2015年宁夏固原一中高考数学模拟试卷(文科)(二)
- 格式:docx
- 大小:169.95 KB
- 文档页数:15
2015年高考数学模拟试卷(文科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟. 一、 选择题(本大题共12小题, 每小题5分, 共60分. 在每小题给出的四个选项中, 只有一项是符合题目要求的. 请把正确结论的选项填入答题卷(即第II 卷)的表格内. )1. 已知全集{1,2,3,4,5}U =,{1,3,5}A =,{1,2,5}B =,则()()U U C A C B = ( ) A .{4} B .{2,3,4} C .{2,4} D .{3,4}2. i 为虚数单位,则b aia bi-+=+( ) (改编)A .22a bi a b ++ B .22a bia b -+ C .i D .i -3. 若sin 1()sin 2x f x x +=+,则()f x 的值域为( )A .2[0,]3 B .[0,1] C .2[1,]3- D .3[0,]44. 已知曲线sin x y x =在点(,)22P ππ处的切线斜率为( ) (改编) A .-1 B .0 C .2πD .15. 已知数列{}n a ,121,1a a ==,且21()n n n a a a n N +++-=∈,则12a =( ) A .144 B .89 C .55 D . 346.命题2"x =-是2"(2)"x x =-的( ) (改编) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 7. 如右图,某几何体的三视图,其中主视图和左视图的正方形边长为1,俯视图为等腰直角三角形,则该几何体的体积为( ) (原创) A .21 B .31 C .41 D .618. 已知sin()sin()2sin cos αβαβαβ++-=,cos()cos()2cos cos αβαβαβ++-=,则下列等式不恒成立....的是( ) (改编) 主视图俯视图左视图A .sin sin 2sincos 22x y x y x y +-+= B .sin sin 2cos sin 22x y x yx y +--= C .cos cos 2coscos 22x y x y x y +-+= D .cos cos 2sin sin 22x y x yx y +--= 9.( ) A.B .4πC .3πD .2π10. 设()g x 是定义在R 上的奇函数,且是以1为周期的周期函数. 若函数()()f x x g x =+在区间[0,1]上的值域为[2,5]-,则()f x 在[3,3]-的值域为( ) (改编) A .[2,5]-B .[7,7]-C .[2,7]-D .[8,8]-11. 过x 轴上点(,0)P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则a 的值为( ) A .1B .2C .3D .412. 若函数2,(0)()1ln ,0xkx x f x x x x ⎧-≤⎪=-⎨⎪>⎩有且只有2个不同的零点,则实数k 的取值范围是 ( )A .(4,0)-B .(4,0]-C .(,0]-∞D .(,0)-∞二、填空题(每小题4分, 共20分.)13. 已知向量(1,2)a = ,(2,)b k =- ,且a b ⊥,则()a a ⋅= __________________.14. 如下图是某算法的程序框图,则程序运行后输出的结果是__________________.15. 已知抛物线2y ax =,它的准线方程为1y =,则a =__________________.16. 已知函数sin2cos22(0)y a x b x ab =++≠图象的一条对称轴方程为12x π=,则函数sin2cos22y a x b x =++图象的位于对称轴12x π=左边的第一个对称中心点坐标为__________________.(原创)三、解答题(本大题共6小题, 共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 某高校的有甲、乙两专业各10名学生参加毕业论文答辩,甲、乙两专业的学生论文答辩的具体成绩如下茎叶图. 若规定分数达到85分以上(包括85分)为优秀论文.(1) 若从乙专业80分-89分(包括89分)中,任选2名学生论文答辩成绩都为..优秀论文的概率; (2) 从甲、乙两专业各选一名学生,论文答辩成绩分数和小于..184的概率. (原创)787992068甲乙9150956453098118. 在ABC ∆中,角,,A B C 对应的边为,,a b c ,且tan tan tan tan 0A B C A B ++=. (1) 求角C ;(2) 若2a =. 当sin sin A B +取得最大值时,求ABC ∆的面积. (改编)19. 如图,在锥体P ABCD -中,ABCD 是边长为2的菱形,且60DAB ∠=,PA PD =,,,E F G分别为,,BC PC AD 的中点. (1) 求证://PG DEF 面; (2) 求证:ADDEF ⊥面.(改编)20. 已知椭圆2222:1(0)x y C a b a b+=>>,连接椭圆的四个顶点得到的棱形有一个角的正切值为43,且其中一顶点坐标为(0,1). (1) 求椭圆的方程;(2) 若过椭圆左焦点F l 与椭圆C 交于A B 、,有(1)AF FB λλ=>, 求λ的值. (改编)GACE FPD21. 已知函数321()(,)3f x x x ax b a b R =-+++∈. (1) 若函数()f x 在3=x 处取得极值12,求)(x f 的解析式;(2) 若函数()f x 在其图象上任意一点(,())t f t 处切线的斜率表达式)(t g k =,且有 26)(a t g ≤对于R t ∈恒成立,求实数a 的取值范围. (改编)请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.22. 选修4-1:几何证明选讲如图,已知⊙O 1与⊙O 2相交于,A B 两点,过点A 作⊙O 1的切线交⊙O 2于点C ,过点B 和两圆的割线,分别交⊙O 1、⊙O 2于点,D E ,DE 与AC 相交于点P . (1) 求证://AD EC ;(2) 若AD 是⊙O 2的切线,且6,2,9PA PC BD ===,求AD 的长.23. 选修4-4:坐标系与参数方程在以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 上两点的极坐标分别为)2,332(),0,2(πN M . 圆C 的参数方程为⎩⎨⎧+=+=θθsin 2cos 22a y x (θ为参数).(1) 设P 为线段MN 的中点,求直线OP 的平面直角方程; (2) 若圆C 上只有3个点到直线l 的距离为1,求a 的方程.(改编)24. 选修4—5:不等式选讲已知函数()|1|||f x x x a =+-+. (1)若0a =,求不等式()0f x ≥的解集;(2)若方程()f x x =有三个不同的解,求a 的取值范围.。
宁夏银川市普通高中2015届高三教学质量检测数学(文)试题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x ∈N| 0≤x≤5},={1,3,5},则集合B=A .{2,4}B .{2,3,4)C .{0,1,3}D .{0,2,4)2.若复数z 满足(1一i)z=4i ,则复数z 对应的点在复平面的A .第一象限B .第二象限C .第三象限D .第四象限 3.已知α为第二象限角,sin α=53,则sin ⎪⎭⎫ ⎝⎛-6πα的值等于 A .10334+ B .10334-C .10433- D .10334--4.从集合A={-1,l ,2}中随机选取一个数记为k ,从集合B={-2,l ,2}中随机选取一个数记为b ,则直线y=kx+b 不经过第三象限的概率为 A .92 B .31 C .94 D .95 5.如下图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的体积是A .πB .3πC .3D .33π 6.已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为03=-y x ,则该双曲线的离心率为A .332 B .3C .2或332 D .332或3 7.若x ,y 满足约束条件,40040⎪⎩⎪⎨⎧≤≤≥+-≥+x y x y x 则z=3x —y 的最小值是A .-5B .-4C .-3D .-28.某程序框图如图所示,运行该程序时,输出的S 值是 A .44 B .70 C .102D .1409.在△ABC 中,若向量BA ,BC 的夹角为60o ,BC =2BD ,且AD=2。
∠ADC=120o+= A .23B .26C .27D .610.已知定义在R 上的奇函数f(x)的图象关于直线x=2对称,且x ∈[0,2]时,f(x)=log 2(x+1),则f (7)= A .-1 B .1 C .-3 D .3 11.设a ,b ,c 表示三条直线,βα,表示两个平面,则下列命题中逆题不成立的是 A .c ⊥α,若c ⊥β,则α∥β B .b ⊂α,c ⊄α,若c ∥α,则b ∥cC .b ⊂β,若b ⊥α,则β⊥αD .a ,b ⊂α,p b a =⋂,c ⊥a ,c ⊥b ,若α⊥β,则c ⊂β12.一个大风车的半径为8m ,12min 旋转一周,它的最低点Po 离地面2m ,风车翼片的一个端点P 从P o 开始按逆时针方向旋转,则点P 离地面距离h(m)与时间f(min)之间的函数关系式是 A .106sin 8)(+-=t t h πB .106cos8)(+-=t t h πC .86sin8)(+-=t t h πD .86cos8)(+-=t t h π第II 卷二、填空题:本大题共4小题,每小题5分.13.如下图,根据图中的数构成的规律,a 所表示的数是____.14.若M 是抛物线y 2=4x 上一点,且在x 轴上方,F 是抛物线的焦点,直线FM 的倾斜角为60o ,则|FM|= 。
宁夏银川一中2015届高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<a},B={x|1≤x<2},且A∪(∁U B)=R,则实数a的取值范围是( ) A.a≤1B.a<1 C.a≥2D.a>22.复数所对应的点位于复平面内( )A.第一象限B.第二象限C.第三象限D.第四象限3.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m为( ) A.12 B.8 C.6 D.44.下列命题中为真命题的是( )A.若x≠0,则x+≥2B.命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1C.“a=1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题P:∃x∈R,x2﹣x+1<0,则¬P:∀x∈R,x2﹣x+1>05.设x>0,且1<b x<a x,则( )A.0<b<a<1 B.0<a<b<1 C.1<b<a D.1<a<b6.设M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x0的取值范围是( )A.(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)7.如果下面的程序执行后输出的结果是11880,那么在程序UNTIL后面的条件应为( )A.i<10 B.i≤10C.i≤9D.i<98.若k∈,则k的值使得过A(1,1)可以做两条直线与圆x2+y2+kx﹣2y﹣k=0相切的概率等于( )A.B.C.D.不确定9.一个几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.36πB.8πC.πD.π10.设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m∥β,则α⊥β;③若m∥α,m∥n,则n∥α;④若m⊥α,α∥β,则m⊥β.上述命题中,所有真命题的序号是( )A.③④B.②④C.①②D.①③11.函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin2x的图象,则只要将f(x)的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度12.设函数,其中表示不超过x的最大整数,如=﹣2,=1,=1,若直线y=kx+k(k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是( ) A.B.C.D.二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域内的面积等于2,则a=__________.14.等比数列{a n}的前n项和为S n,若S1,S3,S2成等差数列,则{a n}的公比q=__________.15.若等腰梯形ABCD中,AB∥CD,AB=3,BC=,∠ABC=45°,则•的值为__________.16.已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为__________.三、解答题:解答应写出文字说明.证明过程或演算步骤17.已知△ABC的内角A、B、C的对边分别为a、b、c,,且c=3.(1)求角C;(2)若向量与共线,求a、b的值.18.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(1)在CD上找一点F,使AD∥平面EFB;(2)求点C到平面ABD的距离.19.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x(℃)10 11 13 12 8 6就诊人数y(人)22 25 29 26 16 12该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?20.已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2.(I)求椭圆C的标准方程;(Ⅱ)若直线AP的倾斜角为,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.21.设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)讨论函数f(x)的单调区间和极值;(Ⅱ)已知x1=(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>.三.请考生在第22、23、24三题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22.如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P做AP的垂线,交直线AC于点E,交直线AD于点F.(1)求证:∠PEC=∠PDF;(2)求PE•PF的值.23.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.24.选修4﹣5;不等式选讲.设不等式|2x﹣1|<1的解集是M,a,b∈M.(I)试比较ab+1与a+b的大小;(II)设max表示数集A的最大数.h=max,求证:h≥2.宁夏银川一中2015届高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<a},B={x|1≤x<2},且A∪(∁U B)=R,则实数a的取值范围是( ) A.a≤1B.a<1 C.a≥2D.a>2考点:并集及其运算.专题:集合.分析:根据全集R以及B求出B的补集,由A与B补集的并集为R,确定出a的范围即可.