四边形测试题2.pdf
- 格式:pdf
- 大小:167.30 KB
- 文档页数:4
挑战2023年中考数学选择、填空压轴真题汇编专题07特殊平行四边形综合的压轴真题训练一.平行四边形的性质1.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A.4<m<3+B.3﹣<m<4C.2﹣<m<3D.4<m<4+【答案】A【解答】解:可得C(,),A(4,0),B(4+,),∴直线AB的解析式为:y=x﹣4,∴x=y+4,直线AC的解析式为:y=﹣,∴x=4+y﹣2y,∴点F的横坐标为:y+4,点E的横坐标为:4+y﹣2y,∴EF=(y+4)﹣(4+y﹣2y)=2,∵EP=3PF,∴PF=EF=y,∴点P的横坐标为:y+4﹣y,∵0<y<,∴4<y+4﹣y<3+,故答案为:A.2.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD 上,∠EBA=60°,则的值是()A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥AD于H,设∠ADB=x,∵四边形ABCD是平行四边形,∴BC∥AD,∠ADC=∠ABC=105°,∴∠CBD=∠ADB=x,∵AD=BD,∴∠DBA=∠DAB=,∴x+=105°,∴x=30°,∴∠ADB=30°,∠DAB=75°,∵BH⊥AD,∴BD=2BH,DH=BH,∵∠EBA=60°,∠DAB=75°,∴∠AEB=45°,∴EH=BH,∴DE=BH﹣BH=(﹣1)BH,∵AB===(﹣)BH=CD,∴=,故选:D.二.矩形的性质3.(2022•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC 上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A.B.C.﹣D.﹣2【答案】D【解答】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.4.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是.【答案】a﹣b;3+2.【解答】解:(1)由图可知:PQ=a﹣b,故答案为:a﹣b;(2)∵a2﹣2ab﹣b2=0,∴a2﹣b2=2ab,(a﹣b)2=2b2,∴a=b+b(负值舍),∵四个矩形的面积都是5.AE=a,DE=b,∴EP=,EN=,则======3+2.故答案为:3+2.5.(2022•宿迁)如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点H 所经过的路径长是.【答案】π【解答】解:如图1中,连接MN 交EF 于点P ,连接BP .∵四边形ABCD 是矩形,AM =MD ,BN =CN ,∴四边形ABNM 是矩形,∴MN =AB =6,∵EM ∥NF ,∴△EPM ∽△FPN ,∴===2,∴PN=2,PM=4,∵BN=4,∴BP===2,∵BH⊥EF,∴∠BHP=90°,∴点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.此时AM=4,NF=2,∴BF=AB=6,∵∠ABF=90°,BH⊥AF,∴BH平分∠ABF,∴∠HBN=45°,∴∠HON=2∠HBN=90°,∴点H的运动轨迹的长==π.故答案为:π.6.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.【答案】5或4【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.三.正方形的性质和判定7.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1【答案】B【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FK⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.8.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4【答案】C【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.9.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【答案】5+【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.10.(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.【答案】45°【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.11.(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.【答案】①②④⑤【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,P四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBF,故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.12.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为.【答案】3+3【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF==4,∵∠BEF=90°,BM=MF,∴EM=BF=2,∵BO=OD,BM=MF,∴OM=DF=,∵OE=BD=×6=3,∴△OEM的周长=3++2=3+3,解法二:辅助线相同.证明△BAG≌△FHD,推出AB=HF=3,再证明△FHM≌△BCM,推出CM=HM=,求出BD,DF,BF,利用直角三角形斜边中线的性质,三角形中位线定理,可得结论.故答案为:3+3.13.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC 时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE 是正方形.其中正确结论有(填上所有正确结论的序号).【答案】①②③④【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.四.菱形的性质14.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cos B=,则FG的长是()A.3B.C.D.【答案】B【解答】解:方法一,如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∴AH===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠F AG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cos D=cos B==,∴DQ=x,∴FQ===x,=S梯形CEGF+S梯形GFDA,∵S梯形CEAD∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD的等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.方法二:如图,作AH垂直BC于H,延长AE和DC交于点M,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,所以AE=AB=EM=CM=4,设GF=x,则AG=x,GE=4﹣x,由GF∥BC,∴△MGF∽△MEC,∴=,解得x=.故选:B.15.(2022•甘肃)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【答案】B【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.。
