浅谈如何提高混凝土的耐久性及其防腐措施
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
提高混凝土耐久性的技术措施混凝土作为一种常见的建筑材料,在建筑、道路和基础设施等领域广泛应用。
然而,由于环境因素和使用条件的影响,混凝土往往面临着各种耐久性问题,如龟裂、腐蚀和降解等。
为了提高混凝土的耐久性,我们可以采取一系列的技术措施。
本文将探讨几种有效的技术措施,以帮助提高混凝土的耐久性,并延长其使用寿命。
1. 使用高质量的混凝土材料:采用高质量的混凝土原材料是提高混凝土耐久性的首要措施。
确保选用符合规定标准的水泥、沙子、石子和添加剂,这些材料应具有适当的强度和化学成分,以确保混凝土的均匀性和稳定性。
2. 控制水泥的用量:过多的水泥用量会导致混凝土龟裂和收缩的风险增加。
因此,在混凝土配制中应严格控制水泥的用量,以充分保证混凝土的坚固性和稳定性。
并通过使用减少水灰比和增加粉煤灰等措施,降低水泥用量。
3. 加强混凝土的抗裂性:混凝土中控制和预防龟裂的措施可以显著提高混凝土的耐久性。
采用控制混凝土收缩的措施,如使用膨胀剂或添加收缩节缩剂来减少混凝土中的内部应力。
同时,通过在混凝土中添加适量的纤维材料,如钢纤维或聚丙烯纤维,可以增加混凝土的延性和抗裂性能。
4. 加强混凝土的耐化学侵蚀性:混凝土结构经常受到化学侵蚀的影响,如酸雨、盐水和化学物质的渗透等。
为了提高混凝土的耐化学侵蚀性能,可以使用防水剂或添加化学抗蚀剂来保护混凝土表面免受侵蚀。
此外,针对特定的环境条件,可以采用合适的配方和材料,如氯离子阻隔剂和硅酸盐水泥,以提供额外的化学保护。
5. 表面密封和保护:在混凝土施工完成后,对混凝土表面进行密封和保护也是提高混凝土耐久性的重要措施。
采用合适的表面密封剂或涂层可以减少水分和污染物的渗透,防止混凝土表面的腐蚀和损坏。
此外,定期检查和维护混凝土结构,修复任何损坏或破坏的部分,也是保持混凝土耐久性的必要措施。
总结起来,提高混凝土的耐久性需要综合考虑材料的选择、配制工艺和施工管理等方面。
在实际工程中,应根据具体情况进行技术选型,并加强质量管理和维护工作,以确保混凝土结构的长期耐久性和可靠性。
混凝土结构的腐蚀及防腐措施混凝土腐蚀的主要原因有三个方面:一是物理腐蚀,主要来自于外界环境的侵蚀,例如水分、阳光、温度变化等因素;二是化学腐蚀,主要是来自于地下水、土壤中的酸碱物质等化学物质的侵蚀;三是生物腐蚀,例如细菌、霉菌等微生物的侵蚀。
为了延长混凝土结构的使用寿命,减少腐蚀带来的影响,我们可以采取以下的防腐措施:1.选用高质量的混凝土材料:选择合适的水泥、砂、骨料等原材料,确保混凝土的强度和抗腐蚀性能。
可以添加一些抗腐蚀剂和阻隔剂等混凝土添加剂,提高混凝土的耐久性。
2.增加混凝土的致密性:通过控制混凝土的配合比、加强混凝土的振捣和脱模工艺,使得混凝土更加致密,减少水分和气孔对混凝土结构的侵蚀。
3.加强混凝土表面的防护:混凝土表面可以进行防水处理,例如使用防水涂料或者水玻璃等材料进行涂刷,防止水分的侵入。
还可以涂刷一层环氧树脂或者聚氨脂涂层,提高混凝土的抗化学腐蚀性能。
4.做好混凝土结构的养护工作:新浇筑的混凝土结构需要进行适当的养护,保持湿润环境,加速混凝土的硬化过程,提高其抗腐蚀能力。