解答:解:∵B={x|1≤x<2},∴∁R B={x|x<1或x≥2},∵A={x|x<a},A∪(∁R B)=R,∴a的范围为a≥2,故选:C.点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.复数所对应的点位于复平面内( )A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:把给出的等式变形后直接利用复数代数形式的乘除运算化简,得到复数对应点的坐标即可.解答:解:∵.∴复数所对应的点()在第二象限.故选B.点评:本题考查了复数代数形式的乘除运算,复数的几何意义,是基础题.3.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m为( ) A.12 B.8 C.6 D.4考点:等差数列的性质.专题:等差数列与等比数列.分析:根据a3+a6+a10+a13中各项下标的特点,发现有3+13=6+10=16,优先考虑等差数列的性质去解.解答:解:a3+a6+a10+a13=32即(a3+a13)+(a6+a10)=32,根据等差数列的性质得 2a8+2a8=32,a8=8,∴m=8故选:B.点评:本题考查了等差数列的性质.掌握等差数列的有关性质,在计算时能够减少运算量,凸显问题的趣味性.4.下列命题中为真命题的是( )A.若x≠0,则x+≥2B.命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1C.“a=1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题P:∃x∈R,x2﹣x+1<0,则¬P:∀x∈R,x2﹣x+1>0考点:命题的真假判断与应用.专题:计算题;推理和证明.分析:对四个命题,分别进行判断,即可得出结论.解答:解:对于A,x>0,利用基本不等式,可得x+≥2,故不正确;对于B,命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1,正确;对于C,“a=±1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件,故不正确;对于D,命题P:∃x∈R,x2﹣x+1<0,则¬P:∀x∈R,x2﹣x+1≥0,故不正确.故选:B.点评:本题考查命题的真假判断与应用,考查学生分析解决问题的能力,比较基础.5.设x>0,且1<b x<a x,则( )A.0<b<a<1 B.0<a<b<1 C.1<b<a D.1<a<b考点:指数函数单调性的应用.专题:探究型.分析:利用指数函数的性质,结合x>0,即可得到结论.解答:解:∵1<b x,∴b0<b x,∵x>0,∴b>1∵b x<a x,∴∵x>0,∴∴a>b∴1<b<a故选C.点评:本题考查指数函数的性质,解题的关键是熟练运用指数函数的性质,属于基础题.6.设M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x0的取值范围是( )A.(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)考点:抛物线的简单性质.专题:计算题;空间位置关系与距离.分析:由条件|FM|>4,由抛物线的定义|FM|可由x0表达,由此可求x0的取值范围解答:解:由条件以F为圆心,|FM|为半径的圆和抛物线C的准线相交,可得|FM|>4,由抛物线的定义|FM|=x0+2>4,所以x0>2故选A.点评:本题考查直线和圆的位置关系、抛物线的定义的运用,考查学生分析解决问题的能力,属于基础题.7.如果下面的程序执行后输出的结果是11880,那么在程序UNTIL后面的条件应为( )A.i<10 B.i≤10C.i≤9D.i<9考点:伪代码.专题:常规题型.分析:先根据输出的结果推出循环体执行的次数,再根据s=1×12×11×10×9=11880得到程序中UNTIL后面的“条件”.解答:解:因为输出的结果是132,即s=1×12×11×10×9,需执行4次,则程序中UNTIL后面的“条件”应为i<9.故选D点评:本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序).如果将程序摆在我们的面前时,从识别逐个语句,整体把握,概括程序的功能.8.若k∈,则k的值使得过A(1,1)可以做两条直线与圆x2+y2+kx﹣2y﹣k=0相切的概率等于( )A.B.C.D.不确定考点:几何概型;直线与圆的位置关系.专题:概率与统计.分析:把圆的方程化为标准方程后,根据构成圆的条件得到等号右边的式子大于0,列出关于k的不等式,求出不等式的解集,然后由过已知点总可以作圆的两条切线,得到点在圆外,故把点的坐标代入圆的方程中得到一个关系式,让其大于0列出关于k的不等式,求出不等式的解集,最后根据几何概率的定义,求出相切的概率即可.解答:解:把圆的方程化为标准方程得:(x+)2+(y﹣1)2=1+k+k2,所以1+k+k2>0,解得:k<﹣4或k>﹣1,又点(1,1)应在已知圆的外部,把点代入圆方程得:1+1+k﹣2﹣k>0,解得:k<0,则实数k的取值范围是k<﹣4或0>k>﹣1.则k的值使得过A(1,1)可以做两条直线与圆x2+2+kx﹣2y﹣k=0 相切的概率等于:P==.故选B.点评:此题考查了几何概型,点与圆的位置关系,二元二次方程为圆的条件及一元二次不等式的解法.理解过已知点总可以作圆的两条切线,得到把点坐标代入圆方程其值大于0是解本题的关键.9.一个几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.36πB.8πC.πD.π考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据几何体的三视图得出该几何体是直三棱锥,且底面是等腰直角三角形,根据直三棱锥的外接球是对应直三棱柱的外接球,由外接球的结构特征,求出它的半径与表面积.解答:解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形,高为2的直三棱锥;如图所示;则该直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,∵底面是等腰直角三角形,∴底面外接圆的半径为1,∴R2=1+1=2,∴外接球的表面积是4πR2=8π.故选:B.点评:本题考查了根据几何体的三视图求对应的几何体的表面积的应用问题,是基础题目.10.设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m∥β,则α⊥β;③若m∥α,m∥n,则n∥α;④若m⊥α,α∥β,则m⊥β.上述命题中,所有真命题的序号是( )A.③④B.②④C.①②D.①③考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:①若m∥α,m∥β,则α与β相交或平行,故①错误;②若m⊥α,m∥β,则由平面与平面垂直的判定定理得α⊥β,故②正确;③若m∥α,m∥n,则n∥α或n⊂α,故③错误;④若m⊥α,α∥β,则由直线与平面垂直的判定定理得m⊥β,故④正确.故选:B.点评:本题考查命题真假的判断,是中档题,解题时要注意空间思维能力的培养.11.函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin2x的图象,则只要将f(x)的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:由函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象可得A=1,==﹣,求得ω=2.再根据五点法作图可得2×+φ=π,求得φ=,故f(x)=sin(2x+)=sin2(x+).故把f(x)的图象向右平移个单位长度,可得g(x)=sin2x的图象,故选:A.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.12.设函数,其中表示不超过x的最大整数,如=﹣2,=1,=1,若直线y=kx+k(k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是( ) A.B.C.D.考点:根的存在性及根的个数判断.专题:新定义.分析:画图可知f(x)就是周期为1的函数,且在则实数m的范围为(,+∞).故答案为:(,+∞).点评:本题考查导数的几何意义:函数在某点处的导数即为曲线在该点处切线的斜率,同时考查两直线垂直的条件,属于基础题.三、解答题:解答应写出文字说明.证明过程或演算步骤17.已知△ABC的内角A、B、C的对边分别为a、b、c,,且c=3.(1)求角C;(2)若向量与共线,求a、b的值.考点:余弦定理;三角函数的恒等变换及化简求值;正弦定理.专题:计算题.分析:(1)利用二倍角公式及辅助角公式对已知化简可得sin(2C﹣30°)=1,结合C的范围可求C(2)由(1)C,可得A+B,结合向量共线的坐标表示可得sinB﹣2sinA=0,利用两角差的正弦公式化简可求解答:解:(1)∵,∴∴sin(2C﹣30°)=1∵0°<C<180°∴C=60°(2)由(1)可得A+B=120°∵与共线,∴sinB﹣2sinA=0∴sin(120°﹣A)=2sinA整理可得,即tanA=∴A=30°,B=90°∵c=3.∴a=,b=2点评:本题主要考查了二倍角公式、辅助角公式及两角和的正弦公式、锐角三角函数的综合应用18.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(1)在CD上找一点F,使AD∥平面EFB;(2)求点C到平面ABD的距离.考点:点、线、面间的距离计算;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)取CD的中点F,连结EF,BF,在△ACD中,可证AD∥EF,又EF⊆平面EFB AD⊄平面EFB,可证AD∥平面EFB.(2)设点C到平面ABD的距离为h,由于可证AD⊥BD,可得,又三棱锥B﹣ACD 的高BC=2,S△ACD=2,由=即可解得点C到平面ABD的距离.解答:(1)取CD的中点F,连结EF,BF,在△AC D中,∵E,F分别为AC,DC的中点,∴EF为△ACD的中位线∴AD∥EF,EF⊆平面EFB,AD⊄平面EFB∴AD∥平面EFB.(2)设点C到平面ABD的距离为h,∵平面ADC⊥平面ABC,且BC⊥AC,∴BC⊥平面ADC,∴BC⊥AD,而AD⊥DC•∴AD⊥平面BCD,即AD⊥BD•∴•∴三棱锥B﹣ACD的高BC=2,S△ACD=2,∴=∴可解得:h=2.点评:本题主要考查了直线与平面平行的判定,考查了点、线、面间的距离计算,考查了空间想象能力和转化思想,属于中档题.19.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x(℃)10 11 13 12 8 6就诊人数y(人)22 25 29 26 16 12该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?考点:回归分析的初步应用;等可能事件的概率.专题:计算题;方案型.分析:(Ⅰ)本题是一个古典概型,试验发生包含的事件是从6组数据中选取2组数据共有C62种情况,满足条件的事件是抽到相邻两个月的数据的情况有5种,根据古典概型的概率公式得到结果.(Ⅱ)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数b,把b和x,y的平均数,代入求a的公式,做出a的值,写出线性回归方程.(Ⅲ)根据所求的线性回归方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值做差,差的绝对值不超过2,得到线性回归方程理想.解答:解:(Ⅰ)由题意知本题是一个古典概型,设抽到相邻两个月的数据为事件A试验发生包含的事件是从6组数据中选取2组数据共有C62=15种情况,每种情况都是等可能出现的其中,满足条件的事件是抽到相邻两个月的数据的情况有5种∴(Ⅱ)由数据求得,由公式求得b=再由求得a=﹣∴y关于x的线性回归方程为(Ⅲ)当x=10时,y=,||=<2∴该小组所得线性回归方程是理想的.点评:本题考查线性回归方程的求法,考查等可能事件的概率,考查线性分析的应用,考查解决实际问题的能力,是一个综合题目,这种题目可以作为解答题出现在2015届高考卷中.20.已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2.(I)求椭圆C的标准方程;(Ⅱ)若直线AP的倾斜角为,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)由题意可设椭圆C的方程为(a>b>0),F(c,0).由题意知,解得即可得出.(II)以BD为直径的圆与直线PF相切.由题意可知,c=1,F(1,0),直线AP的方程为y=﹣x﹣2.则点D坐标为(2,﹣4),BD中点E的坐标为(2,﹣2),圆的半径r=2.直线AP的方程与椭圆的方程联立可得7x2+16x+4=0.可得点P的坐标.可得直线PF的方程为:4x﹣3y ﹣4=0.利用点到直线的距离公式可得点E到直线PF的距离d.只要证明d=r.解答:解:(Ⅰ)由题意可设椭圆C的方程为(a>b>0),F(c,0).由题意知,解得.故椭圆C的方程为.(Ⅱ)以BD为直径的圆与直线PF相切.证明如下:由题意可知,c=1,F(1,0),直线AP的方程为y=﹣x﹣2.则点D坐标为(2,﹣4),BD中点E的坐标为(2,﹣2),圆的半径r=2.由得7x2+16x+4=0.设点P的坐标为(x0,y0),则.∵点F坐标为(1,0),直线PF的斜率为,直线PF的方程为:4x﹣3y﹣4=0.点E到直线PF的距离d==2.∴d=r.故以BD为直径的圆与直线PF相切.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、直线与圆相切的判定方法,考查了推理能力与计算能力,属于难题.21.设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)讨论函数f(x)的单调区间和极值;(Ⅱ)已知x1=(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>.考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:计算题.分析:(I)先求函数f(x)的导函数f′(x),并确定函数的定义域,再解不等式f′(x)>0,f′(x)<0,即可分别求得函数f(x)的单调增区间和单调减区间,进而利用极值定义求得函数的极值,由于导函数中含有参数a,故为解不等式的需要,需讨论a的正负;(II)将x1=代入函数f(x),即可得a的值,再利用(I)中的单调性和函数的零点存在性定理,证明函数的另一个零点x2是在区间(,)上,即可证明结论解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞).求导数,得f′(x)=﹣a=.①若a≤0,则f′(x)>0,f(x)是(0,+∞)上的增函数,无极值;②若a>0,令f′(x)=0,得x=.当x∈(0,)时,f′(x)>0,f(x)是增函数;当x∈(,+∞)时,f′(x)<0,f(x)是减函数.∴当x=时,f(x)有极大值,极大值为f()=ln﹣1=﹣lna﹣1.综上所述,当a≤0时,f(x)的递增区间为(0,+∞),无极值;当a>0时,f(x)的递增区间为(0,),递减区间为(,+∞),极大值为﹣lna﹣1(Ⅱ)∵x1=是函数f(x)的零点,∴f ()=0,即﹣a=0,解得a==.∴f(x)=lnx﹣x.∵f()=﹣>0,f()=﹣<0,∴f()•f()<0.由(Ⅰ)知,函数f(x)在(2,+∞)上单调递减,∴函数f(x)在区间(,)上有唯一零点,因此x2>.点评:本题主要考查了导数在函数单调性和函数极值中的应用,连续函数的零点存在性定理及其应用,分类讨论的思想方法,属中档题三.