2013届高考物理一轮复习课件第九章第三课时带电粒子在匀强磁场中的运动
- 格式:ppt
- 大小:1.20 MB
- 文档页数:22
取夺市安慰阳光实验学校专题36 带电粒子在匀强电场中的运动一、带电粒子(带电体)在电场中的直线运动 1.带电粒子在匀强电场中做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动。
(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。
2.用动力学方法分析mF a 合=,dUE =;v2–20v =2ad 。
3.用功能观点分析匀强电场中:W =Eqd =qU =21mv 2–21m 20v 非匀强电场中:W =qU =E k2–E k14.带电体在匀强电场中的直线运动问题的分析方法 5.处理带电粒子在电场中运动的常用技巧(1)微观粒子(如电子、质子、α粒子等)在电场中的运动,通常不必考虑其重力及运动中重力势能的变化。
(2)普通的带电体(如油滴、尘埃、小球等)在电场中的运动,除题中说明外,必须考虑其重力及运动中重力势能的变化。
二、带电粒子在电场中的偏转 1.粒子的偏转角(1)以初速度v 0进入偏转电场:如图所示设带电粒子质量为m ,带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏转电压为U 1,若粒子飞出电场时偏转角为θ则tan θ=yxv v ,式中v y =at =mdqU 1·0vL ,v x =v 0,代入得结论:动能一定时tan θ与q 成正比,电荷量一定时tan θ与动能成反比。
(2)经加速电场加速再进入偏转电场若不同的带电粒子都是从静止经同一加速电压U 0加速后进入偏转电场的,则由动能定理有:20021mv qU =,得:d U L U 012tan =θ。
结论:粒子的偏转角与粒子的q 、m 无关,仅取决于加速电场和偏转电场。
2.带电粒子在匀强电场中的偏转问题小结(1)分析带电粒子在匀强电场中的偏转问题的关键①条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动。
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
高三物理一轮复习资料【带电粒子在匀强磁场中的运动】 [考点分析]1.命题特点:带电粒子在匀强磁场中的运动是等级考命题的热点问题,对此部分内容的考查以带电粒子在各类有界匀强磁场中的运动为主,题型有选择也有计算,难度中等偏上.2.思想方法:对称法、图解法、模型法等.[知能必备]1.单边界磁场问题的对称性带电粒子在单边界匀强磁场中的运动一般都具有对称性,可总结为:单边进出(即从同一直线边界进出),等角进出,如图所示.2.缩放圆法的应用技巧当带电粒子以任一速度沿特定方向射入匀强磁场时,它们的速度v0越大,在磁场中做圆周运动的轨道半径也越大,它们运动轨迹的圆心在垂直速度方向的直线PP′上,此时可以用“缩放圆法”分析——以入射点为定点,圆心位于直线PP′上,将半径缩放作粒子的运动轨迹,从而探索出临界条件.3.带电粒子在磁场中运动产生多解的原因[真题再练]1. (多选)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBamC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a解析:AD 由左手定则,分析粒子在M 点受的洛伦兹力,可知粒子带负电,选项A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,选项C 错误;由q v B =m v 2R ,可求出v =2qBa m ,选项B 错误;由图可知,ON =a +2a =(2+1)a ,选项D 正确.2.如图,在0≤x ≤h ,-∞<y <+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B 的大小可调,方向不变.一质量为m 、电荷量为q (q >0)的粒子以速度v 0从磁场区域左侧沿x 轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y 轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m ;(2)如果磁感应强度大小为B m2,粒子将通过虚线所示边界上的一点离开磁场.求粒子在该点的运动方向与x 轴正方向的夹角及该点到x 轴的距离.解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有q v 0B =m v 20R①由此可得R =m v 0qB②粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R ≤h ③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得B m =m v 0qh④ (2)若磁感应强度大小为B m2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R ′ =2h ⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥即α=π6⑦由几何关系可得,P 点与x 轴的距离为 y =2h (1-cos α)⑧联立⑦⑧式得y = (2-3)h ⑨ 答案:(1)磁场方向垂直于纸面向里 m v 0qh(2)π6(2-3)h带电粒子在匀强磁场中运动问题的解题流程[精选模拟]视角1:带电粒子在匀强磁场中运动的临界、极值问题1.(多选)如图所示,S 处有一电子源,可向纸面内任意方向发射电子,平板MN 垂直于纸面,在纸面内的长度L =9.1 cm ,中点O 与S 间的距离d =4.55 cm ,MN 与SO 直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B =2.0×10-4 T ,电子质量m =9.1×10-31kg ,电荷量e =1.6×10-19C ,不计电子重力,电子源发射速度v =1.6×106 m/s 的一个电子,该电子打在板上可能位置的区域的长度为l ,则( )A .