5.定期对混凝土结构进行检测和维修:定期对混凝土结构进行检测,发现腐蚀和损坏问题及时维修,防止问题扩大。
6.防止电化学腐蚀:在混凝土结构中,使用阴极保护技术,将阳极材料设为结构的一部分,以保持结构材料的电位稳定,防止电化学腐蚀的发生。
7.防止生物腐蚀:在混凝土结构中添加一些抗生物腐蚀剂,防止细菌、霉菌等微生物的侵蚀。
此外,加强排水系统的设计,防止水分滞留,也可以减少生物腐蚀的发生。
8.采用防腐措施:对于特殊环境中的混凝土结构,可以采用专门的防腐措施,例如包封式防腐涂层、胶凝耐酸材料等,提高结构的抗腐蚀性能。
总之,混凝土结构的腐蚀是建筑使用中不可避免的问题,但通过合理的防腐措施,可以延长混凝土结构的使用寿命。
在设计、施工和维护过程中,需要加强对混凝土结构的防腐意识和技术措施,以提高混凝土结构的耐久性和安全性。
混凝土的耐久性及其保护措施混凝土是建筑业中广泛使用的一种材料,其在建筑中的使用早已经历了上百年的历史。
然而,随着时间的推移,建筑中使用的混凝土会腐蚀,受损和退化,从而影响到建筑的结构稳定性和安全性。
本文将介绍混凝土的耐久性问题以及保护措施。
1. 混凝土的耐久性问题混凝土的主要成分为水泥、砂、碎石和水,其中含有各种各样的化学物质和氧化金属离子等,这些都是导致混凝土腐蚀的因素。
混凝土在使用过程中,会受到多种力的作用,如自重、风、水、冰、碱、腐蚀、旧化等。
这些因素会导致混凝土表面开裂,降低其强度和密度,从而出现龟裂、渗水、开裂、碳化、腐蚀等问题,这些问题会严重影响混凝土建筑物的使用寿命。
2. 混凝土的保护措施为了延长混凝土建筑物的使用寿命,预防混凝土的老化,需要采取适当的保护措施,包括以下几个方面:(1)加强混凝土质量控制。
要求建筑方严格按照相关标准操作,建筑材料要达到相应质量标准要求,确保混凝土成品的质量优良。
(2)混凝土表面防水处理。
选用优质的表面防水材料,比如沥青或专业的混凝土防水涂料,对混凝土表面进行防水处理,防止混凝土受到水分的侵蚀,从而减缓混凝土的老化。
(3)使用防寒防腐蚀剂。
在寒冷的环境下,混凝土会受到冰的侵害,导致混凝土表面起破损和龟裂现象。
使用防寒剂可以有效降低混凝土的冰冻性,防寒剂中还有防腐蚀成分,可以对混凝土表面和内部的金属防腐蚀,延长混凝土的使用寿命。
(4)使用防腐剂。
防腐剂可以有效防止混凝土受到各种酸、碱和氧化金属离子的侵蚀,从而减缓混凝土的老化和腐蚀。
(5)加强定期检查维护。
定期对混凝土建筑物进行检查和维护,有助于发现混凝土的问题,及时采取措施,延长混凝土建筑物的使用寿命。
综上所述,混凝土作为建筑业中广泛使用的一种材料,具有重要的作用。
但是,由于混凝土自身的缺陷和在使用过程中会遇到多种恶劣的环境,混凝土会出现各种问题,严重影响建筑物的使用寿命。
因此,对混凝土建筑物的保护应引起我们的高度重视,采取适当的措施,延长混凝土建筑物的使用寿命,保障人民生命财产安全。
提高混凝土耐久性的技术措施混凝土是一种常用的建筑材料,但其耐久性较差,易受气候、温度等外力因素影响,导致构建物的损坏。
为此,需要采取一系列措施来提高混凝土的耐久性,保障建筑的安全和可靠。
以下是一些提高混凝土耐久性的技术措施。
混凝土配合比的优化混凝土配合比指水泥、粉煤灰、矿渣粉等混合材料的比例,这会直接影响混凝土的耐久性。
