007)and reflects differences in shear strength between seismically detailed joints (as assumed in ACI 318Chap.21)and joints without transverse reinforcement,of the type consid-ered in this study.Unlike conforming RC joints,which are assumed to behave linear elastically,nonductile RC joints have limited duc-tility,and shear plastic deformation capacity is assumed to be 0.015and 0.010rad for interior and exterior joints,respectively (Moehle et al.2006).For joints with axial load levels below 0.095,data from Pantelides et al.(2002)are used as the basis for a linear increase in deformation capacity (to a maximum of 0.025at zero axial load).Limited available data suggest a negative postcapping slope of approximately 10%of the effective initial stiffness is appropriate.Because of insubstantial data,cyclic deterioration properties are assumed to be the same as that for RC beams and columns.The calculated elastic fundamental periods of the RC frame models,reported in Table 2,reflect the effective “cracked ”stiffness of the beams and columns (35%of EI g for RC beams;35%to 80%of EI g for columns),finite joint sizes,and panel zone flexibility.The effective member stiffness properties are determined on the basis of deformations at 40%of the yield strength and include bond-slip at the member ends.The computed periods are signifi-cantly larger than values calculated from simplified formulas in ASCE (2002)and other standards,owing to the structural modeling assumptions (specifically,the assumed effective stiffness and the exclusion of the gravity-resisting system from the analysis model)and intentional conservatism in code-based formulas for building period.Nonlinear static (pushover)analysis of archetype analysis mod-els shows that the modern RC frames are stronger and have greater deformation capacities than their nonductile counterparts,as illus-trated in Fig.3.The ASCE 7-05equivalent seismic load distribu-tion is applied in the teral strength is compared on the basis of overstrength ratio,Ω,defined as the ratio between the ultimate strength and the design base shear.The ductility is com-pared on the basis of ultimate roof drift ratio (RDR ult ),defined as the roof drift ratio at which 20%of the lateral strength of the structure has been lost.As summarized in Table 3,for the archetype designs in this study,the ductile RC frames have approximately 40%more overstrength and ultimate roof drift ratios three times larger than the nonductile RC frames.The larger structural deformation capacity and overstrength in the ductile frames results from (1)greater deformation capacity in ductile versus nonductile RC components (e.g.,compare column θcap ;pl and θpc in Table 2),(2)the SCWB requirements that promote more distributed yielding over multiple stories in the ductile frames,(3)the larger column strengths in ductile frames that result from the SCWB and joint shear strength requirements,and (4)the required ratios of positive and negative bending strength of the beams in the ductile frames.Fig.3(b)illustrates the damage concentration in lower stories,especially in the nonductile archetype structures.Whereas nonlin-ear static methods are not integral to the dynamic collapse analyses,the pushover results help to relate the dynamic collapse analysis results,described subsequently,and codified nonlinear static assessment procedures.Collapse Performance Assessment ProcedureSeismic collapse performance assessment for archetype nonductile RC frame structures follows the same procedure as in the companion study of ductile RC frames (Haselton et al.2011b ).The collapse assessment is organized using incremental dynamic analysis (IDA)of nonlinear simulation models,where each RC frame model is subjected to analysis under multiple ground motions that are scaled to increasing amplitudes.For each ground motion,collapse is defined on the basis of the intensity (spectral acceleration at the first-mode period of the analysis model)of the input ground motion that results in structural collapse,as iden-tified in the analysis by excessive interstory drifts.The IDA is repeated for each record in a suite of 80ground motions,whose properties along with selection and scaling procedures are de-scribed by Haselton et al.(2011b ).The outcome of this assessment is a lognormal distribution (median,standard deviation)relating that structure ’s probability of collapse to the ground-motion inten-sity,representing a structural collapse fragility function.Uncer-tainty in prediction of the intensity at which collapse occurs,termed “record-to-record ”uncertainty (σln ;RTR ),is associated with variation in frequency content and other characteristics of ground-motion records.Although the nonlinear analysis model for RC frames can simulate sidesway collapse associated with strength and stiffness degradation in the flexural hinges of the beams andcolumnsFig.3.Pushover analysis of ductile and nonductile archetype 12-story RC perimeter frames:(a)force-displacement response;and (b)distri-bution of interstory drifts at the end of the analysis496/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .and beam-column joint shear deformations,the analysis model does not directly capture column shear failure.The columns in the archetype buildings in this study are expected to yield first in flexure,followed by shear failure (Elwood and Moehle 2005)rather than direct shear failure,as may be experienced by short,squat nonductile RC columns.However,observed earthquake damage and laboratory studies have shown that shear failure and subsequent loss of gravity-load-bearing capacity in one column could lead to progressive collapse in nonductile RC frames.Column shear failure is not incorporated directly because of the difficulties in accurately simulating shear or flexure-shear failure and subsequent loss of axial load-carrying capacity (Elwood 2004).Collapse modes related to column shear failure are therefore detected by postprocessing dynamic analysis results using compo-nent limit state ponent limit state functions are devel-oped from experimental data on nonductile beam-columns and predict the median column drift ratio (CDR)at which shear failure,and the subsequent loss of vertical-load-carrying capacity,will occur.Here,CDR is defined similarly to interstory drift ratio,but excludes the contribution of beam rotation and joint deforma-tion to the total drift because the functions are established on data from column component tests.Component fragility relationships for columns failing in flexure-shear developed by Aslani and Miranda (2005),building on work by Elwood (2004),are employed in this study.For columns with nonductile shear design and detailing in this study and axial load ratios of P =A g f 0c between 0.03and 0.35,Aslani and Miranda (2005)predict that shear failure occurs at a median CDR between 0.017and 0.032rad,depending on the properties of the column,and the deformation capacity decreases with increasing axial load.Sub-sequent loss of vertical-carrying capacity in a column is predicted to occur at a median CDR between 0.032and 0.10rad,again depending on the properties of the column.Since the loss of vertical-load-carrying capacity of a column may precipitate progressive structure collapse,this damage state is defined as collapse in this assessment.In postprocessing dynamic analysis results,the vertical collapse limit state is reached if,during the analysis,the drift in any column exceeds the median value of that column ’s component fragility function.If the vertical collapse mode is predicted to occur at a smaller ground-motion intensity than the sidesway collapse mode (for a particular record),then the collapse statistics are updated.This simplified approach can be shown to give comparable median results to convolving the probability distribution of column drifts experienced as a function of ground-motion intensity (engineering demands)with the com-ponent fragility curve (capacity).The total uncertainty in the col-lapse fragility is assumed to be similar in the sidesway-only case and the sidesway/axial collapse case,as it is driven by modeling and record-to-record uncertainties rather than uncertainty in the component fragilities.Incorporating this vertical collapse limit state has the effect of reducing the predicted collapse capacity of the structure.Fig.4illustrates the collapse fragility curves for the 8-story RC space frame,with and without consideration of shear failure and axial failure following shear.As shown,if one considers collapse to occur with column shear failure,then the collapse fragility can reduce considerably compared to the sidesway collapse mode.However,if one assumes that shear failure of one column does not constitute collapse and that collapse is instead associated with the loss in column axial capacity,then the resulting collapse capac-ity is only slightly less than calculations for sidesway alone.For the nonductile RC frame structures considered in this study,the limit state check for loss of vertical-carrying capacity reduces the median collapse capacity by 2%to 30%as compared to the sidesway collapse statistics that are computed without this check (Liel and Deierlein 2008).Table 3.Results of Collapse Performance Assessment for Archetype Nonductile and Ductile RC Frame Structures Structure ΩRDR ult Median Sa ðT 1Þ(g)Sa 2=50ðT 1Þ(g)Collapse marginλcollapse ×10À4IDR collapse RDR collapseNonductile 2S 1.90.0190.470.800.591090.0310.0172P 1.60.0350.680.790.85470.0400.0284S 1.40.0160.270.490.541070.0540.0284P 1.10.0130.310.470.661000.0370.0178S 1.60.0110.290.420.68640.0420.0118P 1.10.0070.230.310.751350.0340.00912S 1.90.0100.290.350.83500.0340.00612P 1.10.0050.240.420.561190.0310.0064S a 1.40.0160.350.490.72380.0560.0244S b 1.60.0180.290.490.60890.0610.02612S a 1.90.0120.330.350.93350.0390.00912S b 2.20.0120.460.351.32160.0560.012Ductile 2S 3.50.085 3.55 1.16 3.07 1.00.0970.0752P 1.80.0672.48 1.13 2.193.40.0750.0614S 2.70.047 2.220.87 2.56 1.70.0780.0504P 1.60.038 1.560.77 2.04 3.60.0850.0478S 2.30.028 1.230.54 2.29 2.40.0770.0338P 1.60.023 1.000.57 1.77 6.30.0680.02712S 2.10.0220.830.44 1.914.70.0550.01812P1.70.0260.850.471.845.20.0530.016a These design variants have better-than-average beam and column detailing.bThese design variants have better-than-average joint detailing.JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/497D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。
中英文对照外文翻译(文档含英文原文和中文翻译)Create and comprehensive technology in the structure globaldesign of the buildingThe 21st century will be the era that many kinds of disciplines technology coexists , it will form the enormous motive force of promoting the development of building , the building is more and more important too in global design, the architect must seize the opportunity , give full play to the architect's leading role, preside over every building engineering design well. Building there is the global design concept not new of architectural design,characteristic of it for in an all-round way each element not correlated with building- there aren't external environment condition, building , technical equipment,etc. work in coordination with, and create the premium building with the comprehensive new technology to combine together.The premium building is created, must consider sustainable development , namely future requirement , in other words, how save natural resources as much as possible, how about protect the environment that the mankind depends on for existence, how construct through high-quality between architectural design and building, in order to reduce building equipment use quantity andreduce whole expenses of project.The comprehensive new technology is to give full play to the technological specialty of every discipline , create and use the new technology, and with outside space , dimension of the building , working in coordination with in an all-round way the building component, thus reduce equipment investment and operate the expenses.Each success , building of engineering construction condense collective intelligence and strength; It is intelligence and expectation that an architect pays that the building is created; The engineering design of the building is that architecture , structure , equipment speciality compose hardships and strength happenning; It is the diligent and sweat paid in design and operation , installation , management that the construction work is built up .The initial stage of the 1990s, our understanding that the concept of global design is a bit elementary , conscientious to with making some jobs in engineering design unconsciously , make some harvest. This text Hangzhou city industrial and commercial bank financial comprehensive building and Hangzhou city Bank of Communications financial building two building , group of " scientific and technological progress second prize " speak of from person who obtain emphatically, expound the fact global design - comprehensive technology that building create its , for reach global design outstanding architect in two engineering design, have