请考生在第22、23、24三题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22.如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P做AP的垂线,交直线AC于点E,交直线AD于点F.(1)求证:∠PEC=∠PDF;(2)求PE•PF的值.考点:与圆有关的比例线段.专题:选作题;立体几何.分析:(1)证明P、B、C、E四点共圆、A、B、C、D四点共圆,利用四点共圆的性质,即可证明:∠PEC=∠PDF;(2)证明D,C,E,F四点共圆,利用割线定理,即可求得PE•PF的值.解答:(1)证明:连结BC,∵AB是圆O的直径,∴∠ACB=∠APE=90°,∴P、B、C、E四点共圆.∴∠PEC=∠CBA.又∵A、B、C、D四点共圆,∴∠CBA=∠PDF,∴∠PEC=∠PDF﹣﹣﹣﹣(2)解:∵∠PEC=∠PDF,∴F、E、C、D四点共圆.∴PE•PF=PC•PD=PA•PB=2×12=24.﹣﹣﹣﹣点评:本题考查圆的性质,考查四点共圆的判定,考查割线的性质,属于中档题.23.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.考点:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.专题:计算题.分析:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P 到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.解答:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==当sin()=﹣1时,d取得最小值.点评:此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.24.选修4﹣5;不等式选讲.设不等式|2x﹣1|<1的解集是M,a,b∈M.(I)试比较ab+1与a+b的大小;(II)设max表示数集A的最大数.h=max,求证:h≥2.考点:平均值不等式;不等式比较大小;绝对值不等式的解法.专题:压轴题;不等式的解法及应用.分析:(I)解绝对值不等式求出M=( 0,1),可得 0<a<1,0<b<1,再由(ab+1)﹣(a+b)=(a﹣1)(b﹣1)>0可得ab+1与a+b的大小.(II)由题意可得h≥,h≥,h≥,可得h3≥=4,从而证得h≥2.解答:解:(I)由不等式|2x﹣1|<1 可得﹣1<2x﹣1<1,解得 0<x<1,从而求得 M=( 0,1).由 a,b∈M,可得 0<a<1,0<b<1.∴(ab+1)﹣(a+b)=(a﹣1)(b﹣1)>0,∴(ab+1)>(a+b).(II)设max表示数集A的最大数,∵h=max,∴h≥,h≥,h≥,∴h3≥=4•≥8,故h≥2.点评:本题主要考查绝对值不等式的解法,不等式的性质以及基本不等式的应用,属于中档题.。
2015年宁夏银川一中高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设A={x|x2+x﹣6<0,x∈Z},B={x||x﹣1|≤2,x∈Z},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,0,1,2} 2.(5分)复数等于()A.1﹣i B.1+i C.﹣1+i D.﹣1﹣i3.(5分)函数y=2cos2(x﹣)﹣1是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数4.(5分)下列四个命题中真命题的个数是()①“x=1”是“x2﹣3x+2=0”的充分不必要条件②命题“∀x∈R,sin x≤1”的否定是“∃x∈R,sin x>1”③命题p:∀x∈[1,+∞),lgx≥0,命题q:∃x∈R,x2+x+1<0,则p∨q为真命题.A.0B.1C.2D.35.(5分)如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为正方形,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.6.(5分)如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆α千克,则共需油漆的总量为()A.(48+36π)α千克B.(39+24π)α千克C.(36+36π)α千克D.(36+30π)α千克7.(5分)已知点M(x,y)的坐标满足,N点的坐标为(1,﹣3),点O为坐标原点,则的最小值是()A.12B.5C.﹣6D.﹣218.(5分)已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.9.(5分)运行如图所示的算法框图,则输出的结果S为()A.﹣1B.1C.﹣2D.210.(5分)以双曲线的离心率为半径,以右焦点为圆心的圆与该双曲线的渐近线相切,则m的值为()A.B.C.D.11.(5分)已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.12.(5分)给定方程:()x+sin x﹣1=0,下列命题中:(1)该方程没有小于0的实数解;(2)该方程有无数个实数解;(3)该方程在(﹣∞,0)内有且只有一个实数解;(4)若x0是该方程的实数解,则x0>﹣1.则正确命题的个数是()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分.13.(5分)从3名男生和2名女生中选出2名学生参加某项活动,则选出的2人中至少有1名女生的概率为.14.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=.15.(5分)已知S n为数列{a n}的前n项和,2a n﹣n=S n,求数列{a n}的通项公式.16.(5分)已知函数f(x)是偶函数,当x>0时,,且当时,n≤f(x)≤m恒成立,则m﹣n的最小值是.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列(1)求{a n}的公比q;(2)若a1﹣a3=3,b n=na n.求数列{b n}的前n项和T n.18.(12分)某工厂有工人500名,记35岁以上(含35岁)的为A类工人,不足35岁的为B类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A、B两类工人中分别抽取了40人、60人进行测试.(I)求该工厂A、B两类工人各有多少人?(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)表:100名参加测试工人成绩频率分布表①先填写频率分布表中的六个空格,然后将频率分布直方图(图二)补充完整;②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.19.(12分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)求三棱锥D﹣AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.20.(12分)如图,设椭圆的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P.(1)若点P在直线上,求椭圆的离心率;(2)在(1)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程.21.(12分)已知函数图象上一点P(2,f(2))处的切线方程为y=﹣3x+2ln2+2..(1)求a,b的值;(2)若方程f(x)+m=0在内有两个不等实根,求m的取值范围(其中e为自然对数的底,e≈2.7).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1;几何证明选讲.22.(10分)已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.选修4-4:坐标系与参数方程.23.在平面直角坐标系xOy中,已知C1:(θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.选修4-5;不等式选讲.24.函数.(1)a=5,函数f(x)的定义域A;(2)设B={x|﹣1<x<2},当实数a,b∈(B∩∁R A)时,证明:.2015年宁夏银川一中高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设A={x|x2+x﹣6<0,x∈Z},B={x||x﹣1|≤2,x∈Z},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,0,1,2}【解答】解:依题意,A={﹣2,﹣1,0,1},B={﹣1,0,1,2,3},A∩B={﹣1,0,1}故选:B.2.(5分)复数等于()A.1﹣i B.1+i C.﹣1+i D.﹣1﹣i【解答】解:复数=,故选:C.3.(5分)函数y=2cos2(x﹣)﹣1是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:由y=2cos2(x﹣)﹣1=cos(2x﹣)=sin2x,∴T=π,且y=sin2x奇函数,即函数y=2cos2(x﹣)﹣1是奇函数.故选:A.4.(5分)下列四个命题中真命题的个数是()①“x=1”是“x2﹣3x+2=0”的充分不必要条件②命题“∀x∈R,sin x≤1”的否定是“∃x∈R,sin x>1”③命题p:∀x∈[1,+∞),lgx≥0,命题q:∃x∈R,x2+x+1<0,则p∨q为真命题.A.0B.1C.2D.3【解答】解:对于①:当x=1成立时有12﹣3×1+2=0即x2﹣3x+2=0成立,当x2﹣3x+2=0成立时有x=1或x=2不一定有x=1成立.“x=1”是“x2﹣3x+2=0”的充分不必要条件.故①正确.对于②:命题“∀x∈R,sin x≤1”的否定是“∃x∈R,sin x>1”故②正确.对于③命题p:∀x∈[1,+∞),lgx≥0,正确,命题q:∃x∈R,x2+x+1<0错误,因为x2+x+1=(x+)2+>0恒成立,p∨q为真,故③正确.故选:D.5.(5分)如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为正方形,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【解答】解:连接BC1,A1C1,则BC1∥AD1,∴∠A1BC1是两条异面直线所成的角,在直角△A1AB中,由AA1=2AB得到:A1B=AB.在直角△BCC1中,CC1=AA1,BC=AB,则C1B=AB.在直角△A1B1C1中A1C1=AB,则cos∠A1BC1==.故选:D.6.(5分)如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆α千克,则共需油漆的总量为()A.(48+36π)α千克B.(39+24π)α千克C.(36+36π)α千克D.(36+30π)α千克【解答】解:建筑物是由一个底面半径为3、母线长为5的圆锥和一个底面边长为3、高为4的长方体组成.油漆粉刷部位有三部分组成:一是圆锥的侧面(面积记为S1);二是长方体的侧面(面积记为S2);三是圆锥的底面除去一个边长为3的正方形(面积记为S3).则S1=π×3×5=15π(m2),S2=4×3×4=48(m2),S3=π×32﹣3×3=9π﹣9(m2)记油漆粉刷面积为S,则S=S1+S2+S3=24π+39(m2).记油漆重量为ykg,则y=(39+24π)a.故选:B.7.(5分)已知点M(x,y)的坐标满足,N点的坐标为(1,﹣3),点O为坐标原点,则的最小值是()A.12B.5C.﹣6D.﹣21【解答】解:设z==x﹣3y,由z=x﹣3y得y=x﹣,作出不等式组对应的平面区域如图(阴影部分):平移直线y=x﹣,由图象可知当直线y=x﹣,经过点A时,直线y=x﹣的截距最大,此时z最小,由,解得,即A(3,8),此时代入目标函数z=x﹣3y,得z=3﹣3×8=﹣21.∴目标函数z=x﹣3y的最小值是﹣21.故选:D.8.(5分)已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.【解答】解:设C(x,y),∵,,联立解得.故选:D.9.(5分)运行如图所示的算法框图,则输出的结果S为()A.﹣1B.1C.﹣2D.2【解答】解:框图首先给循环变量n赋值1,给累加变量S赋值0.执行;判断1<2013,执行n=1+1=2,S=;判断2<2013,执行n=2+1=3,S=;判断3<2013,执行n=3+1=4,S=;判断4<2013,执行n=4+1=5,S=;判断5<2013,执行n=5+1=6,S=;判断6<2013,执行n=6+1=7,S=0+;…由此看出,算法在执行过程中,S的值以6为周期周期出现,而判断框中的条件是n<2013,当n=2012时满足判断框中的条件,此时n=2012+1=2013.所以程序共执行了335个周期又3次,所以输出的S值应是﹣1.故选:A.10.(5分)以双曲线的离心率为半径,以右焦点为圆心的圆与该双曲线的渐近线相切,则m的值为()A.B.C.D.【解答】解:由题意知,a2=4,b2=m,c2=m+4圆的半径等于右焦点(c,0)到其中一条渐近线y=x的距离,根据点到直线的距离公式得:R=.解得:m=故选:C.11.(5分)已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P﹣ABC==,即R3=9,R3=3,所以:球的体积V球=×πR3=×π×3=4π.故选:D.12.(5分)给定方程:()x+sin x﹣1=0,下列命题中:(1)该方程没有小于0的实数解;(2)该方程有无数个实数解;(3)该方程在(﹣∞,0)内有且只有一个实数解;(4)若x0是该方程的实数解,则x0>﹣1.则正确命题的个数是()A.1B.2C.3D.4【解答】解:由题意可知方程()x+sin x﹣1=0的解,等价于函数y=1﹣()x与y=sin x的图象交点的横坐标,作出它们的图象:由图象可知:(1)该方程没有小于0的实数解,错误;(2)该方程有无数个实数解,正确;(3)该方程在(﹣∞,0)内有且只有一个实数解,正确;(4)若x0是该方程的实数解,则x0>﹣1,正确.故选:C.二、填空题:本大题共4小题,每小题5分.13.(5分)从3名男生和2名女生中选出2名学生参加某项活动,则选出的2人中至少有1名女生的概率为.【解答】解:记事件A=“选出的2人中至少有1名女生”从5名学生中选出2名,总共有=10种不同的选法,事件A的选法共有+=7种所以,所求概率为P(A)=故答案为:14.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.【解答】解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,又∵,即M为A、B的中点,∴x B+(﹣)=2,即x B=2+,得p2+4P﹣12=0,解得p=2,p=﹣6(舍去)故答案为:215.(5分)已知S n为数列{a n}的前n项和,2a n﹣n=S n,求数列{a n}的通项公式2n﹣1.【解答】解:由2a n﹣n=S n,得2a1﹣1=a1,解得a1=1.又2a n﹣1﹣(n﹣1)=S n﹣1(n≥2),两式作差得a n=2a n﹣1+1,即a n+1=2(a n﹣1+1)(n≥2),∵a1+1=2,∴{a n+1}是以2为首项,以2为公差的等差数列,则,即.故答案为:2n﹣1.16.(5分)已知函数f(x)是偶函数,当x>0时,,且当时,n≤f(x)≤m恒成立,则m﹣n的最小值是.