因此,优化配合比是提高混凝土耐久性的关键技术之一。
其优化方法如下:1.控制水灰比。
通常,水灰比的降低会直接影响混泥土的强度和抗渗性,此外,能减少混凝土开裂和碳化的风险,从而提高混凝土的使用寿命。
2.采用一定数量的矿物掺合料,如矿渣粉、粉煤灰等。
通过加入矿物掺合料可以提高混凝土的抗渗性、耐磨性和耐化学腐蚀性能。
3.选择适当等级的水泥粉煤灰、矿物粉煤灰等。
实际中,该材料的品种、品牌、等级和用量都会影响混凝土的抗压、抗折和耐久性。
这些优化配合比的方法能够使混凝土在不同温度和湿度下获得更好的到强度和耐久性,从而延长混凝土的使用寿命。
混凝土的固化措施混凝土砼固化是指在混凝土硬化的过程中,对混凝土的湿度和温度进行调控。
在固化过程中,环境的最佳温度和湿度有助于生产强度密度高、抗压抗裂的混凝土。
因此,在混凝土固化过程中需要注意以下几点。
1.控制固化期湿度和温度。
原则上控制好混凝土固化期潮湿和温度(如20℃左右),从而增强混凝土的密度和强度。
2.固化能够有效地促进混凝土成品的早期强度,确保成品达到其设计强度的提高混凝土耐久性。
3.固化预防混凝土出现混凝土裂缝、龟裂,提高混凝土安全、耐磨、耐久的基本原则。
在混凝土固化过程中,合理控制温度和环境湿度可以大大提高混凝土的抗压、耐久性和耐磨性,能使其建筑物在数十年内不必维修。
混凝土基础和结构的处理混凝土结构的优化荷载承载能力、稳定性、可靠性和安全性,其稳定性和安全性主要取决于基础结构和桥墩等构件的设计和建造。
优化混凝土基础和构建结构,可以从以下几个方面入手:1.合理设计和施工混凝土基础。
提高混凝土的耐久性的措施有哪些
1、添加掺合料:掺合料是指用于替代部分水泥的材料,如矿渣、粉煤灰和硅灰等。
添加掺合料可以降低混凝土内部的水泥含量,减少水泥对混凝土龟裂的敏感性,从而提高混凝土的耐久性。
2、使用防水剂:防水剂是一种化学添加剂,可以提高混凝土的
抗渗透性和抗氯离子渗透性。
防水剂能够填塞混凝土内部的毛细孔隙,阻止水分和有害物质的渗透,从而减缓混凝土老化的过程。
3、表面防护:对混凝土表面进行防护措施可以有效延长其使用
寿命。
常见的表面防护方法包括施加聚合物涂层、喷涂防水涂料以及利用化学品进行抗硫酸盐侵蚀的处理。
这些防护措施可以防止外界因素对混凝土表面的破坏,并提高混凝土的耐久性。
4、控制水灰比:水灰比是指混凝土中水分和水泥用量的比例。
水灰比越低,混凝土的强度和耐久性就越高。
因此,在混凝土施工中,合理控制水灰比是提高混凝土耐久性的重要措施。
5、加强施工监管:施工过程中的质量监管是确保混凝土工程质
量的关键。
需要严格控制混凝土配比、振捣密实度以及养护条件等环节,确保混凝土达到设计要求,提高其耐久性。
6、定期养护:混凝土在浇筑后需要经过一段时间的养护,以确
保其充分固化和强度发展,提高耐久性。
养护期间应避免混凝土受到过度干燥、高温或极端寒冷等不利条件的影响。
提高混凝土耐久性的措施包括添加掺合料、使用防水剂、施行表面防护、控制水灰比、加
强施工监管和定期养护等。
混凝土结构耐久性规范要求与防腐处理混凝土结构在建筑工程中占据重要地位,其耐久性直接影响建筑物的使用寿命和安全性。
为了保证混凝土结构的耐久性,相关部门和标准制定了一系列规范要求,并借助防腐处理技术来延长混凝土结构的使用寿命。
本文将探讨混凝土结构耐久性规范要求以及防腐处理方法。