served as the creator and persons who cooperate while every stage design and even building are built completely.Two projects come into operation for more than 4 years formally , run and coordinate , good wholly , reach the anticipated result, accepted and appreciated by the masses, obtain various kinds of honor .outstanding to design award , progress prize in science and technology , project quality bonus , local top ten view , best model image award ,etc., the ones that do not give to the architect and engineers without one are gratified and proud. The building is created Emphasizing the era for global design of the building, the architects' creation idea and design method should be broken through to some extent, creation inspirations is it set up in analysis , building of global design , synthesize more to burst out and at the foundation that appraise, learn and improve the integration capability exactly designed in building , possess the new knowledge system and thinking method , merge multi-disciplinary technology. We have used the new design idea in above-mentioned projects, have emphasized the globality created in building .Is it is it act as so as to explain to conceive to create two design overview and building of construction work these now.1) The financial comprehensive building of industrial and commercial bank of HangZhou,belong to the comprehensive building, with the whole construction area of 39,000 square meters, main building total height 84, 22, skirt 4 of room, some 6 storeys, 2 storeys of basements.Design overall thinking break through of our country bank building traditional design mode - seal , deep and serious , stern , form first-class function, create of multi-functional type , the style of opening , architecture integrated with the mode of the international commercial bank.The model of the building is free and easy, opened, physique was made up by the hyperboloid, the main building presented " the curved surface surrounded southwards ", skirt room presents " the curved surface surrounded northwards ", the two surround but become intension of " gathering the treasure ".Building flourishing upwards, elevation is it adopt large area solid granite wall to design, the belt aluminium alloy curtain wall of the large area and some glass curtain walls, and interweave the three into powerful and vigorous whole , chase through model and entity wall layer bring together , form concise , tall and straight , upward tendency of working up successively, have distinct and unique distinctions.Building level and indoor space are designed into a multi-functional type and style of opening, opening, negotiate , the official working , meeting , receiving , be healthy and blissful , visit combining together. Spacious and bright two storeys open in the hall unifiedly in the Italian marble pale yellow tone , in addition, the escalator , fountain , light set off, make the space seem very magnificent , graceful and sincere. Intelligent computer network center, getting open and intelligent to handle official business space and all related house distribute in all floor reasonably. Top floor round visit layer, lift all of Room visit layer , can have a panoramic view of the scenery of the West Lake , fully enjoy the warmth of the nature. 2) The financial building of Bank of Communications of Hangzhou, belong to the purely financial office block, with the whole construction area of 19,000 square meters, the total height of the building is 39.9 meters, 13 storeys on the ground, the 2nd Floor. Live in building degree high than it around location , designer have unique architectural appearance of style architectural design this specially, its elevation is designed into a new classical form , the building base adopts the rough granite, show rich capability , top is it burn granite and verticality bar and some form aluminum windows make up as the veneer to adopt, represent the building noble and refined , serious personality of the bank.While creating in above-mentioned two items, besides portraying the shape of the building and indoor space and outside environment minister and blending meticulously, in order to achieve the outstanding purpose of global design of the building , the architect , still according to the region and project characteristic, put forward the following requirement to every speciality:(1) Control the total height of the building strictly;(2) It favorable to the intelligent comfortable height of clearances to create; (3) Meet thefloor area of owner's demand;(4)Protect the environment , save the energy , reduce and make the investment;(5) Design meticulously, use and popularize the new technology; (6)Cooperate closely in every speciality, optimization design.Comprehensive technologyThe building should have strong vitality, there must be sustainable development space, there should be abundant intension and comprehensive new technology. Among above-mentioned construction work , have popularized and used the intelligent technology of the building , has not glued and formed the flat roof beam of prestressing force - dull and stereotyped structure technology and flat roof beam structure technology, baseplate temperature mix hole , technology of muscle and base of basement enclose new technology of protecting, computer control STL ice hold cold air conditioner technology, compounding type keeps warm and insulates against heat the technology of the wall , such new technologies as the sectional electricity distribution room ,etc., give architecture global design to add the new vitality of note undoubtedly.1, the intelligent technology of the buildingIn initial stage of the 1990s, the intelligent building was introduced from foreign countries to China only as a kind of concept , computer network standard is it soon , make information communication skeleton of intelligent building to pursue in the world- comprehensive wiring system becomes a kind of trend because of 10BASE-T. In order to make the bank building adapt to the development of the times, the designer does one's utmost to recommend and design the comprehensive wiring system with the leading eyes , this may well be termed the first modernized building which adopted this technical design at that time.(1) Comprehensive wiring system one communication transmission network, it make between speech and data communication apparatus , exchange equipment and other administrative systems link to each other, make the equipment and outside communication network link to each other too. It include external telecommunication connection piece and inside information speech all cable and relevant wiring position of data terminal of workspace of network. The comprehensive wiring system adopts the products of American AT&T Corp.. Connected up the subsystem among the subsystem , management subsystem , arterial subsystem and equipment to make up by workspace subsystem , level.(2) Automated systems of security personnel The monitoring systems of security personnel of the building divide into the public place and control and control two pieces of systemequipment with the national treasury special-purposly synthetically.The special-purpose monitoring systems of security personnel of national treasury are in the national treasury , manage the storehouse on behalf of another , transporting the paper money garage to control strictly, the track record that personnel come in and go out, have and shake the warning sensor to every wall of national treasury , the camera, infrared microwave detector in every relevant rooms, set up the automation of controlling to control.In order to realize building intellectuality, the architect has finished complete indoor environment design, has created the comfortable , high-efficient working environment , having opened up the room internal and external recreation space not of uniform size, namely the green one hits the front yard and roofing, have offered the world had a rest and regulated to people working before automation is equipped all day , hang a design adopt the special building to construct the node in concrete ground , wall at the same time.2, has not glued and formed the flat roof beam of prestressing force- dull and stereotyped structure technology and flat roof beam structure technologyIn order to meet the requirement with high assurance that the architect puts forward , try to reduce the height of structure component in structure speciality, did not glue and form the flat roof beam of prestressing force concrete - dull and stereotyped structure technology and flat roof beam structure technology after adopting.(1) Adopt prestressing force concrete roof beam board structure save than ordinary roof beam board concrete consumption 15%, steel consumption saves 27%, the roof beam reduces 300mm high.(2) Adopt flat roof beam structure save concrete about 10% consumption than ordinary roof beam board, steel consumption saves 6.6%, the roof beam reduces 200mm high.Under building total situation that height does not change , adopt above-mentioned structure can make the whole building increase floor area of a layer , have good economic benefits and social benefit.3, the temperature of the baseplate matches muscle technologyIn basement design , is it is it is it after calculating , take the perimeter to keep the construction technology measure warm to split to resist to go on to baseplate, arrange temperature stress reinforcing bar the middle cancelling , dispose 2 row receives the strength reinforcing bar up and down only, this has not only save the fabrication cost of the project but also met the basement baseplate impervious and resisting the requirement that splits.4, the foundation of the basement encloses and protects the new technology of design and operationAdopt two technological measures in enclosing and protecting a design:(1) Cantilever is it is it hole strength is it adopt form strengthen and mix muscle technology to design to protect to enclose, save the steel and invite 60t, it invests about 280,000 to save.(2) Is it is it protect of of elevation and keep roof beam technology to enclose , is it protect long to reduce 1.5m to enclose all to reduce, keep roof beam mark level on natural ground 1.5m , is it is it protect of lateral pressure receive strength some height to enclose to change, saving 137.9 cubic meters of concrete, steel 16.08t, reduces and invests 304,000 yuan directly through calculating.5, ice hold cold air conditioner technologyIce hold cold air conditioner technology belong to new technology still in our country , it heavy advantage that the electricity moves the peak and operates the expenses sparingly most. In design, is it ice mode adopt some (weight ) hold mode of icing , is it ice refrigeration to be plane utilization ratio high to hold partly to hold, hold cold capacity little , refrigeration plane capacity 30%-45% little than routine air conditioner equipment, one economic effective operational mode.Hold the implementation of the technology of the cold air conditioner in order to cooperate with the ice , has used intelligent technology, having adopted the computer to control in holding and icing the air conditioner system, the main task has five following respects:(1) According to the demand for user's cold load , according to the characteristic of the structure of the electric rate , set up the ice and hold the best operation way of the cold system automatically, reduce the operation expenses of the whole system;(2) Fully utilize and hold the capacity of the cold device, should try one's best to use up all the cold quantity held basically on the same day;(3) Automatic operation state of detection system, ensure ice hold cold system capital equipment normal , safe operation;(4) Automatic record parameter that system operate, display system operate flow chart and type systematic operation parameter report form;(5) Predict future cooling load, confirm the future optimization operation scheme.Ice hold cold air conditioner system test run for some time, indicate control system to be steady , reliable , easy to operate, the system operates the energy-conserving result remarkably.6, the compounding type keeps in the wall warm and insulates against heat To the area of Hangzhou , want heating , climate characteristic of lowering the temperature in summer in winter, is it protect building this structural design person who compound is it insulate against heat the wall to keep warm to enclose specially, namely: Fit up , keep warm , insulate against heat the three not to equal to the body , realize building energy-conservation better.Person who compound is it insulate against heat wall to combine elevation model characteristic , design aluminium board elevation renovation material to keep warm, its structure is: Fill out and build hollow brick in the frame structure, do to hang the American Fluorine carbon coating inferior mere aluminium board outside the hollow brick wall.Aluminium board spoke hot to have high-efficient adiabatic performance to the sun, under