【解答】解:∵解:∵函数y=f(x)是偶函数,当x∈[﹣,﹣]时,n≤f(x)≤m恒成立,∴当x∈[,]时,n≤f(x)≤m恒成立,∵当x>0时,,∴f′(x)=1﹣令f′(x)=1﹣>0,可得x>1,∴函数在[1,]上单调增,f′(x)=1﹣<0,0<x<1,∴函数在[,1]上单调减,∵f(1)=2,f()=,f()=∴当x∈[2,3]时,函数的值域为[2,]∵当x∈[2,3]时,n≤f(x)≤m恒成立,∴m﹣n的最小值是﹣2=故答案为:三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列(1)求{a n}的公比q;(2)若a1﹣a3=3,b n=na n.求数列{b n}的前n项和T n.【解答】解:(Ⅰ)∵等比数列{a n}的前n项和为S n,∴当q=1时,S1=a1,S3=3a1,S2=2a1,不是等差数列,当q≠1时,S n=,∵S1,S3,S2成等差数列∴2S3=S1+S2,化简得出:2q2﹣q﹣1=0,解得:,q=1(舍去)(Ⅱ)∵a1﹣a3=3,∴a1﹣a1=3,a1=4∵b n=na n.a n=n﹣1∴b n=na n=4n×()n﹣1∴T n=4[1+2×(﹣)+3×(﹣)2+…+(n﹣1)(﹣)n﹣2+n(﹣)n﹣1]﹣T n=4[1×(﹣)+2×(﹣)2+3×(﹣)3+…+(n﹣1)(﹣)n﹣1+n(﹣)n]错位相减得出T n=4[1+(﹣)+(﹣)2+(﹣)3+n﹣1]nT n=4[﹣n×()n],T n=×(1﹣(﹣)n)n(﹣)nT n=(﹣)n n(﹣)n18.(12分)某工厂有工人500名,记35岁以上(含35岁)的为A类工人,不足35岁的为B类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A、B两类工人中分别抽取了40人、60人进行测试.(I)求该工厂A、B两类工人各有多少人?(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)表:100名参加测试工人成绩频率分布表①先填写频率分布表中的六个空格,然后将频率分布直方图(图二)补充完整;②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.【解答】解:(I)有题知A类工人有500×=200(人);则B类工人有500﹣200=300(人).(Ⅱ)①表一,图二②79分以上的B类工人共4人,记80分以上的三人分别为甲,乙,丙,79分的工人为a,从中抽取2人,有(甲,乙),(甲,丙),(甲,a),(乙,丙),(乙,a),(丙,a)共6种抽法,抽到2人均在80分以上有(甲,乙),(甲,丙),(乙,丙),共3种抽法.则抽到2人均在80分以上的概率为=.19.(12分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)求三棱锥D﹣AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【解答】解:(1)证明:∵AD⊥平面ABE,AD∥BC∴BC⊥平面ABE,则AE⊥BC又∵BF⊥平面ACE,∴AE⊥BF∵BC∩BF=B,∴AE⊥平面BCE,且BE⊂平面BCE,∴AE⊥BE(2)过E点作EH⊥AB,∵AD⊥平面ABE,∴AD⊥EH,∴EH⊥平面ABCD,∵AE=EB=2,∴AB=2,EH=,∴××(3)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC 于N点,连MN,∵AM=2MB,∴CN=∵MG∥AE,MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE同理可证,GN∥平面ADE,∵MG∩GN=G,∴平面MGN∥平面ADE又∵MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点20.(12分)如图,设椭圆的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P.(1)若点P在直线上,求椭圆的离心率;(2)在(1)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程.【解答】解:(1)因OP是圆A、圆B的公共弦,所以OP⊥AB,即k AB•k OP=﹣1,所以,又,所以,所以;(2)由(1)有,所以此时所求椭圆方程为,设M(x,y)是椭圆上一点,则|MN|2=x2+(y﹣1)2=,其中﹣a≤y≤a,1°若0<a<4时,则当y=a时,|MN|2有最小值a2﹣2a+1,由a2﹣2a+1=9得a=﹣2或a=4(都舍去);2°若a≥4时,则当y=4时,|MN|2有最小值,由得a=±4(舍去负值)即a=4;综上所述,所求椭圆的方程为.21.(12分)已知函数图象上一点P(2,f(2))处的切线方程为y=﹣3x+2ln2+2..(1)求a,b的值;(2)若方程f(x)+m=0在内有两个不等实根,求m的取值范围(其中e为自然对数的底,e≈2.7).【解答】解(Ⅰ)f′(x)=﹣2bx,f′(2)=﹣4b,f(2)=aln2﹣4b.∵点P(2,f(2))处的切线方程为y=﹣3x+2ln2+2..∴﹣4b=﹣3,且aln2﹣4b=﹣6+2ln2+2.解得a=2,b=1.(Ⅱ)f(x)=2lnx﹣x2,令h(x)=f(x)+m=2lnx﹣x2+m,则h′(x)=﹣2x=,令h′(x)=0,得x=1(x=﹣1舍去).在内,当x∈[,1)时,h′(x)>0,∴h(x)是增函数;当x∈(1,e]时,h′(x)<0,∴h(x)是减函数.则方程h(x)=0在[,e]内有两个不等实根的充要条件是,即,解得1<m≤2+()2.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1;几何证明选讲.22.(10分)已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.【解答】(Ⅰ)证明:连接OC,因为OA=OC,所以∠OAC=∠OCA,(2分)因为CD为半圆的切线,所以OC⊥CD,又因为AD⊥CD,所以OC∥AD,所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠BAD.(4分)(Ⅱ)解:由(Ⅰ)知,∴BC=CE,(6分)连接CE,因为ABCE四点共圆,∠B=∠CED,所以cos B=cos∠CED,(8分)所以,所以BC=2.(10分)选修4-4:坐标系与参数方程.23.在平面直角坐标系xOy中,已知C1:(θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.【解答】解:(1)把C1:(θ为参数),消去参数化为普通方程为x2+y2=1,故曲线C1:的极坐标方程为ρ=1.再根据函数图象的伸缩变换规律可得曲线C2的普通方程为+=1,即+=1.故曲线C2的极参数方程为(θ为参数).(2)直线l:ρ(cosθ+sinθ)=4,即x+y﹣4=0,设点P(cosθ,2sinθ),则点P到直线的距离为d==,故当sin(θ+)=1时,d取得最小值,此时,θ=2kπ+,k∈z,点P(1,),故曲线C2上有一点P(1,)满足到直线l的距离的最小值为﹣.选修4-5;不等式选讲.24.函数.(1)a=5,函数f(x)的定义域A;(2)设B={x|﹣1<x<2},当实数a,b∈(B∩∁R A)时,证明:.【解答】解:(1)由|x+1|+|x+2|﹣5≥0,|x+1|+|x+2|≥5得到得A={x|x≤﹣4或x≥1},(2)由A={x|x≤﹣4或x≥1},∴∁R A=(﹣4,1),∵B={x|﹣1<x<2},∴B∩∁R A=(﹣1,1),又而4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=4a2+4b2﹣a2b2﹣16=a2(4﹣b2)+4(b2﹣4)=(b2﹣4)(4﹣a2),∵a,b∈(﹣1,1),∴(b2﹣4)(4﹣a2)<0∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|∴,。
2015年宁夏银川一中高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|1≤x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>22.(5分)复数所对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m =8,则m为()A.12B.8C.6D.44.(5分)下列命题中为真命题的是()A.若x≠0,则x+≥2B.命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1C.“a=1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题P:∃x∈R,x2﹣x+1<0,则¬P:∀x∈R,x2﹣x+1>05.(5分)设x>0,且1<b x<a x,则()A.0<b<a<1B.0<a<b<1C.1<b<a D.1<a<b 6.(5分)设M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x0的取值范围是()A.(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)7.(5分)如果下面的程序执行后输出的结果是11880,那么在程序UNTIL后面的条件应为()A.i<10B.i≤10C.i≤9D.i<98.(5分)若k∈[﹣2,2],则k的值使得过A(1,1)可以做两条直线与圆x2+y2+kx ﹣2y﹣k=0相切的概率等于()A.B.C.D.不确定9.(5分)一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A.36πB.8πC.πD.π10.(5分)设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m∥β,则α⊥β;③若m∥α,m∥n,则n∥α;④若m⊥α,α∥β,则m⊥β.上述命题中,所有真命题的序号是()A.③④B.②④C.①②D.①③11.(5分)函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin2x的图象,则只要将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度12.(5分)设函数,其中[x]表示不超过x的最大整数,如[﹣1.2]=﹣2,[1.2]=1,[1]=1,若直线y=kx+k(k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分.13.(5分)在平面直角坐标系中,不等式组所表示的平面区域的面积为2,则实数a的值为.14.(5分)等比数列{a n}的前n项和为S n,若S1,S3,S2成等差数列,则{a n}的公比q=.15.(5分)若等腰梯形ABCD中,AB∥CD,AB=3,BC=,∠ABC=45°,则•的值为.16.(5分)已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知△ABC的内角A、B、C的对边分别为a、b、c,sin C cos C ﹣cos2C=,且c=3(1)求角C(2)若向量=(1,sin A)与=(2,sin B)共线,求a、b的值.18.(12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD =AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(1)在CD上找一点F,使AD∥平面EFB;(2)求点C到平面ABD的距离.19.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?20.(12分)已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2.(I)求椭圆C的标准方程;(Ⅱ)若直线AP的倾斜角为,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.21.(12分)设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)讨论函数f(x)的单调区间和极值;(Ⅱ)已知x1=(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>.三.请考生在第22、23、24三题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-1:几何证明选讲] 22.(10分)如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P做AP的垂线,交直线AC于点E,交直线AD于点F.(1)求证:∠PEC=∠PDF;(2)求PE•PF的值.[选修4-4:坐标系与参数方程]23.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.[选修4-5;不等式选讲]24.选修4﹣5;不等式选讲.设不等式|2x﹣1|<1的解集是M,a,b∈M.(I)试比较ab+1与a+b的大小;(II)设max表示数集A的最大数.h=max,求证:h≥2.2015年宁夏银川一中高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|1≤x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>2【解答】解:∵B={x|1≤x<2},∴∁R B={x|x<1或x≥2},∵A={x|x<a},A∪(∁R B)=R,∴a的范围为a≥2,故选:C.2.(5分)复数所对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵.∴复数所对应的点()在第二象限.故选:B.3.(5分)已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m =8,则m为()A.12B.8C.6D.4【解答】解:a3+a6+a10+a13=32即(a3+a13)+(a6+a10)=32,根据等差数列的性质得2a8+2a8=32,a8=8,∴m=8故选:B.4.(5分)下列命题中为真命题的是()A.若x≠0,则x+≥2B.命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1C.“a=1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题P:∃x∈R,x2﹣x+1<0,则¬P:∀x∈R,x2﹣x+1>0【解答】解:对于A,x>0,利用基本不等式,可得x+≥2,故不正确;对于B,命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1,正确;对于C,“a=±1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件,故不正确;对于D,命题P:∃x∈R,x2﹣x+1<0,则¬P:∀x∈R,x2﹣x+1≥0,故不正确.故选:B.5.(5分)设x>0,且1<b x<a x,则()A.0<b<a<1B.0<a<b<1C.1<b<a D.1<a<b【解答】解:∵1<b x,∴b0<b x,∵x>0,∴b>1∵b x<a x,∴∵x>0,∴∴a>b∴1<b<a故选:C.6.(5分)设M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x0的取值范围是()A.(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)【解答】解:由条件以F为圆心,|FM|为半径的圆和抛物线C的准线相交,可得|FM|>4,由抛物线的定义|FM|=x0+2>4,所以x0>2故选:A.7.