北师大新版四年级下学期《第2章认识三角形和四边形》2019年单元测试卷一.选择题(共23小题)1.下列说法错误的是()A.平行四边形两组对边分别平行B.平行四边形里面相对的两个角相等C.长方形是特殊的平行四边形D.平行四边形具有稳定性2.明明准备把一根钢管剪成三段,剪完后能够焊成一个三角形铁架,能够焊成三角形的剪法是()(单位:厘米)A.B.C.D.3.按记号折后能围成一个长方形的铁丝是()A.B.C.4.如图,学校大门口的伸缩门做成这样,是根据平行四边形的()A.容易变形B.两组对边分别平行C.对边相等5.下面的图形中()不是四边形.A.B.C.6.等底等高的两个平行四边形,它们()A.完全相同B.形状可能不同C.面积不相等、形状可能不同7.图中共有()个平行四边形.A.3B.4C.5D.68.用四根细木条钉成一个长方形框,将它拉成平行四边形.以下说法正确的是()A.周长变了,面积不变B.周长不变,面积变了C.周长和面积都变了D.周长和面积都不变9.一个三角形的三个内角都不小于60°,这个三角形一定是()三角形.A.钝角B.直角C.等边10.三个相等的角拼成了一个平角,这三个角一定是()A.锐角B.直角C.钝角11.如果一个三角形中最小的一个角大于45°,那么这个三角形是()三角形.A.锐角B.钝角C.直角D.锐角或直角12.在三角形三个内角中,∠1=∠2+∠3,那么这个三角形一定是()三角形.A.钝角B.直角C.锐角D.等腰13.一个三角形的三个内角中没有钝角,那么这个三角形是()A.锐角三角形B.直角三角形C.锐角三角形或直角三角形14.一个等腰三角形中,顶角的度数是底角的4倍,这个是哪种三角形?()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定15.一个三角形的下部被一张纸遮住了(如图),只露出了一个角,这个三角形是()三角形.A.钝角B.锐角C.直角D.无法确定16.如果一个三角形中,一个角是另一个角的2倍,那么这个三角形一定不是()三角形.A.等边B.等腰C.等腰直角17.一个三角形最小的内角是50°,按角分这是一个()三角形.A.钝角B.直角C.锐角18.有两根小棒,一根8厘米,另一根15厘米.小芳准备再用一根小棒与它们围一个三角形,第三根小棒的长应介于()厘米之间(取整厘米数).A.1~8B.7~23C.8~15D.8~2219.A、C两地之间的距离可能是()A.26千米B.32千米C.40千米D.90千米20.如图是一大一小两个正方形组成,阴影部分的形状是()A.平行四边形B.长方形C.梯形D.三角形21.只有一组对边平行的四边形是()A.长方形B.平行四边形C.梯形22.一个梯形最多有()个直角.A.1B.2C.3D.423.把一个平行四边形任意分割成两个梯形,这个梯形的()总是相等的.A.高B.周长C.面积二.填空题(共8小题)24.一个三角形三条边的长度都是7厘米,从边的角度看,它是一个三角形,它有条对称轴.25.把符合要求的四边形的序号填入横线里.①长方形②正方形③平行四边形④梯形(1)只有一组对边平行.(2)四条边相等,四个角都是直角.(3)两组对边分别平行,没有直角.26.在一个正方形中,相邻的两条边互相,相对的两条边互相.27.长方形和正方形都有条边,个角.28.梯形的上底和下底相等时,这个图形就变成了.29.只有一组对边平行的四边形叫做,两组对边分别平行的四边形叫做.30.当梯形的上底逐渐缩小到一点时,梯形就转化成;当梯形的上底增大到与下底相等时,梯形就转化成.31.只有一组对边平行的四边形是形,不平行的一组对边是它的.三.判断题(共10小题)32.一个四边形不是长方形就是正方形.(判断对错)33.四边形的对边相等.(判断对错)34.长与宽相等的长方形是正方形.(判断对错)35.梯形有无数条高.(判断对错)36.有一组对边相等的四边形是等腰梯形.(判断对错)37.四边形有四条边,有四个角.(判断对错)38.有一个角是直角的平行四边形是长方形..(判断对错)39.只有两个锐角的三角形,一定是钝角三角形..(判断对错)40.平行四边形有无数条高,且长度都相等.(判断对错)41.只有一组对边平行的图形是梯形..(判断对错)四.应用题(共1小题)42.有一块平行四边形草坪,相邻两条边分别长24米和16米,小芳绕这块草坪走了一圈,共走了多少米?五.解答题(共3小题)43.在点子图上按要求画图.44.一个等腰三角形的周长是36厘米,底比腰多3厘米,它的腰长是多少厘米?底长是多少厘米?45.选择合适的位置,把“四边形”“长方形”“正方形”“平行四边形”“梯形”之间的关系填在如图的关系图中.北师大新版四年级下学期《第2章认识三角形和四边形》2019年单元测试卷参考答案与试题解析一.选择题(共23小题)1.【解答】解:A、平行四边形两组对边分别平行,说法正确;B、平行四边形里面相对的两个角相等,说法正确;C、长方形是特殊的平行四边形,说法正确;D、平行四边形具有稳定性,说法是错误的,因为平行四边形易变形,不稳定.故选:D.2.【解答】解:A、4+8=12,所以不能围成三角形;B、3+3<18,所以不能围成三角形;C、6+6=12,所以不能围成三角形;D、9+5>12,所以能围成三角形;故选:D.3.【解答】解:因为A中线段被分成了4份,两两相等,所以能围成一个长方形的铁丝是;故选:C.4.【解答】解:如图,学校大门口的伸缩门做成这样,是根据平行四边形的容易变形;故选:A.5.【解答】解:下面的图形中,都是有四条线段依次首尾相接围成的封闭的图形,是四边形,而有五条边,不是四边形.故选:C.6.【解答】解:平行四边形的面积=底×高,若两个平行四边形的底和对应高相等,则它们的面积相等,但形状可能不同;故选:B.7.【解答】解:图中共有6个平行四边形;故选:D.8.【解答】解:把一个木条钉成的长方形框拉成一个平行四边形后,每条边的长度都不变,但是高变短了,于是由平行四边形和长方形的面积公式可知,它的面积变小了,即这个平行四边形的面积小于原长方形的面积.故选:B.9.【解答】解:由分析知:一个三角形的三个内角都不小于60度,即都等于60°,这个三角形一定是等边三角形;故选:C.10.【解答】解:因为180°÷3=60°,60°的角叫做锐角,所以这个三角形一定是锐角三角形;故选:A.11.【解答】解:由分析可知,如果一个三角形最小的一个内角大于45°,则三角形的最大角小于90°.所以另外两个角一定是锐角.故选:A.12.【解答】解:由分析得:在三角形三个内角中,∠1=∠2+∠3,也就是180÷2=90(度),90÷2=45(度),那么这个三角形一定是直角三角形.故选:B.13.【解答】解:一个三角形的三个内角中没有钝角,那么这个三角形是锐角三角形或直角三角形;故选:C.14.【解答】解:4+1+1=6最大角为:180°×=120°,得出三角形为钝角三角形;故选:C.15.【解答】解:从题中可知,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角.所以这个三角形可能是锐角三角形,也可能是直角三角形,也可能是钝角三角形,可见为都有可能.故选:D.16.【解答】解:因为等边三角形的三个内角都相等,所以如果一个三角形中,一个角是另一个角的2倍,那么这个三角形一定不是等边三角形.故选:A.17.