the same hot function of solar radiation, because the nature , color of the surface material are different from coarse degree, whether can absorb heat have great difference very , between surface and solar radiation hot absorption system (α ) and material radiation system (Cλ ) is it say to come beyond the difference this. Adopt α and Cλ value little surface material have remarkable result , board α、Cλ value little aluminium have, its α =0.26, Cλ =0.4, light gray face brick α =0.56, Cλ =4.3.Aluminium board for is it hang with having layer under air by hollow brick to do, because aluminium board is it have better radiation transfer to hot terms to put in layer among the atmosphere and air, this structure is playing high-efficient adiabatic function on indoor heating too in winter, so, no matter or can well realize building energy-conservation in winter in summer.7, popularize the technology of sectional electricity distribution roomConsider one layer paves Taxi " gold " value , the total distribution of the building locates the east, set up voltage transformer and low-voltage distribution in the same room in first try in the design, make up sectional electricity distribution room , save transformer substation area greatly , adopt layer assign up and down, mixing the switchyard system entirely after building up and putting into operation, the function is clear , the overall arrangement compactness is rational , the systematic dispatcher is flexible . The technology have to go to to use and already become the model extensively of the design afterwards.ConclusionThe whole mode designed of the building synthetically can raise the adaptability of the building , it will be the inevitable trend , environmental consciousness and awareness of saving energy especially after strengthening are even more important. Developing with the economy , science and technology constantly in our country, more advanced technology and scientific and technical result will be applied to the building , believe firmly that in the near future , more outstanding building global design will appear on the building stage of our country. We will be summarizing, progressing constantly constantly, this is that history gives the great responsibility of architect and engineer.译文:建筑结构整体设计-建筑创作和综合技术21世纪将是多种学科技术并存的时代,它必将形成推动建筑发展的巨大动力,建筑结构整体设计也就越来越重要,建筑师必须把握时机,充分发挥建筑师的主导作用,主持好各项建筑工程设计。
建筑的方案生成英文The generation of architectural designs is a complex and creative process that involves various stages and considerations. Architects employ a range of techniques and tools to develop unique solutions that meet the needs and aspirations of their clients while also responding to the context and constraints of the site.The first stage in the generation of architectural designs is the initial concept development. This involves understanding the client's requirements and objectives for the project, as well as any site-specific considerations. Architects often engage in thorough research and analysis during this stage, studying the site's topography, climate, and surrounding built environment. They also explore existing structures, materials, and technologies to gain inspiration and knowledge.Once the initial concept is formed, architects proceed to the design development stage. Here, they translate their ideas into more detailed and refined drawings and models. This can include floor plans, elevations, and cross-sections, as well as three-dimensional models and virtual reality simulations. Architects may also use computer-aided design (CAD) software to enhance their designs and facilitate collaboration with other professionals and stakeholders.During the design development stage, architects also consider various factors such as sustainability, aesthetics, and functionality. They evaluate different materials, construction techniques, and energy-efficient solutions to ensure that the design not only looks visually appealing but is also environmentally friendly and cost-effective. They may also incorporate elements of universal design to ensure accessibility for all users.The next stage in the generation of architectural designs is the presentation and review phase. Architects compile their drawings, models, and design rationale into a comprehensible package to present to the client and other stakeholders. This phase often involves feedback and discussions, allowing for refinements and adjustments to the design as necessary. Architects must effectively communicate their ideas and respond to any concerns or criticisms raised during this phase to ensure a satisfactory outcome.Once the design is finalized and approved, architects move on to the final stage, which involves the production of construction documents. These documents include detailed drawings, specifications, and schedules that serve as a roadmap for the actual construction process. They provide instructions for builders and contractors, ensuring that the design intent is faithfully translated into reality.In the production of construction documents, architects must adhere to relevant building codes, regulations, and industry standards. They coordinate with structural engineers, mechanical engineers, and other specialists to ensure that the design is structurally sound, efficient, and meets all safety requirements. They may also collaborate with interior designers and landscape architects to integrate all aspects of the built environment seamlessly.Throughout the entire process, architects continuously iterate andrefine their designs based on feedback, technical challenges, and evolving requirements. They strive to balance creativity with practicality, aesthetics with functionality, and innovation with tradition. The generation of architectural designs is an ongoing and iterative process that requires constant learning, exploration, and adaptation.In conclusion, the generation of architectural designs is a comprehensive and collaborative process that involves conceptualization, design development, presentation and review, and production of construction documents. Architects employ a range of techniques and tools to create unique and site-responsive solutions that meet the needs and aspirations of their clients. They consider various factors such as sustainability, aesthetics, and functionality to ensure that the final design is both visually appealing and functional. The architectural design process requires continuous refinement and iteration, culminating in the production of construction documents that serve as a blueprint for the actual construction.。
建筑专业英文笔记整理大全常用的景观英文1.主入口大门/岗亭(车行& 人行) MAIN ENTRANCE GA TE/GUARD HOUSE (FOR VEHICLE& PEDESTRIAN )2.次入口/岗亭(车行& 人行) 2ND ENTRANCE GA TE/GUARD HOUSE (FOR VEHICLE& PEDESTRIAN )3.商业中心入口ENTRANCE TO SHOPPING CTR.4.水景WA TER FEA TURE5.小型露天剧场MINI AMPHI-THEA TRE6.迎宾景观-1 WELCOMING FEA TURE-17.观景木台TIMBER DECK (VIEWING)8.竹园BAMBOO GARDEN9.漫步广场WALKWAY PLAZA10.露天咖啡廊OUT DOOR CAFE11.巨大迎宾水景-2 GRAND WELCOMING FEA TURE-212.木桥TIMBER BRIDGE13.石景、水瀑、洞穴、观景台ROCK'SCAPE WA TERFALL'S GROTTO/ VIEWING TERRACE14.吊桥HANGING BRIDGE15.休憩台地(低处) LOUNGING TERRACE (LOWER )16.休憩台地(高处) LOUNGING TERRACE (UPPER )17.特色踏步FEA TURE STEPPING STONE18.野趣小溪RIVER WILD19.儿童乐园CHILDREN'S PLAYGROUND20.旱冰道SLIDE21.羽毛球场BADMINTON COURT22.旱景DRY LANDSCAPE23.日艺园JAPANESE GARDEN24.旱喷泉DRY FOUNTAIN25.观景台VIEWING DECK26.游泳池SWIMMING POOL27.极可意JACUZZI28.嬉水池WADING POOL29.儿童泳池CHILDREN'S POOL30.蜿蜒水墙WINDING WALL31.石景雕塑ROCK SCULPTURE32.中心广场CENTRAL PLAZA33.健身广场EXERCISE PLAZA34.桥BRIDGE35.交流广场MEDITATING PLAZA36.趣味树阵TREE BA TTLE FORMATION37.停车场PARING AREA38.特色花架TRELLIS39.雕塑小道SCULPTURE TRAIL40.(高尔夫)轻击区PUTTING GREEN41.高尔夫球会所GOLF CLUBHOUSE42.每栋建筑入口ENTRANCE PA VING TO UNIT43.篮球场BASKETBALL COURT44.网球场TENNIS COURT45.阶梯坐台/种植槽TERRACING SEATWALL/PLANTER46.广场MAIN PLAZA47.森林、瀑布FOREST GARDEN WA TERFALL48.石景园ROCKERY GARDEN49.旱溪DRY STREAM50.凉亭PA VILION51.户外淋浴OUTDOOR SHOWER52.拉膜结构TENSILE STRUCTURE53.台阶STAIR54.高尔夫球车停车场PARKING ( GOLF CAR )55.健身站EXERCISE STATION56.晨跑小路JOGGING FOOTPA TH57.车道/人行道DRIVEWAY /SIDEWALK58.人行漫步道PROMENADE59.瀑布及跳舞喷泉(入口广场) WATER FALL AND DANCING FOUNTAIN ( ENTRY PLAZA )60.特色入口ENTRY FEA TURE 61.石景广场ROCKERY PLAZA常用造价英语词汇估算/费用估算:estimate/cost estimate;估算类型:types of estimate;详细估算:是偏差幅度最小的估算,defined estimate;设备估算:equipment estimate;分析估算:analysis estimate;报价估算:proposal estimate;控制估算:control estimate;初期控制估算:interim control estimate/initial control estimate批准的控制估算:initial approved cost核定估算:check estimate首次核定估算:first check estimate二次核定估算:production check estimate人工时估算:man hour estimate材料费用/直接材料费用:material cost/direct material cost设备费用/设备购买费用:equipment cost/purchased cost of equipment散装材料费用/散装材料购买费用:bulk material cost/purchased cost of bulk material施工费用:construction cost施工人工费用:labor cost/construction force cost设备安装人工费用:labor cost associated with equipment散装材料施工安装人工费用:labor cost associated with bulk materials人工时估算定额:standard manhours施工人工时估算定额:standard labor manhours标准工时定额:standard hours劳动生产率:labor productivity/productivity factor/productivity ratio修正的人工时估算值:adjusted manhours人工时单价:manhours rate施工监督费用:cost of construction supervision施工间接费用:cost of contruction indirects分包合同费用/现场施工分包合同费用:subcontract cost/field subcontract cost公司本部费用:home office cost公司管理费用:overhead非工资费用:non payroll开车服务费用:cost of start-up services其他费用:other cost利润/预期利润:profit/expected profit服务酬金:service gains风险:risk风险分析:risk analysis风险备忘录:risk memorandum未可预见费:contingency基本未可预见费:average contingency最大风险未可预见费:maximum risk contingency用户变更/合同变更:cilent change/contract change认可的用户变更:approved client change待定的用户变更:pending client change项目变更:project change内部变更:internalchange批准的变更:authoried change强制性变更:mandatory change选择性变更:optional change内部费用转换:internal transfer认可的预计费用:anticipated approved cost涨价值:escalation项目费用汇总报告:project cost summary report项目实施费用状态报告:project operation cost status report总价合同:lump sum contract偿付合同:reimbursible contract预算:budget规划专业英语规划词典环境、基础设施、交通运输环境设计( Environmental design )以物质环境的质量为基本点,以优良环境是人的基本权利与需要为前提的土地利用规划。
摘要机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,由其控制系统执行预定的程序实现对工件的定位夹持。
完全取代了人力,节省了劳动资源,提高了生产效率。
本设计以实现铣床自动上下料为目的,设计了个水平伸缩距为200mm,垂直伸缩距为200mm具有三个自由度的铣床上下料机械手。
机械手三个自由度分别是机身的旋转,手臂的升降,以及机身的升降。
在设计过程中,确定了铣床上下料机械手的总体方案,并对铣床上下料机械手的总体结构进行了设计,对一些部件进行了参数确定以及对主要的零部件进行了计算和校核。
以单片机为控制手段,设计了机械手的自动控制系统,实现了对铣床上下料机械手的准确控制。
关键词:机械手;三自由度;上下料;单片机AbstractManipulator , an automation equipment with function of grabbing and moving the workpiece ,is used in an automated production process.It perform scheduled program by the control system to realize the function of the positioning of the workpiece clamping. It completely replace the human, saving labor resources, and improve production efficiency.This design is to achieve milling automatic loading and unloading .Design a manipulator with three degrees of freedom and 200mm horizontal stretching distance, 120mm vertical telescopic distance. Three degrees of freedom of the manipulator is body rotation, arm movements, as well as the movements of the body. In the design process, determine the overall scheme of the milling machine loading and unloading manipulator and milling machine loading and unloading manipulator, the overall structure of the design parameters of some components as well as the main components of the calculation and verification. In the means of Single-chip microcomputer for controlling, design the automatic control system of the manipulator and achieve accurate control of the milling machine loading and unloading.Key words: Manipulator; Three Degrees of Freedom; Loading and unloading; single chip microcomputer目录摘要.........................................................................I第1章绪论.............................................................11.1选题背景................................................... (1)1.2设计目的.........................................................11.3国内外研究现状和趋势............................................21.4设计原则.........................................................2第2章设计方案的论证..................................................32.1 机械手的总体设计...............................................32.1.1机械手总体结构的类型....................................32.1.2 设计具体采用方案........................................42.2 机械手腰座结构设计.............................................52.2.1 机械手腰座结构设计要求.................................52.2.2 具体设计采用方案........................................52.3 机械手手臂的结构设计...........................................62.3.1机械手手臂的设计要求....................................62.3.2 设计具体采用方案........................................72.4 设计机械手手部连接方式.........................................72.5 机械手末端执行器(手部)的结构设计...........................82.5.1 机械手末端执行器的设计要求.............................82.5.2 机械手夹持器的运动和驱动方式..........................92.5.3 机械手夹持器的典型结构.................................92.6 机械手的机械传动机构的设计..................................102.6.1 工业机械手传动机构设计应注意的问题...................102.6.2 工业机械手传动机构常用的机构形式.....................102.6.3 设计具体采用方案.......................................122.7 机械手驱动系统的设计.........................................122.7.1 机械手各类驱动系统的特点..............................122.7.2 机械手液压驱动系统.....................................132.7.3机身摆动驱动元件的选取................................132.7.4 