(5分)如果下面的程序执行后输出的结果是11880,那么在程序UNTIL后面的条件应为()A.i<10B.i≤10C.i≤9D.i<9【解答】解:因为输出的结果是132,即s=1×12×11×10×9,需执行4次,则程序中UNTIL后面的“条件”应为i<9.故选:D.8.(5分)若k∈[﹣2,2],则k的值使得过A(1,1)可以做两条直线与圆x2+y2+kx ﹣2y﹣k=0相切的概率等于()A.B.C.D.不确定【解答】解:把圆的方程化为标准方程得:(x+)2+(y﹣1)2=1+k+k2,所以1+k+k2>0,解得:k<﹣4或k>﹣1,又点(1,1)应在已知圆的外部,把点代入圆方程得:1+1+k﹣2﹣k>0,解得:k<0,则实数k的取值范围是k<﹣4或0>k>﹣1.则k的值使得过A(1,1)可以做两条直线与圆x2+2+kx﹣2y﹣k=0 相切的概率等于:P==.故选:B.9.(5分)一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A.36πB.8πC.πD.π【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形,高为2的直三棱锥;如图所示;则该直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,∵底面是等腰直角三角形,∴底面外接圆的半径为1,∴R2=1+1=2,∴外接球的表面积是4πR2=8π.故选:B.10.(5分)设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m∥β,则α⊥β;③若m∥α,m∥n,则n∥α;④若m⊥α,α∥β,则m⊥β.上述命题中,所有真命题的序号是()A.③④B.②④C.①②D.①③【解答】解:①若m∥α,m∥β,则α与β相交或平行,故①错误;②若m⊥α,m∥β,则由平面与平面垂直的判定定理得α⊥β,故②正确;③若m∥α,m∥n,则n∥α或n⊂α,故③错误;④若m⊥α,α∥β,则由直线与平面垂直的判定定理得m⊥β,故④正确.故选:B.11.(5分)函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin2x的图象,则只要将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【解答】解:由函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的图象可得A=1,==﹣,求得ω=2.再根据五点法作图可得2×+φ=π,求得φ=,故f(x)=sin(2x+)=sin2(x+).故把f(x)的图象向右平移个单位长度,可得g(x)=sin2x的图象,故选:A.12.(5分)设函数,其中[x]表示不超过x的最大整数,如[﹣1.2]=﹣2,[1.2]=1,[1]=1,若直线y=kx+k(k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是()A.B.C.D.【解答】解:∵函数,∴函数的图象如下图所示:∵y=kx+k=k(x+1),故函数图象一定过(﹣1,0)点若f(x)=kx+k有三个不同的根,则y=kx+k与y=f(x)的图象有三个交点当y=kx+k过(2,1)点时,k=,当y=kx+k过(3,1)点时,k=,故f(x)=kx+k有三个不同的根,则实数k的取值范围是故选:D.二、填空题:本大题共4小题,每小题5分.13.(5分)在平面直角坐标系中,不等式组所表示的平面区域的面积为2,则实数a的值为3.【解答】解:当a<0时,不等式组所表示的平面区域,如图中的M,一个无限的角形区域,面积不可能为2,故只能a≥0,此时不等式组所表示的平面区域如图中的N,区域为三角形区域,若这个三角形的面积为2,则AB=4,即点B的坐标为(1,4),代入y=ax+1得a=3.故答案为:3.14.(5分)等比数列{a n}的前n项和为S n,若S1,S3,S2成等差数列,则{a n}的公比q=﹣.【解答】解:∵等比数列{a n}的前n项和为S n,S1,S3,S2成等差数列,∴依题意有,由于a1≠0,故2q2+q=0,又q≠0,解得q=﹣.故答案为:﹣.15.(5分)若等腰梯形ABCD中,AB∥CD,AB=3,BC=,∠ABC=45°,则•的值为﹣3.【解答】解:如图,==;过D作DE∥BC,根据已知条件,∠ADC=135°,∠EDC=45°;∴∠ADE=90°;∴;∴.故答案为:﹣3.16.(5分)已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为(,+∞).【解答】解:函数f(x)=e x﹣mx+1的导数为f′(x)=e x﹣m,若曲线C存在与直线y=ex垂直的切线,即有e x﹣m=﹣有解,即m=e x+,由e x>0,则m>.则实数m的范围为(,+∞).故答案为:(,+∞).三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知△ABC的内角A、B、C的对边分别为a、b、c,sin C cos C ﹣cos2C=,且c=3(1)求角C(2)若向量=(1,sin A)与=(2,sin B)共线,求a、b的值.【解答】解:(1)∵,∴∴sin(2C﹣30°)=1∵0°<C<180°∴C=60°(2)由(1)可得A+B=120°∵与共线,∴sin B﹣2sin A=0∴sin(120°﹣A)=2sin A整理可得,即tan A=∴A=30°,B=90°∵c=3.∴a=,b=218.(12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD =AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(1)在CD上找一点F,使AD∥平面EFB;(2)求点C到平面ABD的距离.【解答】(1)取CD的中点F,连结EF,BF,在△ACD中,∵E,F分别为AC,DC的中点,∴EF为△ACD的中位线∴AD∥EF,EF⊆平面EFB,AD⊄平面EFB∴AD∥平面EFB.(2)设点C到平面ABD的距离为h,∵平面ADC⊥平面ABC,且BC⊥AC,∴BC⊥平面ADC,∴BC⊥AD,而AD⊥DC•∴AD⊥平面BCD,即AD⊥BD•∴•∴三棱锥B﹣ACD的高BC=2,S=2,△ACD∴=∴可解得:h=.19.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?【解答】解:(Ⅰ)由题意知本题是一个古典概型,设抽到相邻两个月的数据为事件A,试验发生包含的事件是从6组数据中选取2组数据共有C62=15种情况,每种情况都是等可能出现的其中,满足条件的事件是抽到相邻两个月的数据的情况有5种,∴P(A)==;(Ⅱ)由数据求得=11,=24,由公式求得===,再由=﹣b,求得=﹣,∴y关于x的线性回归方程为=x﹣,(Ⅲ)当x=10时,=,|﹣22|=<2,当x=6时,=,|﹣12|=<2,∴该小组所得线性回归方程是理想的.20.(12分)已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2.(I)求椭圆C的标准方程;(Ⅱ)若直线AP的倾斜角为,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.【解答】解:(Ⅰ)由题意可设椭圆C的方程为(a>b>0),F(c,0).由题意知,解得.故椭圆C的方程为.(Ⅱ)以BD为直径的圆与直线PF相切.证明如下:由题意可知,c=1,F(1,0),直线AP的方程为y=﹣x﹣2.则点D坐标为(2,﹣4),BD中点E的坐标为(2,﹣2),圆的半径r=2.由得7x2+16x+4=0.设点P的坐标为(x0,y0),则.∵点F坐标为(1,0),直线PF的斜率为,直线PF的方程为:4x﹣3y﹣4=0.点E到直线PF的距离d==2.∴d=r.故以BD为直径的圆与直线PF相切.21.(12分)设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)讨论函数f(x)的单调区间和极值;(Ⅱ)已知x1=(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞).求导数,得f′(x)=﹣a=.①若a≤0,则f′(x)>0,f(x)是(0,+∞)上的增函数,无极值;②若a>0,令f′(x)=0,得x=.当x∈(0,)时,f′(x)>0,f(x)是增函数;当x∈(,+∞)时,f′(x)<0,f(x)是减函数.∴当x=时,f(x)有极大值,极大值为f()=ln﹣1=﹣lna﹣1.综上所述,当a≤0时,f(x)的递增区间为(0,+∞),无极值;当a>0时,f (x)的递增区间为(0,),递减区间为(,+∞),极大值为﹣lna﹣1(Ⅱ)∵x1=是函数f(x)的零点,∴f()=0,即﹣a=0,解得a==.∴f(x)=lnx﹣x.∵f()=﹣>0,f()=﹣<0,∴f()•f()<0.由(Ⅰ)知,函数f(x)在(2,+∞)上单调递减,∴函数f(x)在区间(,)上有唯一零点,因此x2>.三.请考生在第22、23、24三题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-1:几何证明选讲] 22.(10分)如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P做AP的垂线,交直线AC于点E,交直线AD于点F.(1)求证:∠PEC=∠PDF;(2)求PE•PF的值.【解答】(1)证明:连结BC,∵AB是圆O的直径,∴∠ACB=∠APE=90°,∴P、B、C、E四点共圆.∴∠PEC=∠CBA.又∵A、B、C、D四点共圆,∴∠CBA=∠PDF,∴∠PEC=∠PDF﹣﹣﹣﹣(5分)(2)解:∵∠PEC=∠PDF,∴F、E、C、D四点共圆.∴PE•PF=PC•PD=P A•PB=2×12=24.﹣﹣﹣﹣(10分)[选修4-4:坐标系与参数方程]23.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【解答】解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.[选修4-5;不等式选讲]24.选修4﹣5;不等式选讲.设不等式|2x﹣1|<1的解集是M,a,b∈M.(I)试比较ab+1与a+b的大小;(II)设max表示数集A的最大数.h=max,求证:h≥2.【解答】解:(I)由不等式|2x﹣1|<1 可得﹣1<2x﹣1<1,解得0<x<1,从而求得M=(0,1).由a,b∈M,可得0<a<1,0<b<1.∴(ab+1)﹣(a+b)=(a﹣1)(b﹣1)>0,∴(ab+1)>(a+b).(II)设max表示数集A的最大数,∵h=max,∴h ≥,h ≥,h ≥,∴h3≥=4•≥8,故h≥2.第21页(共21页)。
固原一中2015届高三第四次模拟考试 2015.6.3数学试题(文科)命题:陈永文 审题:孙荣第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}220B x x x =->,则A B ⋂=( )A .{}3B .{}2,3C .{}1,3-D .{}0,1,2 2.设()2112i iz +++=,则z =( ) A .3 B .1 C .2 D .2 3.下列命题:① “在三角形ABC 中,若sin sin A B >,则A B >”的逆命题是真命题;②命题:2p x ≠或3y ≠,命题:5q x y +≠则p 是q 的必要不充分条件;③ “32,10x R x x ∀∈-+≤”的否定是“32,10x R x x ∀∈-+>”;④ “若,221a b a b >>-则”的否命题为“若a b ≤,则221a b -≤”;其中正确的个数是( )A .1B .2C .3D .4 4.若直线)0,0(022>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值是( ) A .12 B .-12C .-2D .45.执行如图所示的程序框图,则输出的k 的值为( )A . 4B . 5C . 6D . 76.若3sin()5πα+=,α是第三象限的角,则sincos22sin cos 22παπαπαπα++-=---( )A .12 B .12- C .2 D .2- 7. 已知不等式组240,30,0-+≥⎧⎪+-≤⎨⎪≥⎩x y x y y 构成平面区域Ω(其中x ,y 是变量)。
若目标函数6(0)z ax y a =+>的最小值为-6,则实数a 的值为( )A .32 B .6 C .3 D .128.已知函数=-=+++=)(,32)(,11)(22a f a f x x x x f 则若( ) A .32 B .32- C .34 D . 34- 9.已知向量)1,(λ=a ,)1,2(+=λb λ的值为 A .2 B .2- C .1 D .1-10.已知双曲线)0,0(12222>>=-b a bx a y 的离心率为3,则双曲线的渐近线方程为 ( )A .x y 22±= B .x y 2±= C .x y 2±= D .x y 21±=11.已知函数()2ln xf x x x=-,则函数()y f x =的大致图像为( )12.已知函数222,(04)()23,(46)-⎧--≤<=⎨-≤≤⎩x x x f x x ,若存在12,x x ,当12046x x ≤<≤≤时,12()()f x f x =,则12()x f x ⋅的取值范围是( )A. [0,1)B. [1,4]C. [1,6]D. [0,1][3,8]第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分.13.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量 的中位数为 ,平均数为 .14已知正方体1111D C B A ABCD - 中,E 为11D C 的中点,则异面直线BC AE 与所成角的余弦值为 .15.一个三位自然数百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若{},,1234a b c ∈,,,,且a ,b ,c 互不相同,则这个三位数为”有缘数”的概率是_________。