一、混凝土结构耐久性规范要求1. 混凝土材料要求混凝土结构的耐久性首先要求建筑材料具备良好的抗压、抗弯和抗震性能。
混凝土材料的设计强度应满足相应的设计要求,并要求其密实性好、抗渗性高以及抗化学腐蚀能力强。
2. 施工工艺要求混凝土结构的施工工艺也对其耐久性有着重要影响。
施工过程中应严格按照设计图纸和相关标准进行操作,包括搅拌、浇筑、养护等环节。
同时,应注意施工过程中的现场质量控制,确保混凝土结构的质量。
3. 环境因素考虑混凝土结构要求具备良好的抗自然环境侵蚀的能力。
例如,在海洋环境中,结构应具备良好的抗氯离子侵蚀和抗渗透能力。
而在酸雨较为常见的地区,结构应具备一定的抗酸蚀性能。
二、混凝土结构防腐处理方法1. 表面防水处理混凝土结构在表面进行防水处理是一种有效的防腐方法。
常见的表面防水处理方法包括喷涂防水涂料、贴附防水卷材等。
这些方法可以有效提高混凝土结构的抗渗性能,降低水汽渗透、渗漏等问题的发生。
2. 化学防腐化学防腐方法采用特殊的防腐涂料或材料对混凝土表面进行处理,使其具备一定的抗酸碱、抗盐雾等腐蚀能力。
常见的化学防腐涂料有防腐油漆、耐酸碱涂料等。
3. 阳极保护阳极保护技术是一种通过施加电流来保护混凝土结构的防腐方法。
通过在混凝土中安装钛锌阳极、铝锌阳极等材料,并加上外部电源以形成电流,从而保护混凝土结构不受腐蚀。
4. 硅酸盐防腐硅酸盐防腐技术是一种在混凝土结构表面形成硅酸盐胶体,从而改变混凝土的物理性能以达到防腐的目的。
这种方法可以提高混凝土的抗氯离子侵蚀、抗碳化和抗硫酸盐侵蚀的能力,延长混凝土结构的使用寿命。
总结起来,混凝土结构的耐久性规范要求包括材料要求、施工工艺要求和环境因素考虑等方面。
提高混凝土耐久性技术措施混凝土在建筑、道路和基础设施等领域中广泛使用,其耐久性对于保障工程的可靠性和持久性至关重要。
在长期使用过程中,混凝土可能受到多种因素的影响,如气候变化、化学腐蚀和物理力量等,进而导致其耐久性下降。
为了提高混凝土的耐久性,可以采取一系列技术措施来延长其寿命和减轻维修成本。
1. 优化混凝土配方:混凝土配方的设计应考虑到特定应用环境的要求。
通过选择适当的水灰比、掺合料和添加剂等材料,可以改善混凝土的性能。
例如,使用合适的掺合料可以减少水泥用量并增加抗裂和抗渗性能,同时添加剂可以提高混凝土的抗冻性和耐久性。
2. 控制混凝土施工工艺:混凝土施工工艺的控制对于保证混凝土质量和耐久性至关重要。
合理的浇筑、振捣和养护方法可以减少混凝土的缺陷,避免裂缝的形成,提高抗渗性和耐久性。
此外,施工现场应遵循规范要求,确保混凝土的均匀性和致密性。
3. 密封和防护:混凝土表面的密封和防护是保护混凝土的有效方法之一。
通过在混凝土表面施加适当的防水层或涂层,可以减少水分和有害物质的渗入,从而延长混凝土的使用寿命。
此外,定期检查和修复密封层和涂层的损坏也是必要的维护措施。
4. 提高混凝土抗化学侵蚀能力:化学侵蚀是导致混凝土耐久性下降的主要原因之一。
为了提高混凝土的抗化学侵蚀能力,可以采取以下措施:a. 控制混凝土的碱含量,减少硫酸盐侵蚀;b. 使用高性能的掺合料和激发剂,提高混凝土的耐酸碱性能;c. 进行防渗处理,减少水分和有害物质的侵入;d. 增加混凝土的覆盖层厚度,提高抗化学侵蚀的保护层。