设计具体采用方案.......................................142.8 机械手手臂的平衡机构设计.....................................14第3章理论分析和设计计算............................................163.1 液压传动系统设计计算..........................................163.1.1 确定液压传动系统基本方案...............................163.1.2 拟定液压执行元件运动控制回路...........................173.1.3 液压源系统的设计........................................173.1.4 确定液压系统的主要参数.................................173.1.5 计算和选择液压元件......................................243.1.6机械手爪各结构尺寸的计算...................................26 第4章机械手控制系统的设计..........................................284.1 系统总体方案..................................................284.2 各芯片工作原理................................................284.2.1 串口转换芯片............................................284.2.2 单片机...................................................294.2.3 8279芯片...............................................304.2.4 译码器...................................................314.2.5 放大芯片................................................324.3 电路设计..................................................334.3.1 显示电路设计............................................334.3.2 键盘电路设计............................................334.4 复位电路设计..................................................334.5 晶体振荡电路设计.............................................344.6 传感器的选择..................................................34结论.....................................................................36致谢.....................................................................37参考文献................................................................38CONTENTS Abstract (I)Chapter 1 Introduction (1)1.1 background (1)1.2 design purpose (1)1.3 domestic and foreign research present situation and trends (2)1.4 design principles (2)Chapter 2 Design of the demonstration (3)2.1manipulator overall design (3)2.1.1 manipulator overall structure type (3)2.1.2 design adopts the scheme (4)2.2 lumbar base structure design of mechanical hand (5)2.2.1 manipulator lumbar base structure design requirements (5)2.2.2specific design schemes (5)2.3mechanical arm structure design (6)2.3.1 manipulator arm design requirements (6)2.3.2 design adopts the scheme (7)2.4 design of mechanical hand connection mode (7)2.5 the manipulator end-effector structure design (8)2.5.1 manipulator end-effector design requirements (8)2.5.2 manipulator gripper motion and driving method (9)2.5.3 manipulator gripper structure (9)2.6 robot mechanical transmission design (10)2.6.1 industry for transmission mechanism of manipulator design shouldpay attention question (10)2.6.2 industrial machinery hand transmission mechanism commonlyused form of institution (10)2.6.3 design adopts the scheme (12)2.7 mechanical arm drive system design (12)2.7.1 manipulator of various characteristics of the drive system (12)2.7.2 hydraulic drive system for a manipulator (13)2.7.3 Body swing the selection of drive components (13)2.7.4 Design the specific use of the program (14)2.8 mechanical arm balance mechanism design (14)Chapter 3 Theoretical analysis and design calculation (16)3.1 hydraulic system design and calculation (16)3.1.1 the basic scheme of hydrauic transmission system (16)3.1.2 formulation of the hydraulic actuator control circuit (17)3.1.3 hydraulic source system design (17)3.1.4 determine the main parameters of the hydraulic system (17)3.1.5 calculation and selection of hydraulic components (24)3.1.6 Manipulator calculation of the structural dimensions (26)Chapter 4 The robot control system design (28)4.1 Overall scheme (28)4.2 Chip works (28)4.2.1 serial conversion chip (28)4.2.2 MCU (29)4.2.3 8279 chip (30)4.2 .4 decoder (31)4.2.5 amplifier chip (32)4.3 Circuit design (33)4.3.1 show the circuit design (33)4.3.2 The keyboard circuit design (33)4.4 Reset circuit design (33)4.5 crystal oscillation circuit design (34)4.6 sensor selection (34)Conclusion (36)Acknowledgements (37)References (38)第1章绪论1.1选题背景机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。
建筑学毕业设计的外文文献及译文文献、资料题目:《Advanced Encryption Standard》文献、资料发表(出版)日期:2004.10.25系(部):建筑工程系生:陆总LYY外文文献:Modern ArchitectureModern architecture, not to be confused with Contemporary architecture1, is a term given to a number of building styles with similar characteristics, primarily the simplification of form and the elimination of ornament. While the style was conceived early in the 20th century and heavily promoted by a few architects, architectural educators and exhibits, very few Modern buildings were built in the first half of the century. For three decades after the Second World War, however, it became the dominant architectural style for institutional and corporate building.1. OriginsSome historians see the evolution of Modern architecture as a social matter, closely tied to the project of Modernity and hence to the Enlightenment, a result of social and political revolutions.Others see Modern architecture as primarily driven by technological and engineering developments, and it is true that the availability of new building materials such as iron, steel, concrete and glass drove the invention of new building techniques as part of the Industrial Revolution. In 1796, Shrewsbury mill owner Charles Bage first used his "fireproof design, which relied on cast iron and brick with flag stone floors. Such construction greatly strengthened the structure of mills, which enabled them to accommodate much bigger machines. Due to poor knowledge of iron's properties as a construction material, a number of early mills collapsed. It was not until the early 1830s that Eaton Hodgkinson introduced the section beam, leading to widespread use of iron construction, this kind of austere industrial architecture utterly transformed the landscape of northern Britain, leading to the description, πDark satanic millsπof places like Manchester and parts of West Yorkshire. The Crystal Palace by Joseph Paxton at the Great Exhibition of 1851 was an early example of iron and glass construction; possibly the best example is the development of the tall steel skyscraper in Chicago around 1890 by William Le Baron Jenney and Louis Sullivan∙ Early structures to employ concrete as the chief means of architectural expression (rather than for purely utilitarian structure) include Frank Lloyd Wright,s Unity Temple, built in 1906 near Chicago, and Rudolf Steiner,s Second Goetheanum, built from1926 near Basel, Switzerland.Other historians regard Modernism as a matter of taste, a reaction against eclecticism and the lavish stylistic excesses of Victorian Era and Edwardian Art Nouveau.Whatever the cause, around 1900 a number of architects around the world began developing new architectural solutions to integrate traditional precedents (Gothic, for instance) with new technological possibilities- The work of Louis Sullivan and Frank Lloyd Wright in Chicago, Victor Horta in Brussels, Antoni Gaudi in Barcelona, Otto Wagner in Vienna and Charles Rennie Mackintosh in Glasgow, among many others, can be seen as a common struggle between old and new.2. Modernism as Dominant StyleBy the 1920s the most important figures in Modern architecture had established their reputations. The big three are commonly recognized as Le Corbusier in France, and Ludwig Mies van der Rohe and Walter Gropius in Germany. Mies van der Rohe and Gropius were both directors of the Bauhaus, one of a number of European schools and associations concerned with reconciling craft tradition and industrial technology.Frank Lloyd Wright r s career parallels and influences the work of the European modernists, particularly via the Wasmuth Portfolio, but he refused to be categorized with them. Wright was a major influence on both Gropius and van der Rohe, however, as well as on the whole of organic architecture.In 1932 came the important MOMA exhibition, the International Exhibition of Modem Architecture, curated by Philip Johnson. Johnson and collaborator Henry-Russell Hitchcock drew together many distinct threads and trends, identified them as stylistically similar and having a common purpose, and consolidated them into the International Style.This was an important turning point. With World War II the important figures of the Bauhaus fled to the United States, to Chicago, to the Harvard Graduate School of Design, and to Black Mountain College. While Modern architectural design never became a dominant style in single-dwelling residential buildings, in institutional and commercial architecture Modernism became the pre-eminent, and in the schools (for leaders of the profession) the only acceptable, design solution from about 1932 to about 1984.Architects who worked in the international style wanted to break with architectural tradition and design simple, unornamented buildings. The most commonly used materials are glass for the facade, steel for exterior support, and concrete for the floors and interior supports; floor plans were functional and logical. The style became most evident in the design of skyscrapers. Perhaps its most famous manifestations include the United Nations headquarters (Le Corbusier, Oscar Niemeyer, Sir Howard Robertson), the Seagram Building (Ludwig Mies van der Rohe), and Lever House (Skidmore, Owings, and Merrill), all in New York. A prominent residential example is the Lovell House (Richard Neutra) in Los Angeles.Detractors of the international style claim that its stark, uncompromisingly rectangular geometry is dehumanising. Le Corbusier once described buildings as πmachines for living,∖but people are not machines and it was suggested that they do not want to live in machines- Even Philip Johnson admitted he was πbored with the box∕,Since the early 1980s many architects have deliberately sought to move away from rectilinear designs, towards more eclectic styles. During the middle of the century, some architects began experimenting in organic forms that they felt were more human and accessible. Mid-century modernism, or organic modernism, was very popular, due to its democratic and playful nature. Alvar Aalto and Eero Saarinen were two of the most prolific architects and designers in this movement, which has influenced contemporary modernism.Although there is debate as to when and why the decline of the modern movement occurred, criticism of Modern architecture began in the 1960s on the grounds that it was universal, sterile, elitist and lacked meaning. Its approach had become ossified in a πstyleπthat threatened to degenerate into a set of mannerisms. Siegfried Giedion in the 1961 introduction to his evolving text, Space, Time and Architecture (first written in 1941), could begin ,,At the moment a certain confusion exists in contemporary architecture, as in painting; a kind of pause, even a kind of exhaustion/1At the Metropolitan Museum of Art, a 1961 symposium discussed the question πModern Architecture: Death or Metamorphosis?11In New York, the coup d r etat appeared to materialize in controversy around the Pan Am Building that loomed over Grand Central Station, taking advantage of the modernist real estate concept of πair rights,∖[l] In criticism by Ada Louise Huxtable and Douglas Haskell it was seen to ,,severπthe Park Avenue streetscape and πtarnishπthe reputations of its consortium of architects: Walter Gropius, Pietro Belluschi and thebuilders Emery Roth & Sons. The rise of postmodernism was attributed to disenchantment with Modern architecture. By the 1980s, postmodern architecture appeared triumphant over modernism, including the temple of the Light of the World, a futuristic design for its time Guadalajara Jalisco La Luz del Mundo Sede International; however, postmodern aesthetics lacked traction and by the mid-1990s, a neo-modern (or hypermodern) architecture had once again established international pre-eminence. As part of this revival, much of the criticism of the modernists has been revisited, refuted, and re-evaluated; and a modernistic idiom once again dominates in institutional and commercial contemporary practice, but must now compete with the revival of traditional architectural design in commercial and institutional architecture; residential design continues to be dominated by a traditional aesthetic.中文译文:现代建筑现代建筑,不被混淆与‘当代建筑’,是一个词给了一些建筑风格有类似的特点,主要的简化形式,消除装饰等.虽然风格的设想早在20世纪,并大量造就了一些建筑师、建筑教育家和展品,很少有现代的建筑物,建于20世纪上半叶.第二次大战后的三十年,但最终却成为主导建筑风格的机构和公司建设.1起源一些历史学家认为进化的现代建筑作为一个社会问题,息息相关的工程中的现代性, 从而影响了启蒙运动,导致社会和政治革命.另一些人认为现代建筑主要是靠技术和工程学的发展,那就是获得新的建筑材料,如钢铁,混凝土和玻璃驱车发明新的建筑技术,它作为工业革命的一部分.1796年,Shrewsbury查尔斯bage首先用他的‘火’的设计,后者则依靠铸铁及砖与石材地板.这些建设大大加强了结构,使它们能够容纳更大的机器.由于作为建筑材料特性知识缺乏,一些早期建筑失败.直到1830年初,伊顿Hodgkinson预计推出了型钢梁,导致广泛使用钢架建设,工业结构完全改变了这种窘迫的面貌,英国北部领导的描述,〃黑暗魔鬼作坊〃的地方如曼彻斯特和西约克郡.水晶宫由约瑟夫paxton的重大展览,1851年,是一个早期的例子, 钢铁及玻璃施工;可能是一个最好的例子,就是1890年由William乐男爵延长和路易沙利文在芝加哥附近发展的高层钢结构摩天楼.早期结构采用混凝土作为行政手段的建筑表达(而非纯粹功利结构),包括建于1906年在芝加哥附近,劳埃德赖特的统一宫,建于1926 年瑞士巴塞尔附近的鲁道夫斯坦纳的第二哥特堂,.但无论原因为何,约有1900多位建筑师,在世界各地开始制定新的建筑方法,将传统的先例(比如哥特式)与新的技术相结合的可能性.路易沙利文和赖特在芝加哥工作,维克多奥尔塔在布鲁塞尔,安东尼高迪在巴塞罗那,奥托瓦格纳和查尔斯景mackintosh格拉斯哥在维也纳,其中之一可以看作是一个新与旧的共同斗争.2现代主义风格由1920年代的最重要人物,在现代建筑里确立了自己的名声.三个是公认的柯布西耶在法国,密斯范德尔德罗和瓦尔特格罗皮乌斯在德国.密斯范德尔德罗和格罗皮乌斯为董事的包豪斯,其中欧洲有不少学校和有关团体学习调和工艺和传统工业技术.赖特的建筑生涯中,也影响了欧洲建筑的现代艺术,特别是通过瓦斯穆特组合但他拒绝被归类与他们.赖特与格罗皮乌斯和Van der德罗对整个有机体系有重大的影响.在1932年来到的重要moma展览,是现代建筑艺术的国际展览,艺术家菲利普约翰逊. 约翰逊和合作者亨利-罗素阁纠集许多鲜明的线索和趋势,内容相似,有一个共同的目的, 巩固了他们融入国际化风格这是一个重要的转折点.在二战的时间包豪斯的代表人物逃到美国,芝加哥,到哈佛大学设计黑山书院.当现代建筑设计从未成为主导风格单一的住宅楼,在成为现代卓越的体制和商业建筑,是学校(专业领导)的唯一可接受的,设计解决方案,从约1932年至约1984 年.那些从事国际风格的建筑师想要打破传统建筑和简单的没有装饰的建筑物。