绝密★启用前 2015年高考全国2卷文科数学试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3- B .()1,0- C .()0,2 D .()2,32.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .43.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关4.已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()1A.81B.71C.61D.57.已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.334D.38.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B.2C.4D.149.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.11C.21D.810.已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( ) A.36π B. 64π C.144π D. 256π11.如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠= ,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )12.设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.已知函数()32f x ax x=-的图像过点(-1,4),则a=.14.若x,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y 的最大值为.15.已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为. 16.已知曲线lny xx =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a=.三、解答题(题型注释)17.(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC. (Ⅰ)求sin sin BC∠∠ ;(Ⅱ)若60BAC ∠=,求B ∠.18.(本小题满分12分)某公司为了了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频率分布表 满意度评分分组[50,60)[50,60)[50,60)[50,60)[50,60)频数 2814106(Ⅰ)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意满意非常满意估计那个地区的用户的满意度等级为不满意的概率大,说明理由.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中AB=16,BC=10,18AA =,点E,F 分别在1111,A B DC上,11 4.A E D F ==过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法与理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>,点(在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不经过原点O,且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 中点为M,证明:直线OM 的斜率与直线l 的斜率乘积为定值.21.(本小题满分12分)已知()()ln 1f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形ABC 内一点,圆O 与△ABC 的底边BC 交于M,N 两点,与底边上的高交于点G,且与AB,AC 分别相切于E,F 两点.(Ⅰ)证明EFBC ;(Ⅱ)若AG 等于圆O 半径,且AE MN ==求四边形EBCF 的面积. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ==(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB最大值.24.(本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明:(Ⅰ)若ab cd > ,>>a b c d-<-的充要条件.参考答案1.A 【解析】因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A.考点:本题主要考查不等式基础知识及集合的交集运算. 2.D【解析】由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:本题主要考查复数的乘除运算,及复数相等的概念. 3. D【解析】由柱形图可知2006年以来,我国二氧化碳排放量基本成递减趋势,所以二氧化碳排放量与年份负相关,故选D.考点:本题主要考查统计知识及对学生柱形图的理解 4.C 【解析】试题分析:由题意可得2112=+=a ,123,⋅=--=-a b 所以()222431+⋅=+⋅=-=a ba a ab .故选C.考点:本题主要考查向量数量积的坐标运算. 5.A 【解析】试题解析:由13533331a a a a a ++==⇒=,所有()15535552a a S a +===.故选A. 考点:本题主要考查等差数列的性质及前n 项和公式的应用. 6.D 【解析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为15,故选D. 考点:本题主要考查三视图及几何体体积的计算. 7.B 【解析】试题分析:△ABC 外接圆圆心在直线BC 垂直平分线上即直线1x =上,设圆心D ()1,b ,由DA=DB得3b b =⇒=,所以圆心到原点的距离3d ==. 故选B. 考点:本题主要考查圆的方程的求法,及点到直线距离公式. 8.B 【解析】试题分析:由题意可知输出的a 是18,14的最大公约数2,故选B. 考点:本题主要考查程序框图及更相减损术. 9.C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C. 考点:本题主要考查等比数列性质及基本运算.【解析】试题分析:设球的半径为R,则△AOB 面积为212R ,三棱锥O ABC - 体积最大时,C 到平面AOB 距离最大且为R,此时313666V R R ==⇒= ,所以球O 的表面积24π144πS R ==.故选C.考点:本题主要考查球与几何体的切接问题及空间想象能力. 11.B 【解析】试题分析:由题意可得ππππ12424f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由此可排除C,D ;当π04x <<时点P 在边BC 上,tan PB x =,PA =,所以()tan f x x =可知π0,4x ⎛⎫∈ ⎪⎝⎭时图像不是线段,可排除A,故选B. 考点:本题主要考查函数的识图问题及分析问题解决问题的能力. 12.A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以()()()()()2212121212113f x f x f x f x x x x x x >-⇔>-⇔>-⇔>-⇔<< .故选A.考点:本题主要考查函数的奇偶性、单调性及不等式的解法. 13.-2 【解析】试题分析:由()32f x ax x=-可得()1242f a a -=-+=⇒=- .考点:本题主要考查利用函数解析式求值.【解析】试题分析:不等式组50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩表示的可行域是以()()()1,1,2,3,3,2为顶点的三角形区域,2z x y =+的最大值必在顶点处取得,经验算,3,2x y ==时max 8z =. 考点:本题主要考查线性规划知识及计算能力.15.2214x y -= 【解析】试题分析:根据双曲线渐近线方程为12y x =±,可设双曲线的方程为224x y m -= ,把(代入224x y m -=得1m =.所以双曲线的方程为2214x y -=.考点:本题主要考查双曲线几何性质及计算能力. 16.8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:本题主要考查导数的几何意义及直线与抛物线相切问题. 17.(Ⅰ)12;(Ⅱ)30. 【解析】试题分析:(Ⅰ)利用正弦定理转化得:sin 1.sin 2B DC C BD ∠==∠(Ⅱ)由诱导公式可得()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(Ⅰ)知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 试题解析:(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2s i n s i n B C ∠=∠,所以tan 30.B B ∠=∠= 考点:本题主要考查正弦定理及诱导公式的应用,意在考查考生的三角变换能力及运算能力. 18.(Ⅰ)见试题解析(Ⅱ)A 地区的用户的满意度等级为不满意的概率大. 【解析】试题分析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(II )由直方图得()A P C 的估计值为0.6,()B PC 的估计值为0.25.,所以A 地区的用户的满意度等级为不满意的概率大. 试题解析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(Ⅱ)A 地区的用户的满意度等级为不满意的概率大.记A C 表示事件“A 地区的用户的满意度等级为不满意”;B C 表示事件“B 地区的用户的满意度等级为不满意”.由直方图得()A P C 的估计值为()0.010.020.03100.6++⨯=,()B PC 的估计值为()0.0050.02100.25.+⨯=,所以A 地区的用户的满意度等级为不满意的概率大. 考点:本题主要考查频率分布直方图及概率估计. 19.(Ⅰ)见试题解析(Ⅱ)97 或79【解析】试题分析:(Ⅰ)分别在,AB CD 上取H,G,使10AH DG ==;长方体被平面α 分成两个高为10的直棱柱,可求得其体积比值为97 或79试题解析:解:(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作,EM AB ⊥ 垂足为M,则14AM A E ==,112EB =,18EM AA ==,因为EHGF 是正方形,所以10EH EF BC ===,于是6,10, 6.MH AH HB ====因为长方体被平面α 分成两个高为10的直棱柱,所以其体积比值为97 (79也正确). 考点:本题主要考查几何体中的截面问题及几何体的体积的计算.20.(Ⅰ)2222184x y +=(Ⅱ)见试题解析【解析】试题分析:(Ⅰ)由2242,1,2a a b=+=求得228,4a b ==,由此可得C 的方程.(II )把直线方程与椭圆方程联立得()222214280.k x kbx b +++-=,所以12222,,22121M M M x x kb bx y kx b k k +-===+=++于是1,2M OM M y k x k==-12OM k k ⇒⋅=-.试题解析:解:(Ⅰ)由题意有2242,1,2a a b =+= 解得228,4a b ==,所以椭圆C 的方程为2222184x y +=. (Ⅱ)设直线():0,0l y kx b k b =+≠≠,()()()1122,,,,,M M A x y B x y M x y ,把y kx b=+代入2222184x y +=得()222214280.k x kbx b +++-=故12222,,22121M M M x x kb bx y kx b k k +-===+=++ 于是直线OM 的斜率1,2M OM M y k x k ==- 即12OM k k ⋅=-,所以直线OM 的斜率与直线l 的斜率乘积为定值. 考点:本题主要考查椭圆方程、直线与椭圆及计算能力、逻辑推理能力.21.(Ⅰ)0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a⎛⎫+∞⎪⎝⎭单调递减;(Ⅱ)()0,1.【解析】试题分析:(Ⅰ)由()1f x a x'=-,可分0a ≤,0a >两种情况来讨论;(II )由(I )知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 最大值为1ln 1.f a a a ⎛⎫=-+- ⎪⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.试题解析:(Ⅰ)()f x 的定义域为()0,+∞,()1f x a x'=-,若0a ≤,则()0f x '>,()f x 在()0,+∞是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.(Ⅱ)由(Ⅰ)知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 在1x a=取得最大值,最大值为111l n1l n 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122l n 10f a a aa ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.考点:本题主要考查导数在研究函数性质方面的应用及分类讨论思想.22. 【解析】试题分析:(Ⅰ)要证明EFBC ,可证明,AD BC ⊥AD EF ⊥;(Ⅱ)先求出有关线段的长度,然后把四边形EBCF 的面积转化为△ABC 和△AEF 面积之差来求. 试题解析:(Ⅰ)由于△ABC 是等腰三角形,,AD BC ⊥ 所以AD 是CAB ∠的平分线,又因为圆O 与AB,AC 分别相切于E,F,所以AE AF =,故AD EF ⊥,所以EFBC .(Ⅱ)由(Ⅰ)知AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 为圆O 的弦,所以O 在AD 上,连接OE,OF,则OE AE ⊥,由AG 等于圆O 的半径得AO=2OE,所以30OAE ∠=,因此,△ABC 和△AEF 都是等边三角形,,因为AE =,所以4,2,AO OE == 因为2,OM OE ==12DM MN == 所以OD=1,于是AD=5,AB = 所以四边形DBCF的面积为(221122⨯-⨯=⎝⎭考点:本题主要考查几何证明、四边形面积的计算及逻辑推理能力.23.(Ⅰ)()30,0,22⎛⎫⎪ ⎪⎝⎭;(Ⅱ)4.试题分析:(Ⅰ)把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解方程组可得交点坐标;(Ⅱ)先确定曲线1C 极坐标方程为(),0,θαρρ=∈≠R 进一步求出点A 的极坐标为()2si n ,αα,点B 的极坐标为(),αα,,由此可得2sin 4sin 43AB πααα⎛⎫=-=-≤ ⎪⎝⎭.试题解析:解:(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为220x y +-=,联立两方程解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩,所以2C 与3C 交点的直角坐标()30,0,22⎛⎫⎪ ⎪⎝⎭.(Ⅱ)曲线1C 极坐标方程为(),0,θαρρ=∈≠R 其中0απ≤< ,因此点A 的极坐标为()2sin ,αα,点B的极坐标为(),αα,所以2sin cos 4sin 3AB πααα⎛⎫=-=- ⎪⎝⎭,当56πα=时AB 取得最大值,最大值为4.考点:本题主要考查参数方程、直角坐标及极坐标方程的互化.圆的方程及三角函数的最值. 24. 【解析】试题分析:(Ⅰ)由a b c d +=+及ab cd >,可证明22>,开方即得>(Ⅱ)本小题可借助第一问的结论来证明,但要分必要性与充分性来证明.解:(Ⅰ)因为22a b c d =++=++由题设a b c d +=+,ab cd >,得22>,>(Ⅱ)(ⅰ)若a b c d-<-,则()()22a b c d -<-,即()()2244,a b ab c d cd +-<+- 因为a b c d +=+,所以ab cd >,>(ⅱ)若>,则22>,即a b c d ++>++因为a b c d +=+,所以ab cd >,于是()()()()222244,a b a b a b c d c dc d-=+-<+-=-因此a b c d-<-,综上a b c d-<-的充要条件.考点:本题主要考查不等式证明及充分条件与必要条件.。