5. 定期维护和修复:混凝土结构在使用过程中需要定期维护和检修。
及时发现并处理混凝土的裂缝、麻面和空鼓等问题,可以防止进一步损坏和扩大,延长结构的使用寿命。
维护措施包括清洗表面、修复损坏部位、加固支撑结构等。
总结:为了提高混凝土的耐久性,我们可以从混凝土配方的优化、施工工艺的控制、混凝土表面的密封和防护、提高混凝土抗化学侵蚀能力以及定期维护和修复等多个方面入手。
浅谈如何提高混凝土的耐久性及其防腐措施摘要:耐久性是混凝土结构的重要指标之一,混凝土的耐久性是使用期内结构保证正常功能的能力,关系着结构物的使用寿命。
文章分析了混凝土结构的耐久性问题,探讨了造成耐久性失效的原因,并针对耐久性问题提出了相关的防腐建议。
关键词:混凝土;耐久性;防腐措施;集料反应;化学侵蚀我国混凝土结构耐久性问题不容忽视。
我国人口众多,过去为及时解决居住需要和促进工业生产,建造过不少质量不高的民用房屋和工业厂房。
结构设计虽然采用可靠度理论计算,实质上仅能满足安全可靠指标的要求,而对耐久性要求考虑不足,且由于忽视维修保养,现有建筑物老化现象相当严重。
截至20世纪末,有近23.41亿平方米的建筑物进入老龄期,处于提前退役的局面。
20世纪50年代不少在混凝土中采用掺入抓化钙快速施工的建筑,损坏更为严重。
近几年房屋开发中反映出的质量问题也很突出,不少新建好的商品房,未使用几年就需要修复,造成极大浪费。
我国是一个发展中的大国,正在从事着为世界所瞩目的大规模基本建设,而我国财力有限,能源短缺,资源并不丰富,因此科学合理的设计,优质的施工质量来提高混凝土结构耐久性及防腐性,延长结构使用寿命是摆在我们面前的一个很重要的课题和任务。
一、混凝土工程中的耐久性问题强度和耐久性是混凝土结构的两个重要指标,因以往工程中习惯上只重视混凝土的强度,或片面追求高强度而忽视混凝土的耐久性。
混凝土的耐久性是使用期内结构保证正常功能的能力,关系到结构物的使用寿命,随着结构物老化和环境污染的加重,混凝土耐久性问题已引起了各主管部门和广大设计、施工部门的重视。
二、混凝土结构耐久性问题的分析混凝土耐久性问题,是指结构在所使用的环境下,由于内部原因或外部原因引起结构的长期演变,最终使混凝土丧失使用能力,即所谓的耐久性失效,耐久性失效的原因很多,有抗冻失效,碱-集料反应失效,化学腐蚀失效,钢筋锈蚀造成结构破坏等。
下面作具体分析:(一)混凝土的冻融破坏结构处于冰点以下环境时,部分混凝土内孔隙中的水将结冰,产生体积膨胀,过冷的水发生迁移,形成各种压力,当压力达到一定程度时,导致混凝土的破坏。
混凝土发生冻融破坏的最显著的特征是表面剥落,严重时可以露出石子。
混凝土的抗冻性能与混凝土内部的孔结构和气泡含量多少密切相关。
孔越少越小,破坏作用越小,封闭气泡越多,抗冻性越好。
影响混凝土抗冻性的因素,除了孔结构和含气量外,还包括:混凝土的饱和度,水灰比,混凝土的龄期,集料的孔隙率及其间的含水率等。
(二)混凝土的碱-集料反应混凝土的碱-集料反应,是指混凝土中的碱与集料中活性组分发生的化学反应,引起混凝土的膨胀,开裂,甚至破坏。
因反应的因素在混凝土内部,其危害作用往往是不能根冶的,是混凝土工程中的一大隐患。
许多国家因碱-集料反应不得不拆除大坝,桥梁,海堤和学校,造成巨大损失,国内工程中也有碱-集料反应损害的类似报道,一些立交桥、铁道轨枕等发生不同程度的膨胀破坏。