【解答】解:另外两角的和=180°﹣50°=130°假设一个角是90°,则另外一个角的度数小于50°,这与题干“一个三角形最小的内角是50°”相违背,所以另外两个角都应小于90°,这个三角形应该是一个锐角三角形.故选:C.18.【解答】解:15﹣8=7(厘米)15+8=23(厘米)第三根小棒的范围是:7厘米<第三边<23厘米,即第三根小棒的长应介于7~23厘米之间(取整厘米数).故选:B.19.【解答】解:因为两边之和大于第三边,两边之差小于第三边,60﹣28<第三边<28+60,即32<第三边<88所以A、C两地之间的距离可能40千米;故选:C.20.【解答】解:如图是一大一小两个正方形组成,阴影部分的形状是梯形.故选:C.21.【解答】解:只有一组对边平行的四边形是梯形;故选:C.22.【解答】解:一个梯形,直角最多有2个;故选:B.23.【解答】解:把一个平行四边形任意分割成两个梯形后,两个梯形的高还等于原平行四边形的高;由于平行四边形有无数条高且都是相等的,所以两个梯形的高是相等的,但梯形的面积还与它的上下底有关,所以分成的梯形的面积不一定相等.故选:A.二.填空题(共8小题)24.【解答】解:一个三角形三条边的长度都是7厘米,从边的角度看,它是一个等边三角形,它有3条对称轴;故答案为:等边,3.25.【解答】解:(1)只有一组对边平行.是梯形.(2)四条边相等,四个角都是直角.是正方形.(3)两组对边分别平行,没有直角.是平行四边形.故答案为:④,②,③.26.【解答】解:正方形中相邻两条边相互垂直,相对两条边相互平行;故选:垂直,平行.27.【解答】解:长方形和正方形都有4条边,4个角;故答案为:4,4.28.【解答】解:当梯形的上底与下底相等时,梯形变成了平行四边形;故答案为:平行四边形.29.【解答】解:只有一组对边平行的四边形叫做梯形,两组对边分别平行的四边形叫做平行四边形.故答案为:梯形,平行四边形.30.【解答】解:由图可知:当梯形的上底逐渐缩小到一点时,梯形就转化成三角形;当梯形的上底增大到与下底相等时,梯形就转化成平行四边形;故答案为:三角形,平行四边形.31.【解答】解:只有一组对边平行的四边形是梯形,不平行的一组对边是它的腰;故答案为:梯,腰.三.判断题(共10小题)32.【解答】解:一个四边形可能是平行四边形或者是梯形,或者是普通的四边形,所以一个四边形不是长方形就是正方形,说法错误;故答案为:×.33.【解答】解:由分析可知,四边形的对边不一定相等,所以本题说法错误;故答案为:×.34.【解答】解:长与宽相等的长方形是正方形,是正确的;故答案为:√.35.【解答】解:梯形有无数条高;故答案为:√.36.【解答】解:根据等腰梯形的含义可知:有一组对边相等的四边形是等腰梯形,说法错误;故答案为:×.37.【解答】解:根据四边形的特点:四边形有四条边,有四个角.原题说法正确;故答案为:√.38.【解答】解:根据分析可知:只要有一个角是直角的平行四边形,是长方形,说法正确;故答案为:√.39.【解答】解:只有两个锐角,另一个角也可能是钝角,还可能是直角,所以这个三角形可能是直角三角形,也可能是钝角三角形,无法确定它的形状;所以上面的说法是错误的.故答案为:×.40.【解答】解:根据平行四边行的定义可知,有两组对边平行的四边行叫平行四边形,平行四边形的高为两组边的距离,所以平行四边形有两组高,每组的高都相等且有无数条;所以上面的说法是错误的;故答案为:×.41.【解答】解:只有一组对边平行的图形是梯形,说法错误,因为图形不一定是四边形,前提必须是四边形,只有一组对边平行的四边形叫梯形;故答案为:×.四.应用题(共1小题)42.【解答】解:24+24+16+16=80(米)答:一共走了80米.五.解答题(共3小题)43.【解答】解:如图所示,即为所要求画的等腰直角三角形和等腰梯形:44.【解答】解:设腰长为x厘米,则底为(x+3)厘米,2x+(x+3)=362x+x+3=36x=1111+3=14(厘米)答:它的腰长是11厘米,底长是14厘米.45.【解答】解:第11页(共11页)。
八年级数学下册《特殊平行四边形与梯形》测试卷学校:__________一、选择题1.(2分)如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CDB .AD=BCC .AB=BCD .AC=BD2.(2分)把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A .(10+ cmB .(10+cmC .22cmD .18cm3.(2分)如图,在梯形ABCD 中,AD ∥BC,AD=AB,BC=BD, ∠A=120°,则∠C 等于( ) A .75°B .60°C .45°D .30°4.(2分)如图,在等腰梯形ABCD 中,AD BC ∥,3AD =,5BC =,AC BD ,相交于O 点,且60BOC =∠,顺次连结等腰梯形各边中点所得四边形的周长是( ) A .24B .20C .16D .125.(2分)如图,已知等腰梯形ABCD 中,AD ∥BC ,∠A=110°,则∠C=( ) A .90°B .80°C .70°D .60°6.(2分)如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD ,BC 于E ,F 点,连结CE ,则△CDE 的周长为( ) A .5cmB .8cmC .9cmD .10cm7.(2分)正方形具有而菱形不一定具有的特征有( ) A .对角线互相垂直平分 B .内角和为360° C .对角线相等D .对角线平分内角8.(2分)等腰梯形的上底与高相等,下底是上底的3倍,则较小内角的度数是 ( )3cm3cmA.30°B.45°C.60°D.80°9.(2分)在等腰梯形中,下列说法:①两腰相等;②两底平行;③对角线相等;④两底角相等.其中正确的有()A.1个B.2个C.3个D.4个10.(2分)下列条件中,不能..判定四边形ABCD是菱形的是()A.□ABCD中,AB=BCB.□ABCD中,AC⊥BDC.□ABCD中,AC平分∠BADD.□ABCD中,AC=BD11.(2分)在菱形ABCD中,∠ABC=60°,AC=4,则BD的长为()A.83B.8.C.43D.2312.(2分)一个菱形绕它的中心旋转,使它和原来的菱形重合,则旋转的角度至少是()A.90°B.180°C.270°D.360°13.(2分)若直角三角形中两直角边的长分别为12和5,则斜边上的中线长是()A.13 B.6 C.6.5 D.6.5或614.(2分)甲,乙,丙,丁四位同学拿尺子检测一个窗框是否为矩形.他们各自做了如下检测后都说窗框是矩形,你认为正确的是()A.甲量得窗框两组对边分别相等B.乙测得窗框的对角线长相等C.丙测得窗框的一组邻边相等D.丁测得窗框的两组对边分别相等且两条对角线也相等评卷人得分二、填空题15.(3分)如图,菱形ABCD的对角线的长分别为3和8,P是对角线AC上的任一点(点 P 不与点A,C重合),且PE∥BC交AB 于E,PF∥CD交AD于F. 则阴影部分的面积是 .解答题16.(3分)已知矩形的对角线长为4cm,一条边长为2cm,则面积为 .17.(3分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O,E、F分别是边AB、BC上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为 cm.18.(3分)如图,过正方形ABCD的顶点B作直线l,过A C,作l的垂线,垂足分别为E F,.若1AE=,3CF=,则AB的长度为.19.(3分)如图,在菱形ABCD,AB=BD=2,则AC= .20.(3分)在直角坐标系内,点A,B,C,D的坐标依次为(-2,0),(-4,5),(x,y),(0,5),要使四边形ABCD为菱形,则x= ,y= .21.(3分)如图,在矩形ABCD中,CE⊥BD,∠DCE:∠ECB=3:1,那么∠ACB= 度.