建筑Architecture is the art and science of designing structures that organize and enclose space for practical and symbolic purposes. Because architecture grows out of human needs and aspirations, it clearly communicates cultural values. Of all the visual arts, architecture affects our lives most directly for it determines the character of the human environment in major ways.建筑是一门设计结构的艺术和科学,出于实用或象征的目的用结构来组织和包围空间。
因为建筑源于人类的需求和愿望,同样也可以清楚地传达文化价值。
在所有的视觉艺术中,建筑最直接地影响了我们的生活,因为它在很多方面决定了我们生存的环境特征。
Architecture is a three-dimensional form. It utilizes space, mass, texture, line, light, and color. To be architecture, a building must achieve a working harmony with a variety of elements. Humans instinctively seek structures that will shelter and enhance their way of life. It is the work of architects to create buildings that are not simply constructions but also offer inspiration and delight. Buildings contribute to human life when they provide shelter, enrich space, complement their site, suit the climate, and are economically feasible. The client who pays for the building and defines its function is an important member of the architectural team. The mediocre design of many contemporary buildings can be traced to both clients and architects.建筑是一种利用空间、质量、纹理、线条、光线和颜色的三维立体形式。
建筑结构中英文对照词典Aacceptable quality:合格质量acceptance lot:验收批量aciera:钢材admixture:外加剂against slip coefficient between friction surface of high-strength bolted connection:高强度螺栓摩擦面抗滑移系数aggregate:骨料air content:含气量air-dried timber:气干材allowable ratio of height to sectional thickness of masonry wall or column:砌体墙、柱容许高厚比allowable slenderness ratio of steel member:钢构件容许长细比allowable slenderness ratio of timber compression member:受压木构件容许长细比allowable stress range of fatigue:疲劳容许应力幅allowable ultimate tensile strain of reinforcement:钢筋拉应变限值allowable value of crack width:裂缝宽度容许值allowable value of deflection of structural member:构件挠度容许值allowable value of deflection of timber bending member:受弯木构件挠度容许值allowable value of deformation of steel member:钢构件变形容许值allowable value of deformation of structural member:构件变形容许值allowable value of drift angle of earthquake resistant structure:抗震结构层间位移角限值amplified coefficient of eccentricity:偏心距增大系数anchorage:锚具anchorage length of steel bar:钢筋锚固长度approval analysis during construction stage:施工阶段验算arch:拱arch with tie rod:拉捍拱arch—shaped roof truss:拱形屋架area of shear plane:剪面面积area of transformed section:换算截面面积aseismic design:建筑抗震设计assembled monolithic concrete structure:装配整体式混凝土结构automatic welding:自动焊接auxiliary steel bar:架立钢筋Bbackfilling plate:垫板balanced depth of compression zone:界限受压区高度balanced eccentricity:界限偏心距bar splice:钢筋接头bark pocket:夹皮batten plate:缀板bearing plane of notch:齿承压面(67)bearing plate:支承板(52)bearing stiffener:支承加劲肋(52)bent-up steel bar:弯起钢筋(35)block:砌块(43)block masonry:砌块砌体(44)block masonry structure:砌块砌体结构(41)blow hole:气孔(62)board:板材(65)bolted connection:(钢结构)螺栓连接(59)bolted joint:(木结构)螺栓连接(69)bolted steel structure:螺栓连接钢结构(50)bonded prestressed concrete structure:有粘结预应力混凝土结构(24)bow:顺弯(71)brake member:制动构件(7)breadth of wall between windows:窗间墙宽度(46)brick masonry:砖砌体(44)brick masonry column:砖砌体柱(42)brick masonry structure:砖砌体结构(41)brick masonry wall:砖砌体墙(42)broad—leaved wood:阔叶树材(65)building structural materials:建筑结构材料(17)building structural unit:建筑结构单元(building structure:建筑结构(2built—up steel column:格构式钢柱(51bundled tube structure:成束筒结构(3burn—through:烧穿(62butt connection:对接(59butt joint:对接(70)butt weld:对接焊缝(60)Ccalculating area of compression member:受压构件计算面积(67) calculating overturning point:计算倾覆点(46)calculation of load-carrying capacity of member:构件承载能力计算(10) camber of structural member:结构构件起拱(22)cantilever beam :挑梁(42)cap of reinforced concrete column:钢筋混凝土柱帽(27)carbonation of concrete:混凝土碳化(30)cast-in—situ concrete slab column structure :现浇板柱结构cast-in—situ concrete structure:现浇混凝土结构(25)cavitation:孔洞(39)cavity wall:空斗墙(42)cement:水泥(27)cement content:水泥含量(38)cement mortar:水泥砂浆(43)characteriseic value of live load on floor or roof:楼面、屋面活荷载标准值(14) characteristi cvalue o fwindload:风荷载标准值(16)characteristic value of concrete compressive strength:混凝土轴心抗压强度标准值(30) characteristic value of concrete tensile strength:混凝土轴心抗拉标准值(30) characteristic value of cubic concrete compressive strength:混凝土立方体抗压强度标准值(29)characteristic value of earthquake action:地震作用标准值(16)characteristic value of horizontal crane load:吊车水平荷载标准值(15) characteristic value of masonry strength:砌体强度标准值(44)characteris tic value of permanent action·:永久作用标准值(14)characteristic value of snowload:雪荷载标准值(15)characteristic value of strength of steel:钢材强度标准值(55)characteristic value of strength of steel bar:钢筋强度标准值(31)characteristic value of uniformly distributed live load:均布活标载标准值(14) characteristic value of variable action:可变作用标准值(14)characteristic value of vertical crane load:吊车竖向荷载标准值(15)charaeteristic value of material strength:材料强度标准值(18)checking section of log structural member·,:原木构件计算截面(67)chimney:烟囱(3)circular double—layer suspended cable:圆形双层悬索(6)circular single—layer suspended cable:圆形单层悬索(6)circumferential weld:环形焊缝(60)classfication for earthquake—resistance of buildings·:建筑结构抗震设防类别(9) clear height:净高(21)clincher:扒钉(?0)coefficient of equivalent bending moment of eccentrically loaded steel memher(beam -column) :钢压弯构件等效弯矩系数(58)cold bend inspection of steelbar:冷弯试验(39)cold drawn bar:冷拉钢筋(28)cold drawn wire:冷拉钢丝(29)cold—formed thin—walled sectionsteel:冷弯薄壁型钢(53)cold-formed thin-walled steel structure·‘:冷弯薄壁型钢结构(50)cold—rolled deformed bar:冷轧带肋钢筋(28)column bracing:柱间支撑(7)combination value of live load on floor or roof:楼面、屋面活荷载组合值(15) compaction:密实度(37)compliance control:合格控制(23)composite brick masonry member:组合砖砌体构件(42)composite floor system:组合楼盖(8)composite floor with profiled steel sheet:压型钢板楼板(8)composite mortar:混合砂浆(43)composite roof truss:组合屋架(8)compostle member:组合构件(8)compound stirrup:复合箍筋(36)compression member with large eccentricity·:大偏心受压构件(32)compress ion member with small eccentricity·:小偏心受压构件(32)compressive strength at an angle with slope of grain:斜纹承压强度(66) compressive strength perpendicular to grain:横纹承压强度(66)concentration of plastic deformation:塑性变形集中(9)conceptual earthquake—resistant design:建筑抗震概念设计(9)concrete:混凝土(17)concrete column:混凝土柱(26)concrete consistence:混凝土稠度(37)concrete floded—plate structure:混凝土折板结构(26)concrete foundation:混凝土基础(27)concrete mix ratio:混凝土配合比(38)concrete wall:混凝土墙(27)concrete-filled steel tubular member:钢管混凝土构件(8)conifer:针叶树材(65)coniferous wood:针叶树材(65)connecting plate:连接板(52)connection:连接(21)connections of steel structure:钢结构连接(59)connections of timber structDdecay:腐朽(71)decay prevention of timber structure:木结构防腐(70)defect in timber:木材缺陷(70)deformation analysis:变形验算(10)degree of gravity vertical for structure or structural member·:结构构件垂直度(40) degree of gravity vertical forwall surface:墙面垂直度(49)degree of plainness for structural memer:构件平整度(40)degree of plainness for wall surface:墙面平整度(49)depth of compression zone:受压区高度(32)depth of neutral axis:中和轴高度(32)depth of notch:齿深(67)design of building structures:建筑结构设计(8)design value of earthquake-resistant strength of materials:材料抗震强度设计值(1 design value of load—carrying capaci ty of members·:构件承载能力设计值(1 designations 0f steel:钢材牌号(53designvalue of material strength:材料强度设计值(1destructive test:破损试验(40detailing reintorcement:构造配筋(35detailing requirements:构造要求(22diamonding:菱形变形(71)diaphragm:横隔板(52dimensional errors:尺寸偏差(39)distribution factor of snow pressure:屋面积雪分布系数dogspike:扒钉(70)double component concrete column:双肢柱(26)dowelled joint:销连接(69)down-stayed composite beam:下撑式组合粱(8)ductile frame:延性框架(2)dynamic design:动态设计(8)Eearthquake-resistant design:抗震设计(9:earthquake-resistant detailing requirements:抗震构造要求(22)effective area of fillet weld:角焊缝有效面积(57)effective depth of section:截面有效高度(33)effective diameter of bolt or high-strength bolt·:螺栓(或高强度螺栓)有效直径(57) effective height:计算高度(21)effective length:计算长度(21)effective length of fillet weld:角焊缝有效计算长度(48)effective length of nail:钉有效长度(56)effective span:计算跨度(21)effective supporting length at end of beam:梁端有效支承长度(46)effective thickness of fillet weld:角焊缝有效厚度(48)elastic analysis scheme:弹性方案(46)elastic foundation beam:弹性地基梁(11)elastic foundation plate:弹性地基板(12)elastically supported continuous girder·:弹性支座连续梁(u)elasticity modulus of materials:材料弹性模量(18)elongation rate:伸长率(15)embeded parts:预埋件(30)enhanced coefficient of local bearin g strength of materials·:局部抗压强度提高系数(14)entrapped air:含气量(38)equilibrium moisture content:平衡含水率(66)equivalent slenderness ratio:换算长细比(57)equivalent uniformly distributed live load·:等效均布活荷载(14)etlectlve cross—section area of high-strength bolt·:高强度螺栓的有效截面积(58) ettectlve cross—section area of bolt:螺栓有效截面面积(57)euler’s critical load:欧拉临界力(56)euler’s critical stress:欧拉临界应力(56)excessive penetration:塌陷(62)Ffiber concrete:纤维混凝仁(28)filler plate:填板门2)fillet weld:角焊缝(61)final setting time:终凝时间()finger joint:指接(69)fired common brick:烧结普通砖(43)fish eye:白点(62)fish—belly beam:角腹式梁(7)fissure:裂缝(?0)flexible connection:柔性连接(22)flexural rigidity of section:截面弯曲刚度(19)flexural stiffness of member:构件抗弯刚度(20)floor plate:楼板(6)floor system:楼盖(6)four sides(edges)supported plate:四边支承板(12)frame structure:框架结构(2)frame tube structure:单框筒结构(3)frame tube structure:框架—简体结构(2)frame with sidesway:有侧移框架(12)frame without sidesway:无侧移框架(12)frange plate:翼缘板(52)friction coefficient of masonry:砌体摩擦系数(44)full degree of mortar at bed joint:砂浆饱满度(48)function of acceptance:验收函数(23)Ggang nail plate joint:钉板连接()glue used for structural timberg:木结构用胶glued joint:胶合接头glued laminated timber:层板胶合木(¨)glued laminated timber structure:层板胶合结构‘61)grider:主梁((㈠grip:夹具grith weld:环形焊缝(6÷))groove:坡口Hhanger:吊环hanging steel bar:吊筋heartwood :心材heat tempering bar:热处理钢筋(28)height variation factor of wind pressure:风压高度变化系数(16) heliral weld:螺旋形僻缝high—strength bolt:高强度螺栓high—strength bolt with large hexagon bea:大六角头高强度螺栓high—strength bolted bearing type join:承压型高强度螺栓连接,high—strength bolted connection:高强度螺栓连接high—strength bolted friction—type joint:摩擦型高强度螺栓连接high—strength holted steel slsteel structure:高强螺栓连接钢结构hinge support:铰轴支座(51)hinged connection:铰接(21)hlngeless arch:无铰拱(12)hollow brick:空心砖(43)hollow ratio of masonry unit:块体空心率(46)honeycomb:蜂窝(39)hook:弯钩(37)hoop:箍筋(36)hot—rolled deformed bar:热轧带肋钢筋(28)hot—rolled plain bar:热轧光圆钢筋(28)hot-rolled section steel:热轧型钢(53)hunched beam:加腋梁(?)Iimpact toughness:冲击韧性(18)impermeability:抗渗性(38)inclined section:斜截面(33)inclined stirrup:斜向箍筋(36)incomplete penetration:未焊透(61)incomplete tusion:未溶合(61)incompletely filled groove:未焊满(61)indented wire:刻痕钢丝(29)influence coefficient for load—bearing capacity of compression member:受压构件承载能力影响系数(46)influence coefficient for spacial action :空间性能影响系数(46)initial control:初步控制(22)insect prevention of timber structure:木结构防虫(?o)inspection for properties of glue used in structural member:结构用胶性能检验(71) inspection for properties of masnory units:块体性能检验(48)inspection for properties of mortar:砂浆性能检验(48)inspection for properties of steelbar:钢筋性能检验(39)integral prefabricated prestressed concrete slab—column structure:整体预应力板柱结构(25)intermediate stiffener:中间加劲肋(53)intermittent weld:断续焊缝(60)Jjoint of reinforcement:钢筋接头(35)Kkey joint:键连接(69)kinetic design:动态设计(8)knot:节子(木节)(70)Llaced of battened compression member:格构式钢柱(51)lacing and batten elements:缀材(缀件)(51)lacing bar:缀条(51)lamellar tearing:层状撕裂(62)lap connectlon:叠接(搭接)(59)lapped length of steel bar:钢筋搭接长度(36)large pannel concrete structure:混凝土大板结构(25)large-form cocrete structure:大模板结构(26)lateral bending:侧向弯曲(40)lateral displacement stiffness of storey:楼层侧移刚度(20)lateral displacement stiffness of structure·:结构侧移刚度(20)lateral force resistant wallstructure:抗侧力墙体结构(12)leg size of fillet weld:角焊缝焊脚尺寸(57)length of shear plane:剪面长度(67)lift—slab structure:升板结构(25)light weight aggregate concrete:轻骨料混凝土(28)limit of acceptance:验收界限(23)limitimg value for local dimension of masonry structure·:砌体结构局部尺寸限值(47) limiting value for sectional dimension:截面尺寸限值(47)limiting value for supporting length:支承长度限值(47)limiting value for total height of masonry structure·:砌体结构总高度限值(47) linear expansion coeffcient:线膨胀系数(18)lintel:过梁(7)load bearing wall:承重墙(7)load-carrying capacity per bolt:单个普通螺栓承载能力(56)load—carrying capacity per high—strength holt:单个高强螺桂承载能力(56) load—carrying capacity per rivet:单个铆钉承载能力(55)log:原木(65)log timberstructure:原木结构(64)long term rigidity of member:构件长期刚度(32)longitude horizontal bracing:纵向水平支撑(5)longitudinal steel bar:纵向钢筋(35)longitudinal stiffener:纵向加劲肋(53)longitudinal weld:纵向焊缝(60)losses of prestress:‘预应力损失(33)lump material:块体(42)Mmain axis:强轴(56)main beam·:主梁(6)major axis:强轴(56)manual welding:手工焊接(59)manufacture control:生产控制(22)map cracking:龟裂(39)masonry:砌体(17)masonry lintel:砖过梁(43)masonry member:无筋砌体构件(41)masonry units:块体(43)masonry—concrete structure:砖混结构(¨)masonry—timber structure:砖木结构(11)mechanical