混凝土碱-集料反应需具备三个条件,即有相当数量的碱、相应的活性集料及水分。
反应通常有三种类型:碱-硅酸反应,碱-碳酸盐反应,慢膨胀型碱-硅酸盐反应,避免碱-集料反应的方法可采用:尽量避免采用活性集料;限制混凝土的碱含量;掺用混合材。
(三)化学侵蚀当混凝土结构处在有侵蚀性介质作用的环境时,会引起水泥石发生一系列化学、物理与物化变化,而逐步受到侵蚀,严重的使水泥石强度降低,以至破坏。
常见的化学侵蚀可分为淡水腐蚀,一般酸性水腐蚀,碳酸腐蚀,硫酸盐腐蚀,镁盐腐蚀五类。
淡水的冲刷,会溶解水泥石中的组分,使水泥石孔隙增加,密实度降低,从而进一步造成对水泥石的破坏;研究表明,当水泥石中的氧化钙溶出5%时,强度下降7%,当溶出24%时,强度下降29%,因此,淡水冲刷会对水工建筑有一定影响;而当水中溶有一些酸类时,水泥石就受到溶淅和化学溶解双重作用,腐蚀明显加速,这类侵蚀常发生在化工厂;碳酸对混凝土的影响主要为:在溶淅水泥石的同时,破坏混凝土内的碱环境,降低水泥水化产物的稳定性,影响水泥石的致密度,造成对混凝土的侵蚀;硫酸盐的腐蚀则表现为SO42-离子深入混凝土内与水泥组分反应,生成物体积膨胀开裂造成损坏;海水中由于存在多种离子,侵蚀形式较为复杂,但主要是由于镁盐使硬化水泥石的结构组分分解,同时硫酸盐作用会造成对水泥石的损坏,而氧化镁沉淀会堵塞混凝土孔隙,会使海水侵蚀有所缓和。
(四)钢筋的锈蚀钢筋的锈蚀,其一表现为钢筋在外部介质作用下发生电化反应,逐步生成氢氧化铁等铁锈,其体积比原金属增大2~4倍,造成混凝土顺筋裂缝,从而成为腐蚀介质渗入钢筋的通道,加快结构的损坏。
氢氧化铁在强碱溶液中会形成稳定的保护层,阻止钢筋的锈蚀,但碱环境被破坏或减弱,则会造成钢筋的锈蚀,如混凝土的碳化或中性化。
造成混凝土碳化和中性化的原因,主要是混凝土的密实度即抗渗性不足,酸性气体(如CO2,SO2,H2S,HCL,NO2)渗入混凝土内与氢氧化钙作用;其二,氯离子对钢筋表面钝化膜有特殊的破坏作用,当混凝土中氯含量超过标准时,钢筋会锈蚀,而水和氧的存在是钢筋被腐蚀的必要条件,因此,若混凝土开裂,造成水和氧的通道,则钢筋锈蚀加速,促成混凝土裂缝进一步开展,混凝土保护层剥落,最终使构件失去承载力。
三、提高混凝土耐久性及防腐措施(一)原材料的选择1.水泥水泥类材料的强度和工程性能,是通过水泥砂浆的凝结,硬化形成的,水泥石一旦受损,混凝土的耐久性就被破坏,因此水泥的选择需注意水泥品种的具体性能,选择碱含量小,水化热低,干缩性小,耐热性,抗水性,抗腐蚀性,抗冻性能好的水泥,并结合具体情况进行选择。
水泥强度并非是决定混凝土强度和性能的唯一标准,如用较低标号水泥同样可以配制高标号混凝土。
因此,工程中选择水泥强度的同时,需考虑其工程性能,有时其工程性能比强度更重要。
2.集料与掺合料集料的选择应考虑其碱活性,防止碱集料反应造成的危害,集料的耐蚀性和吸水性,同时选择合理的级配,改善混凝土拌合物的和易性,提高混凝土密实度;大量研究表明了掺粉煤灰,矿渣,硅粉等混合材能有效改善混凝土的性能,改善混凝土内孔结构,填充内部空隙,提高密实度,高掺量混凝土还能抑制碱集料反应,因而掺混合材混凝土,是提高混凝土耐久性的有效措施,即近年来发展的高性能混凝土。