2015年高考模拟考试数学(文科)试卷注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一.选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合{}062≤-+=x x x A ,集合B 为函数11-=x y 的定义域,则=B A ( )A. B. C. D.2、若复数z 满足i iz 42+=,则在复平面内z 对应的点的坐标是( ) A .()4,2 B .()4,2- C .()2,4- D .()2,43、一枚质地均匀的正方体骰子,六个面上分别刻着一点至六点.甲乙两人各掷骰子一次,则甲掷骰子向上的点数大于乙的概率为( ) A .29 B .14 C .512 D .124、变量x 、y 满足条件⎪⎩⎪⎨⎧->≤≤+-1101x y y x ,则22)2(y x +-的最小值为( )A .223 B .5 C .29 D .55、将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈C .sin()()212x y x R π=-∈D .5sin()()224x y x R π=+∈6、某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到如下联表:附:22112212211212()n n n n n K n n n n ++++-=,则下列结论正确的是( )A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到…光盘‟与性别无关”B .有99%以上的把握认为“该校学生能否做到…光盘‟与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到…光盘‟与性别有关”D .有90%以上的把握认为“该校学生能否做到…光盘‟与性别无关”7、已知向量(sin 2)θ=-,a ,(1cos )θ=,b ,且⊥a b ,则2sin 2cos θθ+的值为 A .1 B .2 C .12D .3 8、如图所示程序框图中,输出=S ( ) A.45 B. 55- C. 66- D. 669、某几何体的三视图如图所示,且该几何体的体积是3, 则正视图中的x 的值是( ) A .2 B .29 C .23D .310、下图可能是下列哪个函数的图象( )A .221xy x =-- B .2sin 41x x xy =+C .2(2)xy x x e =- D .ln x y x=第8题图第10题图 第9题图11、已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为12F F 、,这两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形。
2015届高三第二次模拟考试数学试题(文科)本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分,满分150分,时间120分钟第Ⅰ卷一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}23,log P a =,{}Q ,a b =,若{}Q=0P I ,则Q=P U ( ) A .{}3,0 B .{}3,0,1 C .{}3,0,2 D .{}3,0,1,22.复数iiz +-=121所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若,326sin =⎪⎭⎫⎝⎛-απ则=⎪⎭⎫⎝⎛+απ232cos ( ) A. 95- B. 95 C. 97- D. 974.设.R a ∈则”“0112<+--a a a 是“1<a ”成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既非充分也非必要条件5.若向量b a ρ,满足2,1==b a ρρ且322=+b a ρρ,则向量b a ρ,的夹角为( )A.6πB.3π C. 2π D. 32π6.下列关于函数()3cos 2tan()4f x x x π=+-的图象的叙述正确的是( )A.关于原点对称B.关于y 轴对称C.关于直线4x π=对称 D.关于点(,0)4π对称7.某几何体的三视图如图1所示,该几何体的体积为( )A.263 B.83π+ C.143π D.73π 8.已知点(1,0),(1,0)A B -及抛物线22y x =,若抛物线上点P 满足 PA m PB =,则m 的最大值为( )A . 3 B. 2 C.3 D. 21 1 1122主视图 侧视图俯视图图19.已知各项不为0的等差数列{}n a 满足0327263=+-a a a ,数列{}n b 是等比数列,且66a b =,则1071b b b 等于( )A. 1B. 2C. 4D. 810.鹰潭市某学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件⎪⎩⎪⎨⎧<≤-≥-6252x y x y x ,则该校招聘的教师最多( )名 A .7 B .8 C .10 D .1311.如图2,已知双曲线C :22221x y a b-=()0,0>>b a 的右顶点为,A O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点Q P ,.若60PAQ ∠=︒ 且3OQ OP =u u u r u u u r,则双曲线C 的离心率为( )A .233B .72C .396D .312.已知函数21()ln,(),22x x f x g x e -=+=对于(),0,a R b ∀∈∃∈+∞使得()()g a f b =成立,则b a -的最小值为( )A. 2lnB. 2ln -C. 32-eD. 32-e第Ⅱ卷二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
高中数学学习材料金戈铁骑整理制作固原一中2015届高三第一次模拟文数试题命题人:孙荣 审题人陈永文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若集合{}{}22|228,|20x A x Z B x R x x +=∈<≤=∈->,则R C B A ()所含的元素个数为( ) A .0 B .1 C .2 D .3 2.复数1z i =-,则1zz+对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若,a R ∈则“3a >”是“方程22(9)y a x =-表示开口向右的抛物线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知双曲线的一个焦点与抛物线220x y =的焦点重合,且其渐近线的方程为340x y ±=,则该双曲线的标准方程为( )A .221916x y -=B .221169x y -=C .221916y x -=D .221169y x -=5.已知等比数列{}n a ,且482,a a +=则62610(2)a a a a ++的值为( )A .4B .6C .8D .106.如图所示是用模拟方法估计圆周率π值的程序框图, P 表示估计的结果,则图中空白框内应填入 A.p=1000M B. p=1000M C. p=41000M D.p=10004M7. 0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为( ) A .0.852 B .0.8192 C .0.8 D .0.758.已知0a >,,x y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .12 B .13C .1D .2 9.设函数()f x 是定义在R 上的奇函数,当0x >时,()23,xf x x =+-则()f x 的零点个数为( )A .1B .2C .3D .4 10.某几何体的三视图如图所示,则该几何体的体积为 ( )11..6225..36A B C D11.设P 是双曲线2214y x -=上除顶点外的任意一点,1F 、2F 分别是双曲线的左、右焦点,△12PF F 的内切圆与边12F F 相切于点M ,则12F M MF ⋅= A .5B .4C .2D .112.已知数列{}n a 满足:1a m =(m 为正整数),16(1231nn n n n a a a a a a +⎧⎪==⎨⎪+⎩当为偶数时)若(当为奇数时) 则m 的所有可能值为A. 2或4或8B. 4或5或8C. 4或5或32D. 4或5或16第Ⅱ卷正视图 侧视图俯视图111本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.三棱锥P ABC -中,PA ⊥平面ABC ,,1,3AC BC AC BC PA ⊥===,则该三棱锥外接球的表面积为14.ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++=,则OC AB ⋅的值为15.如图,在ABC ∆中,45,B D ∠=是BC 边上一点,5,7,3AD AC DC ===,则AB 的长为16. 已知|log |)(2x x f =,正实数n m ,满足n m <,且)()(n f m f =,若)(x f 在区间[]n m ,2上的最大值为2,则n m +=_______。
2015年宁夏固原一中高考数学模拟试卷(文科)(二)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设集合A={x|2x-2<1},B={x|1-x≥0},则A∩B等于()A.{x|x≤1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|0<x<1}【答案】A【解析】解:∵A={x|2x-2<1}={x|x-2<0}={x|x<2},B={x|1-x≥0}={x|x≤1},∴A∩B={x|x≤1}.故选A.集合A与集合B的公共元素构成集合A∩B,由此利用A={x|2x-2<1}={x|x<2},B={x|1-x≥0}={x|x≤1},能求出A∩B.本题考查集合的交集及其运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.2.若复数(a∈R,i为虚数单位)是纯虚数,则复数z为()A.2B.3C.3iD.2i【答案】C【解析】解:∵复数==为纯虚数,∴a-6=0且2a+3≠0,∴a=6,复数z==3i,故选C.化简复数为,利用纯虚数的定义可得a-6=0且2a+3≠0,求出a值,即得复数z.本题考查纯虚数的定义,复数代数形式的除法,化简复数是解题的关键.3.一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5D.8,16,10,6【答案】D【解析】解:因为=,故各层中依次抽取的人数分别是=8,=16,=10,=6,故选D.先求得比例,然后各层的总人数乘上这个比例,即得到样本中各层的人数.本题主要考查分层抽样方法.4.下列说法正确的是()A.命题“∃x∈R使得x2+2x+3<0”的否定是:“∀x∈R,x2+2x+3>0”B.“a>1”是“f(x)=log a x(a>0,a≠1)在(0,+∞)上为增函数”的充要条件C.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件D.命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题【答案】B【解析】解:A、根据命题“∃x∈R使得x2+2x+3<0”是特称命题,其否定为全称命题,可得否定是:“∀x∈R,x2+2x+3≥0”,故不正确;B、根据对数函数的单调性,可知正确;C、“p∧q为真命题”,则p,q均为真,“p∨q为真命题”,则p,q至少一个为真,故“p∧q为真命题”是“p∨q为真命题”的充分不必要条件,故不正确;D、原命题为真,则¬p是假命题.故选:B对四个选项,进行判断,即可得出结论.本题考查命题的真假判断与应用,考查学生分析解决问题的能力,涉及知识点.5.已知数列{a n}的前n项和为S n,并满足:a n+2=2a n+1-a n,a5=4-a3,则S7=()A.7B.12C.14D.21【答案】C【解析】解:∵a n+2=2a n+1-a n,∴a n+2-a n+1=a n+1-a n,∴数列{a n}是等差数列,∵a5=4-a3,∴a3+a5=2a4=4,解得a4=2,∴==14.故选:C.由a n+2=2a n+1-a n,推导出数列{a n}是等差数列,由a5=4-a3,求出a4=2,由此能求出S7.本题考查数列的前7项和的求法,是中档题,解题的关键是推导出数列是等差数列.6.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3B.11C.38D.123【答案】B【解析】解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.7.直线l:x=my+2与圆M:x2+2x+y2+2y=0相切,则m的值为()A.1或-6B.1或-7C.-1或7D.1或-【答案】B【解析】解:圆M:x2+2x+y2+2y=0,即(x+1)2+(y+1)2=2,表示以M(-1,-1)为圆心,半径等于的圆.再根据圆心到直线l:x-my-2=0的距离等于半径,可得=,求得m=1,或m=-7,故选:B.把圆的方程化为标准形式,求出圆心和半径,再根据圆心到直线l:x-my-2=0的距离等于半径,求得m的值.本题主要考查圆的标准方程,圆的切线性质,点到直线的距离公式的应用,属于基础题.8.已知曲线y=-3lnx+1的一条切线的斜率为,则切点的横坐标为()A.3B.2C.1D.【答案】A【解析】解:函数的定义域为(0,+∞),则函数的导数f′(x)=-,由f′(x)=-=,即x2-x-6=0,解得x=3或x=-2(舍),故切点的横坐标为3,故选:A.求出函数的定义域和导数,利用导数是切线的斜率进行求解即可.本题主要考查导数的几何意义的应用,求函数的导数,解导数方程即可,注意定义域的限制.9.已知直线m和平面α,β,则下列四个命题中正确的是()A.若α⊥β,m⊂β,则m⊥αB.若α∥β,m∥α,则m∥βC.若m∥α,m∥β,则α∥βD.若α∥β,m⊥α,则m⊥β【答案】D【解析】解:对于A,若α⊥β,m⊂β,则m与α可能平行,如果是交线,则在α内,故A 错误;对于B,若α∥β,m∥α,则m∥β或者m⊂β;故B错误;对于C,若m∥α,m∥β,则α与β可能相交;故C错误;对于D,若α∥β,m⊥α,利用面面平行的性质以及项目存在的性质可以判断m⊥β;故D正确;故选D.利用面面垂直、面面平行、线面平行的性质对选项分别分析选择.本题考查了面面垂直、面面平行、线面平行的性质的运用;注意定理运用时的条件,考虑特殊位置.10.已知双曲线的方程为(a>0,b>0),双曲线的一个焦点到一条渐近线的距离为(c为双曲线的半焦距长),则双曲线的离心率为()A. B. C. D.【答案】B【解析】解:双曲线的一个焦点为(c,0),一条渐近线方程为,即bx-ay=0,所以焦点到渐近线的方程为,整理得,所以有,,即,离心率,故选B.确定双曲线的焦点坐标,一条渐近线方程,利用点到直线的距离公式,及双曲线的一个焦点到一条渐近线的距离为,建立方程,即可求得双曲线的离心率.本题考查双曲线的几何性质,考查点到直线距离公式,属于中档题.11.若,,均为单位向量,且•=-,=x+y(x,y∈R),则x+y的最大值是()A.2B.C.D.1【答案】A【解析】解:∵,,均为单位向量,且•=-,=x+y(x,y∈R),∴==x2+y2-xy=1,设x+y=t,y=t-x,得:x2+(t-x)2-x(t-x)-1=0,∴3x2-3tx+t2-1=0,∵方程3x2-3tx+t2-1=0有解,∴△=9t2-12(t2-1)≥0,-3t2+12≥0,∴-2≤t≤2∴x+y的最大值为2.故选A.由题设知==x2+y2-xy=1,设x+y=t,y=t-x,得3x2-3tx+t2-1=0,由方程3x2-3tx+t2-1=0有解,知△=9t2-12(t2-1)≥0,由此能求出x+y的最大值.本题考查平面向量的综合运用,解题时要认真审题,仔细解答,注意平面向量的数量积和换元法的灵活运用.本题也可用基本不等式解答12.函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x).当x∈[0,1]时,f(x)=2x.