properties of materials·:材料力学性能(17)melt—thru:烧穿(62)method of sampling:抽样方法(23)minimum strength class of masonry:砌体材料最低强度等级(47)minor axls·:弱轴(56)mix ratio of mortar:砂浆配合比(48)mixing water:拌合水(27)modified coefficient for allowable ratio of height to sectionalthickness of masonry wall :砌体墙容许高厚比修正系数(47)modified coefficient of flexural strength for timber curved mem—:弧形木构件抗弯强度修正系数(68)modulus of elasticity of concrete:混凝土弹性模量(30)modulus of elasticity parellel to grain:顺纹弹性模量(66)moisture content:含水率(66)moment modified factor:弯矩调幅系数monitor frame:天窗架mortar:砂浆multi—defence system of earthquake—resistant building·:多道设防抗震建筑multi—tube supported suspended structure:多筒悬挂结构Nnailed joint:钉连接,net height:净高lnet span:净跨度net water/cementratio:净水灰比non-destructive inspection of weld:焊缝无损检验non-destructive test:非破损检验non-load—bearingwall:非承重墙non—uniform cross—section beam:变截面粱non—uniformly distributed strain coefficient of longitudinal tensile reinforcement:纵向受拉钢筋应变不均匀系数normal concrete:普通混凝土normal section:正截面notch and tooth joint:齿连接number of sampling:抽样数量Oobligue section:斜截面oblique—angle fillet weld:斜角角焊缝one—wa y reinforced(or prestressed)concrete slab‘‘:单向板open web roof truss:空腹屋架,ordinary concrete:普通混凝土(28)ordinary steel bar:普通钢筋(29)orthogonal fillet weld:直角角焊缝(61)outstanding width of flange:翼缘板外伸宽度(57)outstanding width of stiffener:加劲肋外伸宽度(57)over-all stability reduction coefficient of steel beam·:钢梁整体稳定系数(58)overlap:焊瘤(62)overturning or slip resistance analysis :抗倾覆、滑移验算(10Ppadding plate:垫板(52)partial penetrated butt weld:不焊透对接焊缝(61)partition:非承重墙(7)penetrated butt weld:透焊对接焊缝(60)percentage of reinforcement:配筋率(34)perforated brick:多孔砖(43)pilastered wall:带壁柱墙(42)pit·:凹坑(62)pith:髓心(?o)plain concrete structure:素混凝土结构(24)plane hypothesis:平截面假定(32)plane structure:平面结构(11)plane trussed lattice grids:平面桁架系网架(5)plank:板材(65)plastic adaption coefficient of cross—section:截面塑性发展系数(58)plastic design of steel structure:钢结构塑性设计(56)plastic hinge·:塑性铰(13)plastlcity coefficient of reinforced concrete member in tensile zone:受拉区混凝土塑性影响系数(34)plate—like space frame:干板型网架(5)plate—like space truss:平板型网架(5)plug weld:塞焊缝(60)plywood:胶合板(65)plywood structure:胶合板结构(64)pockmark:麻面(39)polygonal top-chord roof truss:多边形屋架(4)post—tensioned prestressed concrete structure:后张法预应力混凝土结构(24) precast reinforced concrete member:预制混凝土构件(26)prefabricated concrete structure:装配式混凝土结构(25)presetting time:初凝时间(38)prestressed concrete structure:预应力混凝土结构(24)prestressed steel structure:预应力钢结构(50)prestressed tendon:预应力筋<29)pre—tensioned prestressed concrete structure·:先张法预应力混凝土结构(24) primary control:初步控制(22)production control:生产控制(22)properties of fresh concrete:可塑混凝土性能(37)properties of hardened concrete:硬化混凝土性能(38)property of building structural materials:建筑结构材料性能(17)purlin“—””—:檩条(4)Qqlue timber structurer:胶合木结构(㈠)quality grade of structural timber:木材质量等级(?0)quality grade of weld:焊缝质量级别(61)quality inspection of bolted connection:螺栓连接质量检验(63)quality inspection of masonry:砌体质量检验(48)quality inspection of riveted connection:铆钉连接质量检验(63)quasi—permanent value of live load on floor or roof,:楼面、屋面活荷载准永久值(15) Rradial check:辐裂(70)ratio of axial compressive force to axial compressive ultimate capacity of sectio n:轴压比(35)ratio of height to sectional thickness of wall or column:砌体墙柱高、厚比(48) ratio of reinforcement:配筋率(34)ratio of shear span to effective depth of section:剪跨比(35)redistribution of internal force:内力重分布(13)reducing coefficient of compressive strength in sloping grain for bolted connectio n:螺栓连接斜纹承压强度降低系数(68)reducing coefficient of liveload:活荷载折减系数(14)reducing coefficient of shearing strength for notch and tooth connection:齿连接抗剪强度降低系数(68)regular earthquake—resistant building:规则抗震建筑(9)reinforced concrete deep beam:混凝土深梁(26)reinforced concrete slender beam:混凝土浅梁(26)reinforced concrete structure:钢筋混凝土结构(24)reinforced masonry structure:配筋砌体结构(41)reinforcement ratio:配筋率(34)reinforcement ratio per unit volume:体积配筋率(35)relaxation of prestressed tendon:预应筋松弛(31)representative value of gravity load:重力荷载代表值(17)resistance to abrasion:耐磨性(38)resistance to freezing and thawing:抗冻融性(39)resistance to water penetration·:抗渗性(38)reveal of reinforcement:露筋(39)right—angle filletweld:直角角焊缝(61)rigid analysis scheme:刚性方案(45)rigid connection:刚接(21)rigid transverse wall:刚性横墙(42)rigid zone:刚域(13)rigid-elastic analysis scheme:刚弹性方案(45)rigidity of section:截面刚度(19)rigidly supported continous girder:刚性支座连续梁(11) ring beam:圈梁(42)rivet:铆钉(55)riveted connecction:铆钉连接(60)riveted steel beam:铆接钢梁(52)riveted steel girder:铆接钢梁(52)riveted steel structure:铆接钢结构(50)rolle rsupport:滚轴支座(51)rolled steel beam:轧制型钢梁(51)roof board:屋面板(3)roof bracing system:屋架支撑系统(4)roof girder:屋面梁(4)roof plate:屋面板(3)roof slab:屋面板(3)roof system:屋盖(3)roof truss:屋架(4)rot:腐朽(71)round wire:光圆钢丝(29)Ssafety classes of building structures:建筑结构安全等级(9) safetybolt:保险螺栓(69)sapwood:边材(65)sawn lumber+A610:方木(65)sawn timber structure:方木结构(64)saw-tooth joint failure:齿缝破坏(45)scarf joint:斜搭接(70)seamless steel pipe:无缝钢管(54)seamless steel tube:无缝钢管(54)second moment of area of tranformed section:换算截面惯性矩(34) second order effect due to displacement:挠曲二阶效应(13) secondary axis:弱轴(56)secondary beam:次粱(6)section modulus of transformed section:换算截面模量(34) section steel:型钢(53)semi-automatic welding:半自动焊接(59)separated steel column:分离式钢柱(51)setting time:凝结时间(38)shake:环裂(70)shaped steel:型钢(53)shapefactorofwindload:风荷载体型系数(16)shear plane:剪面(67)shearing rigidity of section:截面剪变刚度(19)shearing stiffness of member:构件抗剪刚度(20)short stiffener:短加劲肋(53)short term rigidity of member:构件短期刚度(31)shrinkage:干缩(71)shrinkage of concrete:混凝干收缩(30)silos:贮仓(3)skylight truss:天窗架(4)slab:楼板(6)slab—column structure:板柱结构(2)slag inclusion:夹渣(61)sloping grain:‘斜纹(70)slump:坍落度(37)snow reference pressure:基本雪压(16)solid—web steel column:实腹式钢柱(space structure:空间结构(11)space suspended cable:悬索(5)spacing of bars:钢筋间距(33)spacing of rigid transverse wall:刚性横墙间距(46)spacing of stirrup legs:箍筋肢距(33)spacing of stirrups:箍筋间距(33)specified concrete:特种混凝上(28)spiral stirrup:螺旋箍筋(36)spiral weld:螺旋形焊缝(60)split ringjoint:裂环连接(69)square pyramid space grids:四角锥体网架(5)stability calculation:稳定计算(10)stability reduction coefficient of axially loaded compression:轴心受压构件稳定系数<13) stair:楼梯(8)static analysis scheme of building:房屋静力汁算方案(45)static design:房屋静力汁算方案(45)statically determinate structure:静定结构(11)statically indeterminate structure:超静定结构(11)sted:钢材(17)steel bar:钢筋(28)steel column component:钢柱分肢(51)steel columnbase:钢柱脚(51)steel fiber reinforced concrete structure·:钢纤维混凝土结构(26)steel hanger:吊筋(37)steel mesh reinforced brick masonry member:方格网配筋砖砌体构件(41)steel pipe:钢管(54)steel tube:钢管(54)steel plateelement:钢板件(52)steel strip:钢带(53)steel support:钢支座(51)steel tie:拉结钢筋(36)steel tie bar for masonry:砌体拉结钢筋(47)steel tubular structure:钢管结构(50)steel wire:钢丝(28)stepped column:阶形柱(7)stiffener:加劲肋(52)stiffness of structural member:构件刚度(19)stiffness of transverse wall:横墙刚度(45)stirrup:箍筋(36)stone:石材(44)stone masonry:石砌体(44)stone masonry structure:石砌体结构(41)storev height:层高(21)straight—line joint failure:通缝破坏(45)straightness of structural member:构件乎直度(71)strand:钢绞线(2,)strength classes of masonry units:块体强度等级(44)strength classes of mortar:砂浆强度等级(44)strength classes of structural steel:钢材强度等级(55)strength classes of structural timber:木材强度等级(66)strength classes(grades) of concrete:混凝土强度等级(29)strength classes(grades) of prestressed tendon:预应力筋强度等级(30) strength classes(grades) of steel bar :普通钢筋强度等级(30)strength of structural timber parallel to grain:木材顺纹强度(66) strongaxis:强轴(56)structural system composed of bar:”杆系结构(11)structural system composed of plate:板系结构(12)structural wall:结构墙(7)superposed reinforced concrete flexural member:叠合式混凝土受弯构件(26) suspended crossed cable net:双向正交索网结构(6)suspended structure:悬挂结构(3)Ttensile(compressive) rigidity of section:截面拉伸(压缩)刚度(19)tensile(compressive) stiffness of member:构件抗拉(抗压)刚度(20)tensile(ultimate) strength of steel:钢材(钢筋)抗拉(极限)强度(18)test for properties of concrete structural members:构件性能检验(40):thickness of concrete cover:混凝土保护层厚度(33)thickness of mortarat bed joint:水平灰缝厚度(49)thin shell:薄壳(6)three hinged arch:三铰拱(n)tie bar:拉结钢筋(36)tie beam,‘:系梁(22)tie tod:系杆(5)tied framework:绑扎骨架(35)timber:木材(17)timber roof truss:木屋架(64)tor-shear type high-strength bolt:扭剪型高强度螺栓(54)torsional rigidity of section:截面扭转刚度(19)torsional stiffness of member:构件抗扭刚度(20)total breadth of structure:结构总宽度(21)total height of structure:结构总高度(21)total length of structure:结构总长度(21)transmission length of prestress:预应力传递长度(36)transverse horizontal bracing:横向水平支撑(4)transverse stiffener·:横向加劲肋(53)transverse weld:横向焊缝(60)transversely distributed steelbar:横向分布钢筋(36)trapezoid roof truss:梯形屋架(4)triangular pyramid space grids:三角锥体网架(5)triangular roof truss:三角形屋架(4)trussed arch:椽架(64)trussed rafter:桁架拱(5)tube in tube structure:筒中筒结构(3)tube structure:简体结构(2)twist:扭弯(71)two hinged arch:双铰拱(11)two sides(edges) supported plate:两边支承板(12)two—way reinforced (or prestressed) concrete slab:混凝土双向板(27)Uultimate compressive strain of concrete’”:混凝土极限压应变(31)unbonded prestressed concrete structure:无粘结预应力混凝土结构(25) undercut:咬边(62)uniform cross—section beam:等截面粱(6)unseasoned timber:湿材(65)upper flexible and lower rigid complex multistorey building·:上柔下刚多层房屋(45) upper rigid lower flexible complex multistorey building·:上刚下柔多层房屋(45)Vvalue of decompression prestress :预应力筋消压预应力值(33)value of effective prestress:预应筋有效预应力值(33)verification of serviceability limit states· ”:正常使用极限状态验证(10) verification of ultimate limit states :承载能极限状态验证(10)vertical bracing:竖向支撑(5)vierendal roof truss:空腹屋架(4)visual examination of structural member:构件外观检查(39)visual examination of structural steel member:钢构件外观检查(63) visual examination of weld:焊缝外观检查(62)Wwall beam:墙梁(42)wall frame:壁式框架(门)wall—slab structure:墙板结构(2)warping:翘曲(40),(71)warping rigidity of section:截面翘曲刚度(19)water retentivity of mortar:砂浆保水性(48)water tower:水塔(3)water/cement ratio·:水灰比(3g)weak axis·:弱轴(56)weak region of earthquake—resistant building:抗震建筑薄弱部位(9) web plate:腹板(52)weld:焊缝(6[))weld crack:焊接裂纹(62)weld defects:焊接缺陷(61)weld roof:焊根(61)weld toe:焊趾(61)weldability of steel bar:钢筋可焊性(39)welded framework:焊接骨架()welded steel beam:焊接钢梁(welded steel girder:焊接钢梁(52)welded steel pipe:焊接钢管(54)welded steel strueture:焊接钢结构(50)welding connection·:焊缝连接(59)welding flux:焊剂(54)welding rod:焊条(54)welding wire:焊丝(54)wind fluttering factor:风振系数(16)wind reference pressure:基本风压(16)wind—resistant column:抗风柱(?)wood roof decking:屋面木基层(64)Yyield strength (yield point) of steel:钢材(钢筋)屈服强度(屈服点)。
two-1evel unit复式单元single-loaded 外廊式double-loaded adj.内廊式Walk-up n.无电梯的公寓/adj.无电梯的skip-stop corridor 隔层设置的走廊corridor-every-floor 每层设置走廊的vertical circulation system 垂直交通系统low-rise adj.低层;high-rise adj.高层rowhouse adj.联排式住宅;slab n.板式住宅;tower n.塔式住宅Single-orientation unit单一朝向单元Double-Orientation Unit 90°转角单元Double-Orientation Unit, open-ended 双向开敞的单元natural light 自然采光natural ventilation 自然通风mechanical ventilation 机械通风transverse walls 横墙building codes 建筑规程staggered- plan 交错变化的平面auxiliary mean 辅助设施self-contained adj.设备齐全的single-run 单跑楼梯return stairs双跑楼梯英汉互译包含在以下加粗部分及最后一堂课讲到的例子中。
Unit 10 Section 1Intensive ReadingModern Housing Prototypes 《现代住宅的原型》Roger Sherwood (罗杰·舍伍德)Part IINTRODUCTIONThis book is presented in the belief that a reexamination of some of the great housing projects of this century is appropriate at a time when the design of housing commands the attention of architects the world around. The buildings offered here as case studies were selected because of their importance as prototypes, projects that set the standards and patterns of much that was, and is, to follow. Other considerations were diversity –so that a wide range of countries, buildings types and problems would be represented –and architectural quality. My assumption is that there is no excuse for poor architecture; that housing, like all buildings, to paraphrase Geoffrey Scott, must be convenient to use, soundly built, and beautiful.当今住宅设计受到全世界建筑师的关注,所以对本世纪一些伟大的住宅项目重新考究是无可厚非的,这本书就基于此观念做了一些介绍。