评卷人得分三、解答题22.(6分)在梯形ABCD中,AB∥CD,090A∠=,AB=2,BC=3,CD=1,E是AD中点,试判断EC与EB的位置关系,并写出推理过程.23.(6分)如图,平行四边形ABCD中,AB AC⊥,1AB=,5BC.对角线AC BD,相交于点O,将直线AC绕点O顺时针旋转,分别交BC AD,于点E F,.(1)证明:当旋转角为90时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明A DB CEFO理由并求出此时AC 绕点O 顺时针旋转的度数.24.(6分)如图,已知:ABCD 是正方形,E 是AD 的中点.(1)将△CDE 绕着D 点向形外旋转180°得到△FDG ,作出图形并正确标注字母; (2)连结EF ,试猜想EF 与GF 的关系,并证明.25.(6分)如图所示,在矩形ABCD 中,AB=5cm ,BC=4cm ,动点P 以1cm/s 的速度从A 点出发,•经点D ,C 到点B ,设△ABP 的面积为s (cm 2),点P 运动的时间为t (s ). (1)求当点P 在线段AD 上时,s 与t 之间的函数关系式; (2)求当点P 在线段BC 上时,s 与t 之间的函数关系式;(3)在同一坐标系中画出点P 在整个运动过程中s 与t 之间函数关系的图像.26.(6分)如图①,四边形ABCD 是等腰梯形,AB ∥DC ,由4个这样的等腰梯形可以拼出图②所示的平行四边形.ABCDO FE(1)求四边形ABCD的四个内角的度数;(2)试探究四边形ABCD的四条边之间存在的等量关系,并说明理由;(3)请用两种不同的方法,在图③和图④的梯形ABCD内画一条直线,将梯形ABCD分成面积相等的两部分(只要所画的直线位置不同,便视为两种不同的方法);(4)现有图①中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请画出大致示意图.27.(6分)如图,梯形ABCD中,DC∥AB,DE∥BC交AB于E,已知△ADE的周长为12 cm,CD=5 cm.求梯形的周长.28.(6分)如图,正方形ABCD中,在AB的延长线上取一点E,使AC=BE,连结DE交BC于F,求∠DFB的度数.29.(6分)如图,△ABC中.∠ACB=90°,CH⊥AB于点H,AD平分∠BAC,DE⊥AB 于点E.求证:四边形CFED是菱形.30.(6分)试一试:(1)你能把一个梯形纸片裁剪拼成一个三角形、一个平行四边形、一个矩形吗(分别在图①、②、③中画出)?(2)请你用不同的方法把一个上底等于2,下底等于4的等腰梯形纸片裁成面积相等的三块(在图④中画出).【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D2.A3.A4.C5.C 6.D 7.C 8.B 9.C 10.D 11.C 12.B 13.C 14.D二、填空题15.616.2 17.5 18.10 19.20.-2,10 21.67.5三、解答题22.EC EB ⊥.延长CE 、BA 相交于点F ,证明△DCE ≌△AFE ,得CE=FE ,DC=AF ,∴BF=BC=3,∴BE ⊥CE23.(1)证明:当90AOF ∠=时,AB EF ∥, 又AF BE ∥,∴四边形ABEF 为平行四边形.(2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△.AF EC ∴=(3)四边形BEDF 可以是菱形. 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =,EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形.在Rt ABC △中,512AC =-=,1OAAB ∴==,又AB AC ⊥,45AOB ∴∠=,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形.24.(1) 如图:(2)EF=GF .证明:∵DE=DG ,DF =DF ,∠FDG=∠FDE ,∴△FDG ≌△FDE .∴FG=FE . 25.解:(1)s=52t ;(2)26525+-=t s ;(3)略.26.(1)60°,60°,l20°,l20°;(2)AB=2AD=2DC=2BC ; (3)DP+AQ=PC+QB (4)答案不唯一27.22 cm 28.112.5° 29.证CF=CD=DEA EF D CG ABCO F E30.略。
2020中考数学复习《平⾏四边形》专题练习(含答案)中考复习数学分类汇编:平⾏四边形专题练习含答案⼀、选择题1. (2018·宜宾)在ABCD Y 中,若BAD ∠与CDA ∠的平分线交于点E ,则AED ∠的形状是( )A.锐⾓三⾓形B.直⾓三⾓形C.钝⾓三⾓形D.不能确定2. (2018·黔西南州)如图,在ABCD Y 中,4AC =cm.若ACD ?的周长为13 cm ,则ABCD Y 的周长为( )A. 26 cmB. 24 cmC. 20 cmD. 18 cm3. (2018·海南)如图ABCD Y 的周长为36,对⾓线,AC BD 相交于点O ,E 是CD 的中点,12BD =,则DOE ?的周长为( )A.15B. 18C. 21D. 244. ( 2018·台州)如图,在ABCD Y 中,2,3AB BC ==.以点C 为圆⼼,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点,P Q 为圆⼼,⼤于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A. 12 B. 1 C. 65 D. 325. (2018·东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB BF =.添加⼀个条件使四边形ABCD 是平⾏四边形,你认为下列四个条件中可选择的是( )A. AD BC =B. CD BF =C. A C ∠=∠D. F CDF ∠=∠6. (2018·安徽)在ABCD Y 中,,E F 是对⾓线BD 上不同的两点.下列条件中,不能得出四边形AECF ⼀定为平⾏四边形的是( )A. BE DF =B. AE CF =C. //AF CED. BAE DCF ∠=∠7. (2018·⽟林)在四边形ABCD 中:①//AB CD ;②//AD BC ;③AB CD =;④AD BC =,从以上选择两个条件使四边形ABCD 为平⾏四边形的选法共有( )A. 3种B. 4种C. 5种D. 6种8. (2018·呼和浩特)顺次连接平⾯上,,,A B C D 四点得到⼀个四边形,从①//AB CD ;②BC AD =;③A C ∠=∠;④B D ∠=∠四个条件中任取其中两个,可以得出‘“四边形ABCD 是平⾏四边形”这⼀结论的情况共有( )A. 5种B. 4种C. 3种D. 1种9. (2018·眉⼭)如图,在ABCD Y 中,2CD AD =,BE AD ⊥于点E ,F 为DC 的中点,连接,EF BF ,下列结论:①2ABC ABF ∠=∠;②EF BF =;③2EFB DEBC S S ?=四边形;④3CFE DEF ∠=∠.其中正确的结论共有( )A.1个B. 2个C. 3个D. 4个10. (2018·通辽)如图,ABCD Y 的对⾓线,AC BD 交于点O ,DE 平分ADC ∠交AB 于点E ,60BCD ∠=?,12AD AB =,连接OE .下列结论:①ABCD S AD BD =Y g ; ②DB 平分CDE ∠; ③AO DE =;④5ADE OFE S S ??