若在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的实数根,则实数a的取值范围是()A.(,)B.(,)C.(,2)D.(1,2)【答案】A【解析】解:若在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的实数根,等价为f(x)=a(x+2)有四个不相等的实数根,即函数y=f(x)和g(x)=a(x+2),有四个不相同的交点,∵f(x+2)=f(x),∴函数的周期是2,当-1≤x≤0时,0≤-x≤1,此时f(-x)=-2x,∵f(x)是定义在R上的偶函数,∴f(-x)=-2x=f(x),即f(x)=-2x,-1≤x≤0,作出函数f(x)和g(x)的图象,当g(x)经过A(1,2)时,两个图象有3个交点,此时g(1)=3a=2,解得a=当g(x)经过B(3,2)时,两个图象有5个交点,此时g(3)=5a=2,解得a=,要使在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的实数根,则<<,故选:A由f(x+2)=f(x),得到函数的周期是2,利用函数的周期性和奇偶性作出函数f(x)的图象,由ax+2a-f(x)=0等价为f(x)=a(x+2),利用数形结合即可得到结论.本题主要考查方程根的公式的应用,利用方程和函数之间的关系,转化为两个函数的交点问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,共20.0分)13.抛物线y=4x2的准线方程为______ .【答案】【解析】解:整理抛物线方程得x2=y,∴p=∵抛物线方程开口向上,∴准线方程是y=-故答案为:.先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程.本题主要考查抛物线的标准方程和简单性质.属基础题.14.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<)的图象如图所示,则φ=______ .【答案】【解析】解:由图象可知:T=4×(-)=π,∴ω=2;(,0)在图象上,∴2×+φ=kπ,k∈Z.∵0<φ<,∴k=1φ=.故答案为:.通过图象求出函数的周期,再求出ω,由(,0)确定φ,求出φ值.本题考查y=A sin(ωx+φ)中参数的物理意义,由y=A sin(ωx+φ)的部分图象确定其解析式,考查视图能力,逻辑推理能力.属于中档题.15.设x,y满足约束条件则z=2x+y的最大值为______ .【答案】2【解析】解:约束条件对应的可行域如图:由图得,当z=2x+y位于点B(1,0)时,z=2x+y取最大值,此时:Z=2×1+0=2.故答案为:2.先画出对应的可行域,结合图象求出目标函数取最大值时对应的点,代入即可求出其最值.本题主要考查简单线性规划.线性目标函数求最值的步骤简单记为:1,作图;2,平移;3,求值.16.方的曲线即为函y=f(x)的图象,对于函数y=f(x),有如下结论:①x在R上单调递减;②函数F(x)=4f(x)+3x不存在零点;③函数y=f(x)的值域是R;④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程确定的曲线.其中所有正确的命题序号是______ .【答案】①②③【解析】解:对于①,根据题意画出方程的曲线,即为函数y=f(x)的图象,如图所示;轨迹是两段双曲线的一部分加上一段的椭圆圆弧组成的图形.从图形中可以看出,关于函数y=f(x)的有下列说法:①f(x)在R上单调递减,∴①正确;②由于4f(x)+3x=0即f(x)=-x,从而图形上看,函数f(x)的图象与直线y=-x没有交点,∴函数F(x)=4f(x)+3x不存在零点,②正确;③函数y=f(x)的值域是R,∴③正确;④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象是方程+=1确定的曲线,∴④错误.综上,以上正确的命题是①②③.故答案为:①②③.根据题意,化简方程方,作出函数y=f(x)的图象,由函数的图象判断函数在R上的单调性以及值域,得出①③是否正确;判断F(x)=4f(x)+3x=0是否存在零点,得出②是否正确;根据函数的对称性得出g(x)的解析式是什么,判断④是否正确.本题考查了含有绝对值的二次方程的曲线问题,也考查了含有绝对值的函数式的化简、函数的图象与性质、直线与圆锥曲线的位置关系等知识的应用问题,解题的关键是画出函数的图象,是难题.三、解答题(本大题共8小题,共94.0分)17.等比数列{a n}中,已知a2=2,a5=16(1)求数列{a n}的通项a n(2)若等差数列{b n},b1=a5,b8=a2,求数列{b n}前n项和S n,并求S n最大值.【答案】解:(1)由a2=2,a5=16,得q=2,解得a1=1,从而a n=2n-1.…(6分)(2)由已知得等差数列{b n},b1=a5=16,b8=a2=2,设公差为d,则有b8-b1=7d,即2-16=7d,解得d=-2.故数列{b n}前n项和S n=n×16+=17n-n2.…(10分)由于二次函数S n的对称轴为n=,n∈z,且对应的图象开口向下,…(12分)∴当n=8或9时,S n有最大值为72.…(14分)【解析】(1)由a2=2,a5=16,得q=2,解得a1=1,从而得到通项公式.(2)根据b8-b1=7d求出d=-2,再求出数列{b n}前n项和S n=17n-n2.利用二次函数的性质可得当n=8或9时,S n有最大值.本题主要考查等等比数列的通项公式,等差数列的定义和性质,等差数列的通项公式,前n项和公式的应用,二次函数的性质的应用,属于基础题.18.有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:(Ⅰ)求频率分布直方图中m的值;(Ⅱ)分别求出成绩落在[70,80),[80,90),[90,100]中的学生人数;(Ⅲ)从成绩在[80,100]的学生中任选2人,求所选学生的成绩都落在[80,90)中的概率.【答案】解:(Ⅰ)根据各小组频率和等于1,得;10×(2m+3m+4m+5m+6m)=1,∴m=0.005;…(3分)(Ⅱ)成绩落在[70,80)中的学生人数为20×10×0.03=6,成绩落在[80,90)中的学生人数是20×10×0.02=4,成绩落在[90,100]中的学生人数2是0×10×0.01=2;…(6分)(Ⅲ)设落在[80,90)中的学生为a1,a2,a3,a4,落在[90,100]中的学生为b1,b2,则Ω1={a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2},基本事件个数为n=15,设A=“此2人的成绩都在[80,90)”,则事件A包含的基本事件数m=6,∴事件A发生的概率为.…(13分)【解析】(Ⅰ)根据各小组频率和等于1,求出m的值;,计算成绩落在[70,80)、[80,90)、[90,100]中的学生人(Ⅱ)利用频率=频数样本容量数;(Ⅲ)用列举法求出从[80,100]中的学生抽取2人的基本事件数以及此2人的成绩都在[80,90)的基本事件数,求出概率即可.本题考查了频率分布直方图的应用问题,也考查了用列举法求古典概型的概率问题,是基础题目.19.如图,在四棱锥P-ABCD中,底面ABCD中为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)点M在线段PC上,PM=t PC,试确定实数t的值,使得PA∥平面MQB.【答案】解:(1)连BD,四边形ABCD菱形∵AD=AB,∠BAD=60°∴△ABD是正三角形,Q为AD中点∴AD⊥BQ∵PA=PD,Q为AD中点AD⊥PQ又BQ∩PQ=Q∴AD⊥平面PQB,AD⊂平面PAD∴平面PQB⊥平面PAD(2)当t=时,使得PA∥平面MQB,连AC交BQ于N,交BD于O,则O为BD的中点,又∵BQ为△ABD边AD上中线,∴N为正三角形ABD的中心,令菱形ABCD的边长为a,则AN=a,AC=a.∴PA∥平面MQB,PA⊂平面PAC,平面PAC∩平面MQB=MN∴PA∥MN即:PM=PC,t=.【解析】(1)PA=PD,连BD,四边形ABCD菱形,Q为AD中点,证明平面PAD内的直线AD,垂直平面PQB内的两条相交直线BQ,PQ,即可证明平面PQB⊥平面PAD;(2)连AC交BQ于N,交BD于O,点M在线段PC上,PM=t PC,实数t=的值,说明PA∥平面MQB,利用PA∥MN,说明三角形相似,求出t=.本题考查平面与平面垂直的判定,直线与平面平行的判定,考查空间想象能力,逻辑思维能力,是中档题.20.已知函数f(x)=x2-alnx+(a-1)x,a∈R(1)当a=1时,求函数f(x)图象在点(1,f(1))处的切线方程;(2)当a<0时,讨论函数f(x)的单调性;(3)是否存在实数a,对任意的x1,x2∈(0,+∞)且x1≠x2有>a恒成立?若存在,求出a的取值范围;若不存在,说明理由.【答案】解:(1)函数f(x)=x2-alnx+(a-1)x,f′(x)=x-+(a-1)=(x>0)当a=1时,f′(x)=,f′(1)=0,则所求的切线方程为:y-f(1)=0(x-1),即y=;(2)①当-a=1,即a=-1时,f′(x)=≥0,f(x)在(0,+∞)上单调递增;②当-a<1,即-1<a<0时,由0<x<-a,或x>1时,f′(x)>0,-a<x<1时,f′(x)<0.则f(x)在(0,-a),(1,+∞)单调递增,在(-a,1)上单调递减;③当-a>1,即a<-1时,由0<x<1或x>-a时,f′(x)>0;1<x<-a时,f′(x)<0,f(x)在(0,1),(-a,+∞)上单调递增,在(1,-a)上单调递减;(3)假设存在这样的实数a满足条件,不妨设x1<x2.由>a知f(x2)-ax2>f(x1)-ax1成立,令g(x)=f(x)-ax=x2-aln x-x,则函数g(x)在(0,+∞)上单调递增,则g′(x)=x--1≥0,即a≤x2-x=(x-)2-在(0,+∞)上恒成立.,则a≤-,故存在这样的实数a满足题意,其范围为(-∞,-].【解析】(1)求出a=1时函数f(x)的导数,求出切点和切线的斜率,由点斜式方程,即可得到切线方程;(2)求出函数的导函数,根据a的不同取值对函数定义域分段,由函数导函数的符号判断原函数在各区间段内的单调性;(3)假设存在实数a使得对任意的x1,x2∈(0,+∞),且x1≠x2,有>a恒成立,假设0<x1<x2,则f(x2)-ax2>f(x1)-ax1恒成立,构造辅助函数g(x)=f(x)-ax,只要使函数g(x)在定义域内为增函数即可,利用其导函数恒大于等于0可求解a的取值范围.本题考查了利用导数研究函数的单调性,考查了导数在最大值最小值中的应用,考查了数学转化思想和分类讨论的数学思想方法,训练了利用构造函数法求参数的取值范围,属难题.21.已知抛物线y2=2px(p>0)的准线与x轴交于点M(-1,0).(Ⅰ)求抛物线的方程,并写出焦点坐标;(Ⅱ)是否存在过焦点的直线AB(直线与抛物线交于点A,B),使得三角形MAB的面积S△MAB=4?若存在,请求出直线AB的方程;若不存在,请说明理由.【答案】(Ⅰ)解:∵抛物线y2=2px(p>0)的准线与x轴交于点M(-1,0),∴,解得p=2,∴抛物线方程为y2=4x,抛物线焦点坐标为F(1,0).…(4分)(Ⅱ)解法一:由题意,设AB:x=ty+1,并与y2=4x联立,得到方程:y2-4ty-4=0,…(6分)设A(x1,y1),B(x2,y2),则y1+y2=4t,y1•y2=-4.…(7分)S△MAB=S△MAF+S△MBS=|MF|•(|y1|+|y2|),∵y1•y2<0,∴|y1|+|y2|==,…(9分)又|MF|=2,∴,…(10分)解得t=±1,…(11分)故直线AB的方程为:x=±y+1.即x+y-1=0或x-y-1=0.…(12分)(Ⅱ)解法二:当AB⊥x轴时,|AB|=2p=4,S△MAB=|MF|•|AB|==4,不符合题意.…(5分)∴设AB:y=k(x-1)(k≠0),并与y2=4x联立,得到方程:k2x2-(2k2+4)x+k2=0,…(6分)设A(x1,y1),B(x2,y2),则,x1x2=1.…7分|AB|=x1+x2+p=,点M到直线AB的距离为,…(9分)∴|AB|•d===,…(10分)解得k=±1,…(11分)故直线AB的方程为:y=±(x-1).即x+y-1=0或x-y-1=0.…(12分)【解析】(Ⅰ)由已知条件得,由此能求出抛物线方程和抛物线焦点坐标.(Ⅱ)法一:由题意,设AB:x=ty+1,并与y2=4x联立,得到方程:y2-4ty-4=0,设A (x1,y1),B(x2,y2),由S△MAB=S△MAF+S△MBS=|MF|•(|y1|+|y2|),能求出直线AB的方程.(Ⅱ)法二:设AB:y=k(x-1)(k≠0),并与y2=4x联立,得到方程:k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),|AB|=,点M到直线AB的距离为的d,由|AB|•d,能求出直线AB的方程.本题考查抛物线的方程和焦点坐标的求法,考查直线方程的求法,解题时要认真审题,注意函数与方程思想的合理运用.22.如图,四边形ABCD是⊙O的内接四边形,延长BA和CD相交于点P,=,=.(Ⅰ)求的值;(Ⅱ)若BD为⊙O的直径,且PA=1,求BC的长.【答案】解:(Ⅰ)由∠PAD=∠PCB,∠A=∠A,得△PAD与△PCB相似,设PA=x,PD=y则有,所以…(5分)(Ⅱ)因为PA=1,=,所以PB=4,因为PA•PB=PD•PC,=,所以PC=2,因为BD为⊙O的直径,所以∠C=90°,所以BC==2.…(10分)【解析】(Ⅰ)证明△PAD与△PCB相似,即可求的值;(Ⅱ)求出PB,PC,利用勾股定理求BC的长.本题考查三角形相似的判定,考查相交弦定理,考查相学生的计算能力,比较基础.23.已知在平面直角坐标系x O y中,直线l的参数方程是(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标,曲线C的极坐标方程ρ=2cos(θ+).(Ⅰ)判断直线l与曲线C的位置关系;(Ⅱ)设M为曲线C上任意一点,求x+y的取值范围.【答案】解:(Ⅰ)由,消去t得:y=x+.由,得,即,∴,即.化为标准方程得:.圆心坐标为,,半径为1,圆心到直线x-y+=0的距离d=>1.∴直线l与曲线C相离;(Ⅱ)由M为曲线C上任意一点,可设,则x+y=sinθ+cosθ=,∴x+y的取值范围是,.【解析】(Ⅰ)由直线的参数方程消去t得直线的直角坐标方程,化圆的极坐标方程为直角坐标方程,再由圆心到直线的距离与圆的半径的关系得到直线与圆的位置关系;(Ⅱ)设出曲线C上的点的参数方程,由x+y=sinθ+cosθ,利用两角和的正弦化简后可得x+y的取值范围.本题考查了简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,考查了由点到直线的距离判断直线和圆的位置关系,训练了圆的参数方程的应用,是基础题.24.已知函数f(x)=|2x+1|-|x|-2(Ⅰ)解不等式f(x)≥0(Ⅱ)若存在实数x,使得f(x)≤|x|+a,求实数a的取值范围.【答案】解:(Ⅰ)函数f(x)=|2x+1|-|x|-2=,<,<,,当x<-时,由-x-3≥0,可得x≤-3.当-≤x<0时,由3x-1≥0,求得x∈∅.当x≥0时,由x-1≥0,求得x≥1.综上可得,不等式的解集为{x|x≤-3或x≥1}.(Ⅱ)f(x)≤|x|+a,即|x+|-|x|≤+1①,由题意可得,不等式①有解.由于|x+|-|x|表示数轴上的x对应点到-对应点的距离减去它到原点的距离,故|x+|-|x|∈[-,],故有+1≥-,求得a≥-3.【解析】(Ⅰ)化简函数的解析式,分类讨论,求得不等式的解集.(Ⅱ)不等式即|x+|-|x|≤+1①,由题意可得,不等式①有解.根据绝对值的意义可得|x+|-|x|∈[-,],故有+1≥-,由此求得a的范围.本题主要考查绝对值的意义,绝对值不等式的解法,函数的能成立问题,体现了转化、分类讨论的数学思想,属于基础题.。