On End-to-End Architecture for Transporting MPEG-4Video Over the InternetDapeng Wu,Student Member,IEEE,Yiwei Thomas Hou,Member,IEEE,Wenwu Zhu,Member,IEEE, Hung-Ju Lee,Member,IEEE,Tihao Chiang,Senior Member,IEEE,Ya-Qin Zhang,Fellow,IEEE,andH.Jonathan Chao,Senior Member,IEEEAbstract—With the success of the Internet and flexibility of MPEG-4,transporting MPEG-4video over the Internet is expected to be an important component of many multimedia appli-cations in the near future.Video applications typically have delay and loss requirements,which cannot be adequately supported by the current Internet.Thus,it is a challenging problem to design an efficient MPEG-4video delivery system that can maximize the perceptual quality while achieving high resource utilization. This paper addresses this problem by presenting an end-to-end architecture for transporting MPEG-4video over the Internet. We present a framework for transporting MPEG-4video,which includes source rate adaptation,packetization,feedback control, and error control.The main contributions of this paper are: 1)a feedback control algorithm based on Real Time Protocol (RTP)and Real Time Control Protocol(RTCP);2)an adaptive source-encoding algorithm for MPEG-4video which is able to adjust the output rate of MPEG-4video to the desired rate;and3) an efficient and robust packetization algorithm for MPEG video bit-streams at the sync layer for Internet transport.Simulation results show that our end-to-end transport architecture achieves good perceptual picture quality for MPEG-4video under low bit-rate and varying network conditions and efficiently utilizes network resources.Index Terms—Adaptive encoding,feedback control,Internet, MPEG-4,packetization,RTP/RTCP,video object.I.I NTRODUCTIONW ITH the success of the Internet and the emergence of a multimedia communication era,the new international standard MPEG-4[13]is poised to become the enabling technology for multimedia communications in the near future. MPEG-4builds on elements from several successful technolo-gies,such as digital video,computer graphics,and the World Wide Web,with the aim of providing powerful tools in the production,distribution,and display of multimedia contents. With the flexibility and efficiency provided by coding a new form of visual data called visual object(VO),it is foreseenManuscript received March4,1999;revised November23,1999.This paper was recommended by Associate Editor H.Gharavi.D.Wu and H.J.Chao are with Polytechnic University,Department of Elec-trical Engineering,Brooklyn,NY11201USA.Y.T.Hou is with Fujitsu Laboratories of America,Sunnyvale,CA94086 USA.W.Zhu and Y.-Q.Zhang are with Microsoft Research,China,5F,Beijing Sigma Center,Beijing100080,China.H.-J.Lee is with Sarnoff Corporation,Multimedia Technology Laboratory, Princeton,NJ08543-5300USA.T.Chiang is with the National Chiao Tung University,Department of Elec-tronics Engineering,Hsinchu30010,Taiwan.Publisher Item Identifier S1051-8215(00)07559-5.that MPEG-4will be capable of addressing interactive con-tent-based video services,as well as conventional storage and transmission of video.Internet video applications typically have unique delay and loss requirements which differ from other data types.Further-more,the traffic load condition over the Internet varies drasti-cally over time,which is detrimental to video transmission[1], [2],[25].Thus,it is a major challenge to design an efficient video delivery system that can both maximize users’perceived quality of service(QoS)while achieving high resource utiliza-tion in the Internet.Since the standardization of MPEG-4,there has been little study on how to transport MPEG-4video over Internet protocol (IP)networks.This paper presents an end-to-end architecture for transporting MPEG-4video over IP networks.The objective of our architecture is to achieve good perceptual quality at the application level while being able to adapt to varying network conditions and to utilize network resources efficiently.We first outline the key components in a video transport ar-chitecture,which include source-rate adaptation,packetization, end-to-end feedback control,and error control.Since the cur-rent Internet only offers best-effort service,it is essential for the end systems(sender and receiver)to actively perform feed-back control so that the sender can adjust its transmission rate. Therefore,appropriate feedback control and source rate adapta-tion must be in place.Since bit-oriented syntax of MPEG-4has to be converted into packets for transport over the network,an appropriate packetization algorithm is essential to achieve good performance in terms of efficiency and picture quality.Finally,it is necessary to have some error control scheme in place to min-imize the degradation of perceptual video quality should packet loss occur during transport.The main contributions of this paper are:1)an MPEG-4 video encoding rate control algorithm,which is capable of adapting the overall output rate to the available bandwidth;2) an efficient and robust packetization algorithm by exploiting the unique video object plane(VOP)feature in MPEG-4;and 3)an end-to-end feedback control algorithm which is capable of estimating available network bandwidth based on the packet loss information at the receiver.Rate-adaptive video encoding has been studied extensively in recent years.The rate-distortion(R–D)theory is a powerful tool for encoding rate control.Under the R–D framework,there are two approaches to encoding rate control in the literature: the model-based approach and the operational R–D based approach.The model-based approach assumes various input1051–8215/00$10.00©2000IEEEFig.1.An end-to-end architecture for transporting MPEG-4video.distribution and quantizer characteristics[4],[7],[8],[16],[27].Under this approach,closed-form solutions can be obtainedthrough using continuous optimization theory.On the otherhand,the operational R–D based approach considers practicalcoding environments where only a finite set of quantizers is ad-missible[12],[14],[22],[30].Under the operational R–D basedapproach,the admissible quantizers are used by the rate-controlalgorithm to determine the optimal strategy to minimize thedistortion under the constraint of a given bit budget.To bespecific,the optimal discrete solutions can be found throughusing integer programming theory.In this paper,we resort tothe model-based approach and extend our previous work[4].Different from the previous work[4],our source encodingrate control presented in this paper is based on the followingnew concepts and techniques:1)a more accurate second-orderR-D model for the target bit-rate estimation;2)a dynamicbit-rate allocation among video objects with different codingcomplexities;3)an adaptive data-point selection criterion forbetter modeling the updating process;4)a sliding-windowmethod for smoothing the impact of scene change;and5)anadaptive threshold shape-control for better use of bit budget.This algorithm has been adopted in the international standardfor MPEG-4[13].Prior efforts on packetization for video applications over theInternet include schemes for H.261[26],H.263[35],H.263of the encoder.On the sender side,raw bit-stream of live video is encoded byan adaptive MPEG-4encoder.After this stage,the compressedvideo bit-stream is first packetized at the SL and then passedthrough the RTP/UDP/IP layers before entering the Internet.WU et al.:END-TO-END ARCHITECTURE FOR TRANSPORTING MPEG-4VIDEO925Fig.2.Data format at each processing layer at an end system.Packets may be dropped at a router/switch(due to congestion) or at the destination(due to excess delay).For packets that are successfully delivered to the destination,they first pass through the RTP/UDP/IP layers in reverse order before being decoded at the MPEG-4decoder.Under our architecture,a QoS monitor is kept at the receiver side to infer network congestion status based on the behavior of the arriving packets,e.g.,packet loss and delay.Such infor-mation is used in the feedback-control protocol,which is sent back to the source.Based on such feedback information,the sender estimates the available network bandwidth and controls the output rate of the MPEG-4encoder.Fig.2shows the protocol stack for transporting MPEG-4 video.The right half of Fig.2shows the processing stages at an end system.At the sending side,the compression layer com-presses the visual information and generates elementary streams (ESs),which contain the coded representation of the VOs.The ESs are packetized as SyncLayer(SL)-packetized streams at the SL.The SL-packetized streams provide timing and synchro-nization information,as well as fragmentation and random ac-cess information.The SL-packetized streams are multiplexed into a FlexMux stream at the TransMux Layer,which is then passed to the transport protocol stacks composed of RTP,UDP and IP.The resulting IP packets are transported over the Internet. At the receiver side,the video stream is processed in the reversed manner before its presentation.The left half of Fig.2shows the data format of each layer.Fig.3shows the structure of MPEG-4video encoder.Raw video stream is first segmented into video objects,then encoded by individual VO Encoder.The encoded VO bit-streams are packetized before multiplexed by stream multiplex interface. The resulting FlexMux stream is passed to the RTP/UDP/IP module.The structure of MPEG-4video decoder is shown in Fig.4. Packets from RTP/UDP/IP are transferred to stream demultiplex interface and FlexMux buffer.The packets are demultiplexed and put into correspondent decoding buffers.The error conceal-ment component will duplicate the previous VOP when packet loss is detected.The VO decoders decode the data in the de-coding buffer and produce composition units(CUs),which are then put into composition memories to be consumed by the com-positor.926IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY ,VOL.10,NO.6,SEPTEMBER2000Fig.3.Structure of MPEG-4videoencoder.Fig.4.Structure of MPEG-4video decoder.B.RTP/RTCP ProtocolSince TCP retransmission introduces delays that are not acceptable for MPEG-4video applications with stringent delay requirement,we employ UDP as the transport protocol for MPEG-4video streams.In addition,since UDP does not guarantee packet delivery,the receiver needs to rely on upper layer (i.e.,RTP/RTCP)to detect packet loss.RTP is an Internet standard protocol designed to provide end-to-end transport functions for supporting real-time appli-cations [19].RTCP is a companion protocol with RTP.RTCP designed to provide QoS feedback to the participants of an RTP session.In order words,RTP is a data transfer protocol,while RTCP is a control protocol.RTP does not guarantee QoS or reliable delivery,but rather,provides some basic functionalities which are common to al-most all real-time applications.Additional application-specific requirements are usually added on top of RTP in the form of application-specific profiles.A key feature supported by RTP is the packet sequence number,which can be used to detect packet loss at the receiver.RTCP provides QoS feedback through the use of sender reports (SR)and receiver reports (RR)at the source and des-tination,respectively.In particular,RTCP keeps the total con-trol packets to 5%of the total session bandwidth.Among the control packets,25%are allocated to the sender reports and 75%to the receiver reports.To prevent control packet starva-tion,at least 1control packet is sent within 5s at the sender or receiver.Fig.5shows our implementation architecture for RTP/UDP/IP layers.This module is a key component to realize our rate-based feedback control protocol and error con-trol mechanism.From the sending part,the MPEG-4encoder generates a packetized stream (FlexMux stream),which is turned into RTP packets.On the other hand,the information from feedback control protocol (sender side)is transferred to the RTCP generator.The resulting RTCP and RTP packets go down to the UDP/IP layer for transport over the Internet.On the receiving part,received IP packets are first un-packed by UDP/IP layer,then dispatched by filter and dispatcher to RTP and RTCP analyzers.RTP packets are unpacked by RTP analyzer and put into a buffer before being decoded for the purpose of loss detection.When packet loss is detected,the message will be sent to the error-concealment component.On the other hand,the RTCP analyzer unpacks RTCP packetsWU et al.:END-TO-END ARCHITECTURE FOR TRANSPORTING MPEG-4VIDEO927Fig.5.Architecture of RTP/UDP/IP module.and sends the feedback information to the Feedback Control Protocol component.C.Feedback ControlInternet video applications typically have unique delay and loss requirements which differ from other data types.On the other hand,the current Internet does not widely support any bandwidth-reservation mechanism(e.g.,RSVP)or other QoS guarantees.Furthermore,the available bandwidth not only is not known a priori but also varies with time.Therefore,a mecha-nism must be in place for MPEG-4video source to sense net-work conditions so that it can encode the video with appropriate output rate.Ideally,we would like to perform congestion indication and feedback at the point of network congestion,i.e.,a bottleneck link at a switch/router.1Under such an environment,it is possible to design powerful rate-calculation algorithms at the switch and convey accurate available bandwidth information to the source[11].Unfortunately,in the current Internet environment,IP switches/routers do not actively participate in feedback control.2All flow-control and error-recovery func-tions are left to the end systems and upper-layer applications. Under such an environment,we can only treat the Internet as a black box where packet loss and delay are beyond our control. Our design of the feedback-control algorithm will solely be on 1This is the case for the available bit-rate(ABR)service in ATM networks, where a switch actively participates in congestion control by inserting conges-tion and rate information in the flow-control packet(i.e.,resource management (RM)cell).2This is the so-called“minimalist”approach adopted by the early Internet designers,meaning that the complexity on the network side is kept as minimal as