=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个⼆、填空题11. (2018·常州)如图,在ABCD Y 中,70A ∠=?,DC DB =,则C D B ∠= .12. (2018·⼗堰)如图,ABCD Y 的对⾓线,AC BD 相交于点O ,且8AC =,10BD =,5AB =,则OCD ?的周长为 .13. (2018·泰州)如图,在A B C D Y 中,,A C B D 相交于点O .若6,16AD AC BD =+=,则BOC ?的周长为 .14. (2018·衡阳)如图,ABCD Y 的对⾓线相交于点O ,且AD CD ≠,过点O 作OM AC ⊥,交AD 于点M .如果CDM ?的周长为8,那么ABCD Y 的周长是 .15.(2018·临沂)如图,在ABCD Y 中,10,6AB AD ==,AC BC ⊥,则BD 的长为 .16. (2018·东营)如图,(3,3)B -,(5,0)C ,以,O C C B 为边作OABC Y ,则经过点A 的反⽐例函数的解析式为 .17. (2018·株洲)如图,在ABCD Y 中,连接BD ,且B D C D =,过点A 作AM BD⊥于点M ,过点D 作DN AB ⊥于点N ,且DN =在DB 的延长线上取⼀点P ,满⾜ABD MAP PAB ∠=∠+∠,则AP 的长为 .18.(导学号78816053)(2018·⽆锡)如图,60XOY ∠=?,点A 在边OX 上,2OA =.过点A 作AC OY ⊥于点C ,以AC 为⼀边在XOY ∠内作等边三⾓形ABC ,P 是ABC ?围成的区域(包括各边)内的⼀点,过点P 作//PD OY 交OX 于点D ,作//PE OX 交OY 于点E .设,OD a OE b ==,则2a b +的取值范围是 .三、解答题19. (2018·⽆锡)如图,在ABCD Y 中,,E F 分别是边,BC AD 的中点.求证:ABF CDE ∠=∠.20. (2018·衢州)如图,在ABCD⊥,DF AC⊥,垂Y中,AC是对⾓线,BE AC⾜分别为E,F.求证:AE CF=.21. (2018·⼤连)如图,ABCDY的对⾓线,AC BD相交于点O,点,E F在AC上,且AF CE =.=.求证:BE DF22. (2018·福建)如图,ABCDY的对⾓线,AC BD相交于点O,EF过点O且与AD BC分别相交于点,E F.求证:OE OF,=.23. (2018·宿迁)如图,在ABCD Y 中,点,E F 分别在边,CB AD 的延长线上,且BE DF =,EF 分别与,AB CD 交于点,G H .求证:AG CH =.24. (2018·曲靖)如图,在ABCD Y 的边,AB CD 上截取,AF CE ,使得AF CE =,连接,,EF M N 是线段EF 上两点,且EM FN =,连接,AN CM .(1)求证: AFN CEM ;(2)若107CMF ∠=?,72CEM ∠=?,求NAF ∠的度数.25. (2018·岳阳)如图,在ABCD Y 中,AE CF =.求证:四边形BFDE 是平⾏四边形.26. (2018·孝感)如图,,,,B E C F 在⼀条直线上,已知//,//,A B D E A C D F B E C F =,连接AD .求证:四边形ABED 是平⾏四边形.27. (2018·陕西)如图,//AB CD ,,E F 分别为,AB CD 上的点,且//EC BF ,连接AD ,分别与,EC BF 相交于点,G H ,若AB CD =,求证:AG DH =.28. (2018·巴中)如图,在ABCD Y 中,过点B 作BM AC ⊥于点E ,交CD 于点M ,过点D 作DN AC ⊥于点F ,交AB 于点N .(1)求证:四边形BMDN 是平⾏四边形;(2)已知12,5AF EM ==,求AN 的长.29. (2018·江西)如图,在四边形ABCD 中,//AB CD ,2AB CD =,E 为AB 的中点,请仅⽤⽆刻度的直尺分别按下⾯的要求画图.(保留画图痕迹)(1)在图①中,画出ABD ?的BD 边上的中线;(2)在图②中,若BA BD =,画出ABD ?的AD 边上的⾼.30. (2018·黄冈)如图,在ABCD Y 中,分别以边,BC CD 作等腰三⾓形BCF 、等腰三⾓形CDE ,使,BC BF CD DE ==,CBF CDE ∠=∠,连接,AF AE .(1)求证: ABF EDA ;(2)延长AB 与CF ,相交于点G ,若AF AE ⊥,求证: BF BC ⊥.31. (2018·永州)如图,在ABC∠=?,以线段AB为∠=?,30CAB中,90ACB边向外作等边三⾓形ABD,E是线段AB的中点,连接CE并延长交线段AD 于点F.(1)求证:四边形BCFD为平⾏四边形;(2)若6Y的⾯积.AB=,求BCFD32. (2018·重庆)如图,在ABCDY中,O是对⾓线AC的中点,E是BC上⼀点,且AB AE=,连接EO并延长交AD于点F.过点B作AE的垂线,垂⾜为H,交AC于点G.(1)若3,1的⾯积;AH HE==,求ABE(2)若45∠=?,求证:DF=.ACB参考答案⼀、1. B 2. D 3. A 4. B 5. D 6. B 7. B 8. C 9. D 10. B⼆、填空题11. 40?12. 1413. 1414. 1615. 16. 6y=x17. 618. 225≤+≤a b三、19. 点拨:证明()∠=∠.,即可得ABF CDEABF CDE SAS20. 点拨:证明()=.,即可得AE CFABE CDF AAS21. 点拨:证明()=.BEO DFO SAS,即可得BE DF22. 点拨:证明()AOE COF ASA ,即可得OE OF =.23. 点拨:证明()AGF CHE ASA ,即可得AG CH =.24. (1)点拨:由FN EM AFN CEM AF CE =??∠=∠??=?,得到AFN CEM(2) 35NAF ∠=?25. 点拨:由//BF DE BF DF ??=?,得到四边形BFDE 是平⾏四边形 26. 点拨:证明()ABC DEF ASA ,得到AB DE =,⼜∵//AB DE ,∴四边形ABED 是平⾏四边形.27. 点拨:证明()AEG DFH ASA ,得到AG DH =.28. (1) 点拨:由////CD AB DN BM,得到四边形BMDN 是平⾏四边形; (2)13AN =29. (1)如图①,连接CE ,交BD 于点F ,连接AF ,线段AF 即为所求(2)如图②,连接CE ,交BD 于点F ,连接AF ,DE 交于点G ,连接BG ,并延长BG ,交AD 于点H ,线段BH 即为所求30. (1) 点拨:由BF DA ABF EDA AB DE =??∠=∠??=?,得到ABF EDA(2) 点拨:由90CBF EAF ∠=∠=?,得到BF BC ⊥31. (1) 点拨:由////BC DF CF BD,得到四边形BCFD 为平⾏四边形; (2)BCFD S =Y 32. (1)ABE S ?= (2) 点拨:AOF COE ,得到AF CE =,∵AD BC =,∴DF BE =. AME BNG ,得到ME NG =,∴22BE ME NG ==在Rt GNC ?中,45GCN ∠=?,∴CG =,2NG =,∴DF =。