(二)混凝土的设计应考虑耐久的要求混凝土配比的设计配合比设计在满足混凝土强度,工作性的同时应考虑尽量减少水泥用量和用水量,降低水化热,减少收缩裂缝,提高密实度,采用合理的减水剂和引气剂,改善混凝土内部结构,掺入足量的混合料,提高混凝土耐久性能。
结构构件应按其使用环境设计相应的混凝土保护层厚度,预防外界介质渗入内部腐蚀钢筋。
结构的节点构造设计也应考虑构件受局部损坏后的整体耐久能力。
结构设计尚应控制混凝土的裂缝的开裂宽度。
(三)混凝土工程施工应考虑结构耐久性混凝土的拌制尽量采用二次搅拌法,裹砂法裹砂石法等工艺,提高混凝土拌合料的和易性,保水性,提高混凝土强度,减少用水量;大体积混凝土的浇筑振捣应控制混凝土的温度裂缝,收缩裂缝,施工裂缝,建立混凝土的浇筑振捣制度,提高混凝土密实度和抗渗性,重视混凝土振捣后的表面工序,并加强养护,以减少混凝土裂缝。
混凝土的施工过程对控制构件外观裂缝,施工裂缝至关重要,应加强施工质量管理,特殊季节施工的混凝土结构,尚应采取特殊措施。
(四)掺入高效减水剂在保证混凝土拌和物所需流动性的同时,尽可能降低用水量,减少水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。
水泥在加水搅拌后,会产生一种絮凝状结构。
在这些絮凝状结构中,包裹着许多拌和水,从而降低了新拌混凝土的工作性。
施工中为了保持混凝土拌和物所需的工作性,就必须在拌和时相应地增加用水量,这样就会促使水泥石结构中形成过多的孔隙。
当加入减水剂的定向排列,使水泥质点表面均带有相同电荷,在电性斥力的作用下,不但使水泥体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜,同时使水泥絮凝体内的游离水释放出来,因而达到减水的目的。
许多研究表明,当水灰比降低到0.38以下时,消除毛细管孔隙的目标便可以实现,而掺入高效减水剂,完全可以将水灰比降低到0.38以下。
(五)掺入高效活性矿物掺料普通水泥混凝土的水泥石中水化物稳定性的不足,是混凝土不能超耐久的另一主要因素。
在普通混凝土中掺入活性矿物的目的,在于改善混凝土中水泥石的胶凝物质的组成。
活性矿物掺料中含有大量活性Si02及活性Al203,它们能和水泥水化过程中产生的游离石灰及高硷性水化矽酸钙产生二次反映,生成强度更高、稳定性更优的低硷性水化矽酸钙,从而达到改善水化胶凝物质的组成,消除游离石灰的目的,使水泥石结构更为致密,并阻断可能形成的渗透路。
此外,还能改善集料与水泥石的界面结构和界面区性能。
这些重要的作用,对增进混凝土的耐久性及强度都有本质性的贡献。
(六)外表涂装暴露在空气中的混凝土结构以及沿海地区的桥梁工程,受到空气中的盐分等其它元素的侵蚀,缩短了混凝土构件的使用年限,可采取外表涂装的方法进行防腐处理措施。
参考文献:[1]陈仲庆。
提高混凝土耐久性的措施[J].科技资讯,2007,(14)。
[2]王勇飞,袁庆莲,司炳艳。
混凝土结构耐久性研究[J].中外建筑,2006,(5)。
[3]邓正和。
汕尾发电厂码头混凝土结构耐久性在工程中的应用[J].科技资讯,2008,(16)。
[4]黄洁,李周波,张松。
混凝土结构的耐久性措施[J].腐蚀与防护,2005,(3)。
[5]王前,张鑫,傅日荣。
计算混凝土中氯离子扩散系数的实用方法[J].山东建筑大学学报,2006,(4)。