θ=90°时,l =9.1 cmB .θ=60°时,l =9.1 cmC .θ=45°时,l =4.55 cmD .θ=30°时,l =4.55 cm解析:AD 电子在磁场中运动,洛伦兹力提供向心力:e v B =m v 2R ,R =m v Be=4.55×10-2 m =4.55 cm =L2,θ=90°时,击中板的范围如图甲,l =2R =9.1 cm ,选项A 正确;θ=60°时,击中板的范围如图乙所示,l <2R =9.1 cm ,选项B 错误;θ=30°,如图丙所示,l =R =4.55 cm ,当θ=45°时,击中板的范围如图丁所示,l >R (R =4.55 cm),故选项D 正确,选项C 错误.2.如图所示,竖直线MN ∥PQ ,MN 与PQ 间距离为a ,其间存在垂直纸面向里的匀强磁场,磁感应强度为B ,O 是MN 上一点,O 处有一粒子源,某时刻放出大量速率均为v (方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN 成θ=60°角射入的粒子恰好垂直PQ 射出磁场,则粒子在磁场中运动的最长时间为( )A.πa3v B .23πa 3vC.4πa 3vD .2πa v解析:C 当θ=60°时,粒子的运动轨迹如图甲所示,则a =R sin 30°,即R =2a .设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t =α2πT ,即α越大,粒子在磁场中运行时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R =2a ,此时圆心角αm 为120°,即最长运行时间为T 3,而T =2πR v =4πav ,所以粒子在磁场中运动的最长时间为4πa3v,C 正确.3.如图是某屏蔽高能粒子辐射的装置,铅盒左侧面中心O 有一放射源可通过铅盒右侧面的狭缝MQ 向外辐射α粒子,铅盒右侧有一左右边界平行的匀强磁场区域.过O 的截面MNPQ 位于垂直磁场的平面内,OH 垂直于MQ .已知∠MOH =∠QOH =53°.α粒子质量m =6.64×10-27kg ,电量q =3.20×10-19C ,速率v =1.28×107m/s ;磁场的磁感应强度B=0.664 T ,方向垂直于纸面向里;粒子重力不计,忽略粒子间的相互作用及相对论效应,sin 53°=0.80,cos 53°=0.60.(1)求垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间t ;(2)若所有粒子均不能从磁场右边界穿出,达到屏蔽作用,求磁场区域的最小宽度d . 解析:(1)粒子在磁场内做匀速圆周运动,则T =2πmqB垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间为:t =T2代入数据解得:t =π32×10-6 s ≈9.81×10-8 s.(2)粒子在磁场中做匀速圆周运动,q v B =m v 2R沿OQ 方向进入磁场的粒子运动轨迹与磁场右边界相切,则所有粒子均不能从磁场的右边界射出,如图所示,由几何关系可得:d =R +R sin 53° 代入数据可得:d =0.72 m. 答案:(1)9.81×10-8 s (2)0.72 m视角2:带电粒子在匀强磁场中运动的多解问题4.(多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度v 满足Bql 4m <v <5Bql4m解析:AB 带电粒子刚好打在极板右边缘,有r 21=⎝⎛⎭⎫r 1-l 22+l 2,又因r 1=m v 1Bq ,解得v 1=5Bql 4m ;粒子刚好打在极板左边缘,有r 2=l 4=m v 2Bq ,解得v 2=Bql4m,故A 、B 正确.。
高考物理专题带电粒子在磁场中的运动Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】带电粒子在磁场中的运动【例1】磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极两板间最大电压为多少 解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
所以上极板为正。
正、负极板间会产生电场。
当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。
当外电路断开时,这也就是电动势E 。
当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。
这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。
在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。
) ⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。
在外电路断开时最终将达到平衡态。
【例2】 半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。
p 型中空穴为多数载流子;n 型中自由电子为多数载流子。
用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表判定上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。
试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。
p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。