2022年全国中考数学真题分类汇编专题12:四边形一.选择题(共18小题)1.如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC =60°,BD=4 ,则OE=()A.4B.2 C.2D.2.如图,四边形ABCD的内角和等于()A.180°B.270°C.360°D.540°3.如图,正方形ABCD的面积为3,点E在边CD上,且CE=1,∠ABE的平分线交AD 于点F,点M,N分别是BE,BF的中点,则MN的长为()A. B. C.2 D.4.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC 5.正多边形的每个内角为108°,则它的边数是()A.4B.6C.7D.56.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A.正方形B.正六边形C.正八边形D.正十边形7.如图,在边长为1的菱形ABCD中,∠ABC=60°,动点E在AB边上(与点A,B均不重合),点F在对角线AC上,CE与BF相交于点G,连接AG,DF,若AF=BE,则下列结论错误的是()A.DF=CE B.∠BGC=120°C.AF2=EG•EC D.AG的最小值为8.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.169.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE 的长度为()A. B. C. D.10.要检验一个四边形的桌面是否为矩形,可行的测量方案是()A.测量两条对角线是否相等B.度量两个角是否是90°C.测量两条对角线的交点到四个顶点的距离是否相等D.测量两组对边是否分别相等11.如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是()A.40°B.60°C.80°D.100°12.如图,四边形ABCD是菱形,∠DAB=60°,点E是DA中点,F是对角线AC上一点,且∠DEF=45°,则AF:FC的值是()A.3B. 1C.2 1D.213.如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2B.4C.6D.814.如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是()A.900°B.720°C.540°D.360°15.如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF∥AB,AE=AB,AF与BE相交于点O,连接OC.若BF=2CF,则OC与EF之间的数量关系正确的是()A.2OC EF B. OC=2EF C.2OC EF D.OC=EF 16.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD,其中一张纸条在转动过程中,下列结论一定成立的是()A.四边形ABCD周长不变B.AD=CDC.四边形ABCD面积不变D.AD=BC17.如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4s时,四边形ABMP为矩形B.当t=5s时,四边形CDPM为平行四边形C.当CD=PM时,t=4sD.当CD=PM时,t=4s或6s18.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为()A.108°B.109°C.110°D.111°二.填空题(共19小题)19.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB =3,BC=4,则图中阴影部分的面积为.20.如图,在▱ABCD中,AD=10,对角线AC与BD相交于点O,AC+BD=22,则△BOC 的周长为.21.如图所示,在▱ABCD中,AC,BD交于点O, R , ,则 .22.图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是°.23.如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED 是菱形,这个条件可以是.(写出一个即可)24.如图,四边形ABCD为菱形,∠ABC=80°,延长BC到E,在∠DCE内作射钱CM,使得∠ECM=30°,过点D作DF⊥CM,垂足为F.若DF ,则BD的长为(结果保留根号).25.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4 ,则四边形CEDF的周长是.26.如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).27.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF AC,连接EF.若AC=10,则EF=.28.如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为.29.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=°;若△AEF的面积等于1,则AB的值是.30.在矩形ABCD中,AB=9,AD=12,点E在边CD上,且CE=4,点P是直线BC上的一个动点.若△APE是直角三角形,则BP的长为.31.正六边形的一个外角的度数为°.32.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为.33.如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是.34.如图,菱形ABCD中,对角线AC,BD相交于点O,∠BAD=60°,AD=3,AH是∠BAC的平分线,CE⊥AH于点E,点P是直线AB上的一个动点,则OP+PE的最小值是.35.如图,折叠边长为4cm的正方形纸片ABCD,折痕是DM,点C落在点E处,分别延长ME、DE交AB于点F、G,若点M是BC边的中点,则FG=cm.36.如图,在正方形ABCD中,AB=4 ,对角线AC,BD相交于点O.点E是对角线AC 上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F 为CD的中点,则△EGH′的周长是.37.四边形的外角和度数是.三.解答题(共7小题)38.如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD∥BC,BD平分∠ABC,交AO于点E,交AC于点F,∠CAO=∠DBC.若OB,OC 的长分别是一元二次方程x2﹣5x+6=0的两个根,且OB>OC.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数y (k≠0)图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.39.如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.40.【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形ABCD 为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中AD AB.他先将A4纸沿过点A的直线折叠,使点B落在AD上,点B的对应点为点E,折痕为AF;再沿过点F的直线折叠,使点C落在EF上,点C的对应点为点H,折痕为FG;然后连结AG,沿AG所在的直线再次折叠,发现点D与点F重合,进而猜想△ADG≌△AFG.【问题解决】小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:证明:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF ∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF AB=AD请你补全余下的证明过程.【结论应用】(1)∠DAG的度数为度, 的值为;(2)在图①的条件下,点P在线段AF上,且AP AB,点Q在线段AG上,连结FQ、PQ,如图②.