possible.928IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,VOL.10,NO.6,SEPTEMBER2000the end systems(sender and receiver)without any additional requirements on IP switches/routers.In our architecture,we let the MPEG-4video source grad-ually increase its transmission rate to probe available network bandwidth.Such a rate increase will first have the source’s rate reach the available network bandwidth.Then the source rate will overshoot the available network bandwidth and fall into the congestion region.Congestion is detected by the receiver through packet loss/delay in the received packets.The receiver sends feedback RTCP packets to the source to inform it about congestion status.Once the source receives such a feedback,it decreases its transmission rate.The challenge of the feedback control lies in the proper design of such an algorithm so that a source can keep up with network bandwidth variation and thus the network is efficiently utilized.In Section III,we present the details of our feedback control algorithm that employs packet loss as congestion indication and uses RTCP control packet to convey congestion information.D.Source-Encoding Rate ControlSince the feedback control described above needs the encoder to enforce the target rate,an MPEG-4encoding rate-control algorithm must be in place.The objective of a source encoding rate-control algorithm is to maximize the perceptual quality under a given encoding rate.Such adaptive encoding may be achieved by the alteration of either or both of the encoder’s quantization parameters and the video frame rate. Traditional video encoders(e.g.,H.261,MPEG-1/2)typi-cally rely on altering the quantization parameter of the encoder to achieve rate adaptation.These encoding schemes perform coding with constant frame rate and does not exploit the temporal behavior of each object within a frame.Under these coders,alteration of frame rate is usually not employed,since even a slight reduction in frame rate can substantially degrade the perceptual quality at the receiver,especially during a dynamic scene change.On the other hand,the MPEG-4video encoder classifies each individual video object into VOP and encodes each VOP sepa-rately.Such isolation of video objects provides us with much greater flexibility to perform adaptive encoding.In particular, we may dynamically adjust target bit-rate distribution among video objects,in addition to the alteration of quantization pa-rameters on each VOP.3In Section IV,we will present a novel source encoding rate control algorithm for MPEG-4.Our algorithm is capable of achieving the desired output rate with excellent perceptual quality.E.Packetization of MPEG-4Bit StreamSince MPEG-4video stream has to be converted into packets for transport over the network,a packetization algorithm must be in place.3To obtain better coding efficiency,it is fairly straightforward to encode different video objects at different frame rate.However,our experimental results show that significant quality deterioration is experienced in the“gluing”boundary of video objects.Thus,we find that encoding all the video objects at the same frame rate is a better alternative since this is less costly and achieves better video quality.In Fig.2,we showed the protocol stack for transporting MPEG-4video.The RTP payload format for MPEG-4elemen-tary stream was proposed by Schulzrinne et al.[20].However, it is not clear what kind of packetization algorithm should be employed at the SL before entering the RTP layer.Due to the VOP property in MPEG-4,the packetization al-gorithm for MPEG-4needs to be carefully designed for In-ternet transport and packetization algorithms for H.261/263and MPEG-1/2cannot be directly applied here.In Section V,we present a packetization algorithm for MPEG-4video at the SL that achieves both efficiency and robustness.F.Error ControlLack of QoS support on the current Internet poses a chal-lenging task for Internet video applications.In contrast to a wire-less environment,where transmission errors are the main cause for quality deterioration,the degradation of picture quality in the Internet is attributed primarily to packet loss and delay.There-fore,error control/resilience solutions for a wireless environ-ment[21],[32]are not applicable to the Internet environment. Internet packet loss is mainly caused by congestion expe-rienced in the routers.Furthermore,due to multi-path routing in the network,packets can be delayed or received out of se-quence.Due to real-time requirements at the receiver,such de-layed video packets may be considered as lost packets if their delays exceed a maximum threshold.Although MPEG-4video stream can tolerate some loss,it does degrade the perceptual quality at the receiver.Therefore,error control and resilience mechanisms must be in place to maintain an acceptable percep-tual quality.Previous work on error control took two major approaches,i.e.,forward error correction(FEC)and retransmission[1],[6],[18].Danskin et al.[6]introduced a fast lossy Internet image transmission scheme(FLIIT).Although FLIIT eliminates retransmission delays and is thus able to transmit the same image several times faster than TCP/IP with equivalent quality, the joint source/channel coding(FEC approach)employed in FLIIT cannot be directly used in MPEG-4video since MPEG-4 video coding algorithms are different from those used by FLIIT. Bolot et al.[1]also took the FEC approach which could not be applied to MPEG-4video due to the difference between the two coding algorithms.Rhee[18]proposed a retransmission-base scheme,called periodic temporal dependency distance(PTDD). Although experiments had shown some utility of PTDD,the experiments were limited to small number of users.Since all retransmission-based error control schemes suffer from network congestion,the effectiveness of PTDD is questionable in a case where large number of video users employ PTDD within a highly congested network.Since FEC introduces a large overhead,it may not be applicable to very low bit-rate video with MPEG-4.We do not favor a retransmission-based error control scheme either,since large-scale deployment of re-transmission-based scheme for transporting video may further deteriorate network congestion and cause a network collapse. Another method to deal with error and loss in the transmis-sion is error resilient encoding.The error-resilience mechanisms in the literature include re-synchronization marking,data par-titioning,data recovery[e.g.,reversible variable-length codesWU et al.:END-TO-END ARCHITECTURE FOR TRANSPORTING MPEG-4VIDEO 929(RVLC)],and error concealment [23],[24],[28],[29],[31],[33].However,re-synchronization marking,data partitioning,and data recovery are targeted at error-prone environments like wireless channels and may not be applicable to the Internet envi-ronment.For video transmission over the Internet,the boundary of a packet already provides a synchronization point in the vari-able-length coded bit-stream at the receiver side.Since a packet loss may cause the loss of all the motion data and its associ-ated shape/texture data,mechanisms such as re-synchroniza-tion marking,data partitioning,and data recovery may not be useful for Internet video applications.On the other hand,most error-concealment techniques discussed in [29]are only appli-cable to either ATM or wireless environments,and require sub-stantial additional computation complexity,which is tolerable in decoding still images but not tolerable in decoding real-time video.Therefore,we only consider a simple error-concealment scheme that is applicable to Internet video applications.With the above considerations,we employ a simple scheme for error control as follows.Packet loss is detected by the QoS monitor by examining the RTP packet sequence number at the receiver side (Fig.1).In our implementation,we consider a packet as lost if it is delayed beyond the fourth packet behind it (although it may arrive at a future time).Here,according to the maximum playback delay,we choose the fourth packet as the threshold.The maximum playback delay can be specified by the user according to the requirement of the application.Our algorithm for error control consists of two parts.On the decoder side,when packet loss is detected,the data from the previously reconstructed VOP is simply repeated to recover the image re-gions corresponding to the lost packets.On the encoder side,the encoder periodically encodes intra-VOP so as to suppress error propagation.III.E ND -TO -E ND F EEDBACK C ONTROL P ROTOCOLAs discussed in Section II-C,the switches/routers in the current Internet do not provide the source with explicit rate feedback information about available network bandwidth.We can only estimate network available bandwidth at the end system indirectly through delay [e.g.,roundtrip time (RTT)]or packet loss ratio.It has been shown by Dabbous in [5]that the throughput of connections using RTT-based feedback is lower than the throughput of connections such as TCP con-nections using loss-based feedback.Therefore,we choose to employ packet loss ratio measured at the receiver as feedback information in our scheme.Consistent with the RTP/RTCP standard [19],we let the source periodically send one RTCP control packet forevery,which the receiver observed duringtheis the multiplicative decrease factor,andof the MPEG-4encoderin an attempt to maintain the packet lossratiois larger than threshold in the returning RTCPpacket.We find that such swift rate reduction at the source is necessary to shorten the congestion period and reduce packet loss.IV .A DAPTIVE E NCODING R ATE C ONTROL (ARC)FORMPEG-4V IDEOIn this section,we design an adaptive encoding algorithm for MPEG-4so that the output rate of the encoder can match the estimated rate by our feedback control protocol in Section III.930IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,VOL.10,NO.6,SEPTEMBER2000Fig.6.Block diagram of our encoding rate-control scheme.Our ARC scheme is based on the following new concepts and techniques:1)a more accurate second-order R-D model for the targetbit-rate estimation;2)a dynamical bit-rate allocation among video objects withdifferent coding complexities;3)a sliding-window method for smoothing the impact ofscene change;4)an adaptive data-point selection criterion for better modelupdating process;5)an adaptive threshold shape control for better use of bitbudget;6)a novel frame-skipping control mechanism.The ARC scheme provides an integrated solution with three different coding granularities,including:1)frame-level;2) object-level;and3)macroblock-level.ARC is able to achieve a more accurate target bit-rate allocation under the constraints of low latency and limited buffer size than the first-order R-D model.In addition to the frame-level rate control,the ARC scheme is also applicable to the macroblock-level rate control for finer bit allocation and buffer control,and multiple VO’s rate control for better VO presentation when more network bandwidth is available.The block diagram of our ARC scheme is depicted in Fig.6.Table I lists the notations which will be used in this section.We organize this section as follows.In Section IV-A,we present the theoretical foundation behind ARC scheme.Sec-tions IV-B–IV-E present the details of the four stages in ARC scheme:1)initialization;2)pre-encoding;3)encoding;and4) post-encoding.A.Scalable Quadratic R-D ModelIn our previous work[4],a model for evaluating the target bit-rate is formulated asfollows:;;,first-and second-order coefficients.Although the above R-D model can provide the theoretical foundation of the rate-control scheme,it has the following two major drawbacks.First,the R–D model is not scalable with video contents.The model was developed based on the assumption that each video frame has similar coding complexity,resulting in similar video quality for each frame. Second,the R–D model does not exclude the bit counts used for coding overhead including video/frame syntax,WU et al.:END-TO-END ARCHITECTURE FOR TRANSPORTING MPEG-4VIDEO 931TABLE I NOTATIONSmotion vectors,and shape information.The bits used for these nontexture information are usually a constant number,regardless of its associated texture information.To address the above problems,we introduce two new param-eters (i.e.,MAD and nontexture overhead)into the second-order R–D model in (1).Thatiscomponent).Ifandareknown,frame from thetotal bit counts;2)initializing the buffer size based on the latency require-ment;3)Initializing the buffer fullness in the middle level.Without loss of generality,we assume that the video sequence is encoded in the order of thefirstframes.At this stage,the encoder encodes thefirstframes can be calculatedbywhereframes at the coding time instantduration of the video sequence (inseconds);number of bits actually used for thefirstframes in the sequence or in a GOP.The setting of buffer size is based on the latency requirementspecified by the user.The default buffer size is setto(i.e.,the maximum accumulated delay is 500ms).The initial buffer fullness is set at the middle level of the buffer(i.e.,。