设AB=a,则FQ+PQ的最小值为.(用含a的代数式表示)41.如图,在▱ABCD中,AB=4,AD=BD ,点M为边AB的中点.动点P从点A 出发,沿折线AD﹣DB以每秒 个单位长度的速度向终点B运动,连结PM.作点A 关于直线PM的对称点A',连结A'P、A'M.设点P的运动时间为t秒,(1)点D到边AB的距离为;(2)用含t的代数式表示线段DP的长;(3)连结AD,当线段A'D最短时,求△DPA'的面积;(4)当M、A'、C三点共线时,直接写出t的值.42.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求 的值为多少;(3)AB=8 ,AG ,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.43.如图,在▱ABCD中,DF平分∠ADC,交AB于点F,BE∥DF,交AD的延长线于点E.若∠A=40°,求∠ABE的度数.44.(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE翻折到△BEF处,延长EF交CD边于G点.求证:△BFG≌△BCG;(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB 沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,求AE的长.(3)拓展:如图③,在菱形ABCD中,AB=6,E为CD边上的三等分点,∠D=60°.将△ADE沿AE翻折得到△AFE,直线EF交BC于点P,求PC的长.。
第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
1.矩形ABCD的周长为20cm,两条对角线相交于O点,过O作AC的垂线EF,分别交AD、BC于E、F点,连接EC,则△CDE的周长为( )A.5cmB.8cmC.9cmD.10cm2.已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则这个平行四边形的周长为________.3.矩形ABCD中,对角线AC、BD交于点O,于则4.菱形的两个邻角之比为1:2,周长为4a,则较短的对角线的长为___________.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AE平分∠BAD,AE交BC于E,则∠BOE的度数是_______________.FEADCODCABE第5题图6.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm7.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F分别是垂足,AE=DE,则∠EBF是( )A.75°B.60°C.50°D.45°8.已知菱形的两条对角线的长分别是6cm和8cm, 则其周长为,面积为 .9.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为_________。
ABCDEFACDFEABCDFE10.如图,正方形ABCD,以CD为边分别在正方形内、外作等边三角形CDE、CDF,则∠AFD= ,若AB=2,则S四边= .形ABCD11.如图,E为正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于F,则∠AFC= .12.如图,正方形ABCD,E是CF上一点,若四边形BDEF是菱形,则∠E= .13.如图,矩形ABCD中,E为AB的中点,DE⊥CF,若AD=8,AB=4,则CF= ,DF= .ACDEFABCDEF14.菱形ABCD中,如图,AE⊥BC于E,AF⊥CD于F,若BE=EC,则∠EAF=( )(A) 75° (B)60° (C) 50° (D)45°15.顺次连接四边形各边中点,所得的图形是 .顺次连接对角线的四边形的各边中点所得的图形是矩形.顺次连接对角线的四边形的各边中点所得的四边形是菱形.顺次连接对角线的四边形的各边中点所得的四边形是正方形.16.矩形的边长为10cm和15cm,其中一个内角的角平分线分长边为两部份,这两部份的长为( )A.6cm和9cmB. 5cm和10cmC. 4cm和11cmD. 7cm和8cm17.如图,已知矩形ABCD,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )A:线段EF的长逐渐增大。
2020—2021学年人教版八年级数学下册第十八章平行四边形强化训练题(二)1.已知:如图,在△ABC和△ABE中,∠ACB=∠AEB=90°,D是AB中点,联结DC、DE、CE,F是CE中点,联结DF.(1)求证:DC=DE;(2)若AB=10,CE=8,求DF的长.2.如图,在▱ABCD中,AC=8,BD=12,点E、F在对角线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,到端点时运动停止,运动时间为t秒.(1)求证:四边形AECF为平行四边形.(2)求t为何值时,四边形AECF为矩形.3.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.4.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.5.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B 作AD的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=,求△ABC的面积.6.如图,四边形ABCD是平行四边形,AE∥BD,AE与CB的延长线交于点E,DE交AB于F.(1)求证:BC=BE;(2)连接CF,若∠ADF=∠BCF且AD=2AF,求证:四边形ABCD是正方形.7.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)△EFD≌△GFB.(2)试判断四边形EBGD的形状,并说明理由.(3)当△ABC满足条件 时,四边形EBGD是正方形(不用说明理由).8.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.9.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.10.已知:在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图①,若AB=1,DG=2,求BH的长;(2)如图②,连接AH、GH,求证:AH=GH且AH⊥GH.11.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.12.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.13.如图,在正方形ABCD的对角线AC上取点E,使得∠CDE=15°,连接BE.延长BE到F,连接CF,使得CF=BC.(1)求证:DE=BE;(2)求证:EF=CE+DE.14.定义:若点P为四边形ABCD内一点,且满足∠APB+∠CPD=180°,则称点P为四边形ABCD的一个“互补点”.(1)如图1,点P为四边形ABCD的一个“互补点”,∠APD=63°,求∠BPC的度数.(2)如图2,点P是菱形ABCD对角线上的任意一点,求证:点P为菱形ABCD的一个“互补点”.15.如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)若∠B=30°,AC=2,连接BF,求BF的长.答案1.解:(1)∵∠ACB=90°,D是AB中点,∴CD=AB,同理:ED=AB,∴CD=ED;(2)∵CD=ED,F是CE中点,∴DF⊥CE,∵CD=AB,AB=10,∴CD=5,∵F是CE中点,CE=8,∴CF=4,∴DF==3.2.证明:在▱ABCD中,∵OA=OC,OB=OD,∵E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,∴CE=AF,∴BE=DF,∴OE=OF,∴四边形AECF为平行四边形;(2)当t=2或t=10时以点A,C,E,F为顶点的四边形为矩形;理由:由矩形的性质知OE=OF、OA=OC,要使∠EAF是直角,只需OE=OF=OA=AC=4cm.则∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°即∠EAF=90°.此时BE=DF=(BD﹣EF)=(12﹣8)=2cm或BE=DF=12﹣2=10cm3.解:(1)结论:PB=PQ,理由:如图①中,过P作PE⊥BC,PF⊥CD,垂足分别为E,F.∵P为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形.∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,在△PQF和△PBE中,,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)结论:PB=PQ.理由:如图②,过P作PE⊥BC,PF⊥CD,垂足分别为E,F,∵P为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,在△PQF和△PBE中,,∴Rt△PQF≌Rt△PBE,∴PB=PQ.4.(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.5.证明:(1)∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形.∵AB=AC,AD是BC边的中线,∴AD⊥BC.即∠ADB=90°.∴四边形ADBE为矩形.(2)∵在矩形ADCE中,AO=2.5,∴DE=AB=5.∵D是BC的中点,∴AE=DB=4∴AB=2AO=5,∵∠ADB=90°,∴AD=,∴△ABC的面积=.6.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE∥BD,∴四边形AEBD是平行四边形,∴AD=EB,∴BC=BE;(2)由(1)知:四边形AEBD是平行四边形,∴AF=BF=AB,EF=FD,∵AD=2AF,∴AB=AD,∵AD∥EC,∴∠ADF=∠BCF,∴∠FEC=∠BCF,∴EF=FC=FD,∴∠FDC=∠FCD,∴∠ADF+∠FDC=∠FCD+∠BCF,即∠ADC=∠BCD,∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠BCD=90°,∴四边形ABCD是正方形.7.解:(1):∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,(2)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(3)当△ABC是直角三角形,即∠ABC=90°时,四边形EBGD是正方形,根据有一个角是直角的菱形是正方形可以得出.故∠ABC=90°.8.证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形9.证明:(1)∵四边形ABCD是矩形∴AE∥CF∵AE=CF∴四边形AECF是平行四边形∵AC平分∠ECF∴∠ACF=∠ACE∵AE∥CF∴∠ACF=∠EAC∴∠EAC=∠ACE∴AE=CE∴四边形AECF是菱形(2)设BF=x,则FC=8﹣x∴AF=FC=8﹣x在Rt△ABF中AB2+BF2=AF2∴(8﹣x)2=x2+42解得:x=3∴FC=8﹣3=5∴S菱形AECF=FC•AB=5×4=2010.(1)解:∵正方形中ABCD和正方形DEFG,∴△ABD,△GDF为等腰直角三角形.∵AB=1,DG=2,∴由勾股定理得BD=,DF=2.∵B、D、F共线,∴BF=3.∵H是BF的中点,∴BH=BF=(2)证法一:如图1,延长AH交EF于点M,连接AG,GM,∵正方形中ABCD和正方形DEFG且B、D、F共线,∴AB∥EF.∴∠ABH=∠MFH.又∵BH=FH,∠AHB=∠MHF,∴△ABH≌△MFH.∵AB=AD,∴AD=MF.∵DG=FG,∠ADG=∠MFG=90°,∴△ADG≌△MFG.∴∠AGD=∠MGF,AG=MG.又∵∠DGM+∠MGF=90°,∴∠AGD+∠DGM=90°.∴△AGM为等腰直角三角形.∵AH=MH,∴AH=GH,AH⊥GH.证法二:如图2,连接AC,GE分别交BF于点M,N,∵正方形中ABCD和正方形DEFG且B、D、F共线,∴AC⊥BF,GE⊥BF,DM=BD,DN=DF.∴∠AMD=∠GNH=90°,MN=BF.∵H是BF的中点,∴BH=BF.∴BH=MN.∴BM=HN.∵AM=BM=DM,∴AM=HN=DM.∴MD+DH=NH+DH.∴MH=DN.∵DN=GN,∴MH=GN.∴△AMH≌△HNG.∴AH=GH,∠AHM=∠HGN.∵∠HGN+∠GHN=90°,∴∠AHM+∠GHN=90°.∴∠AHG=90°.∴AH⊥GH.∴AH=GH,AH⊥GH.11.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.12.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)解:在菱形ABCD中,∠ABC=60°,∴AC=AB=4.∴在矩形OCED中,CE=OD==2.在Rt△ACE中,AE==2.13.证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=∠ACB=∠ACD=45°.∵在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE.(2)在EF上取一点G,使EG=EC,连接CG,∵△ABE≌△ADE,∴∠ABE=∠ADE.∴∠CBE=∠CDE,∵BC=CF,∴∠CBE=∠F,∴∠CBE=∠CDE=∠F.∵∠CDE=15°,∴∠CBE=15°,∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=∠GCF.∵在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.∵EF=EG+GF,∴EF=CE+ED.14.解:(1)∵如图1,点P为四边形ABCD的一个“互补点”,∠APD=63°,∴∠BPC=180°﹣∠APD=180°﹣63°=117°,即∠BPC=117°;(2)如图2,连接AP、CP,∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.在△ADP与△CDP中,,∴△ADP≌△CDP(SAS),∴∠APD=∠CPD.又∠APB+∠APD=180°,∴∠APB+∠CPD=180°,即点P为菱形ABCD的一个“互补点”.15.解:(1)∵D,E分别是BC,AB上的中点,∴DE为△ABC的中位线,∴DE∥AC,AC=2DE,又∵DF=2DE,∴EF=AC,∴四边形ACEF为平行四边形,∴AF=CE;(2)∵∠ACB=90°,∠B=30°,AC=2∴BC=2,DE=1,∠EDB=90°,∵D为BC中点,∴BD=,又∵EF=2DE,∴EF=2,∴DF=3,在△BDF中,由勾股定理得.。