1 糖类
- 格式:pdf
- 大小:6.99 MB
- 文档页数:61
单糖糖类概念与分类概念:糖类是多羟基醛或多羟基酮及其缩聚物和某些衍生物-链式结构中除了羰基C以双键方式与O结合外,其余的均与-OH连接羰基C=O:-在C链的一端为醛糖aldose在其它部位则为酮糖ketose 醛糖酮糖少量单糖残基以糖苷键连接而成的短链,水解后产生单糖。
如麦芽糖、蔗糖(双糖),棉子糖(三糖)等。
不能被水解成更小分子的糖类,也称简单糖。
如葡萄糖、果糖、核糖等。
由20个以上单糖残基组成的链,水解后产生单糖或其衍生物。
包括同多糖(糖原、淀粉等)和杂多糖(透明质酸、半纤维素等)分类单糖寡糖多糖一、单糖的链状结构最简单——丙糖甘油醛二羟丙酮最常见——己糖果糖葡萄糖-除二羟丙酮外,所有单糖都带有一个或多个不对称碳原子。
不对称碳原子是指与四个不同原子或原子基团共价连接因而失去对称性的四面体碳,也称手性碳,用C *表示。
核酸的戊糖成分核糖脱氧核糖构型(configuration):分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的稳定的立体结构。
而对于旋光异构体来说,是指不对称碳原子的四个取代基在空间的相对取向。
这种取向形成两种而且只有两种可能的四面体形式,即两种构型。
一个不对称碳原子的取代基在空间里的两种不同的取向正是物体与镜像的关系,两者不能重叠,互为对映体。
两个对映体具有程度相等而方向相反的旋光性和不同的生物活性,其他的物理和化学的性质完全相同。
构型改变时必须有共价键的断裂和重新形成。
Fischer 投影式CH 3OH COOH H按国际命名原则,将碳链放在垂直线上,氧化态较高的碳原子或主链中第一号碳原子在上。
以垂直线相连的基团表示伸向纸后,即远离读者,以水平线相连的基团表示伸出纸前,即指向读者。
Fishcher投影式透视式甘油醛的构型立体模型⚫以Fishcher 投影式中离羰基C 最远的C*位置为依据。
写在右侧的为D-型,写在左侧的为L-型。
D-甘油醛L-甘油醛-D 、L 构型表示法中D 、L 为人为选择的,不能指明实际空间关系,与旋光度和旋光方向无关-生物体的己糖大多为D-型异构体D-型单糖和L-型单糖一般而言,具有n个手性中心的分子可以有2n个旋光异构体。
糖类总结糖:基本概念、结构特征、生物功能、种类及资源性海洋多糖,研究方法;一.基本概念1.蛋白聚糖:一类特殊的糖蛋白,由一条或多条糖胺聚糖和一个核心蛋白共价连接而成。
2.蛋白聚糖聚集体:大量蛋白聚糖以连接蛋白连在透明质酸上形成的羽毛状或刷状结构。
3.糖胺聚糖:由含己糖醛酸(角质素除外)和己糖胺成分的重复二糖单位构成的不分枝长链聚合物。
4.糖蛋白:糖与蛋白质之间,以蛋白质为主,一定部位以共价键与若干糖分子相连构成的分子;总体性质更接近蛋白质,其上糖链不呈现双链重复序列。
5.多糖:由多个单糖分子缩合而成的化合物,同多糖为某一种单一的单糖或衍生物缩合而成,如淀粉、糖原、纤维素;杂多糖为由不同类型的单糖或衍生物组成如结缔组织中的透明质酸等。
6.N-糖肽键:多指β -构型的N-乙酰葡糖胺一位碳与天冬酰胺的γ -酰胺N-原子共价连接而成的N-糖苷键;Asn多处于Asn-X-Thr/Ser序列,弱碱稳定,强碱水解;细菌中存在GalNAc-Asn;Glc-Asn连接形式。
7.O-糖肽键::单糖的异头碳与羟基氨基酸的羟基O原子结合而成的糖苷键。
① Ser/Thr共价形成:碱不稳定;GalNAc-、GlcNAc-、Gal-、Man-、Xyl-、Ara②羟赖氨酸共价形成:碱稳定;β-Gal-Hyl和β-Ara(阿拉伯糖)-Hyl8.自然界中常见的单糖为D-葡萄糖。
二.结构特征1.麦芽糖由α-D-葡萄糖以α-1,4糖苷键构成蔗糖由α-D-葡萄糖和β-D-果糖以α-1,2糖苷键构成乳糖由α-D-葡萄糖和β-D-半乳糖以β-1,4糖苷键构成淀粉由D-葡萄糖构成直链由α-1,4糖苷键(加碘变蓝溶于热水),支链由α-1,6-糖苷键(加碘紫红不溶于水).糖原由α-D-葡萄糖以α-1,4糖苷键和α-1,6糖苷键构成(加碘红紫)纤维素由β-D-葡萄糖以β-1,4糖苷键构成(无分支)几丁质(甲壳素,壳多糖)由N-乙酰-D-氨基葡萄糖以β-1,4糖苷键构成PS:α-1,4糖苷键形成的为直链;α-1,6-糖苷键形成支链;α-1,2糖苷键会缩掉两个糖的醛基,使其失去还原性。
高一生物必修一知识点糖类糖类是高一生物必修一的重要知识点。
在生物学中,糖类是一类重要的有机化合物,它在生命体内具有多种功能和作用。
本文将从糖类的分类、结构和功能等方面进行介绍。
一、糖类的分类糖类可以分为单糖、双糖和多糖三大类。
单糖是由3-7个碳原子组成的简单糖分子,如葡萄糖、果糖和麦芽糖等。
双糖是由两个单糖分子通过脱水缩合而成,如蔗糖、乳糖和麦芽糖等。
多糖是由多个单糖分子通过脱水缩合而成,如淀粉、纤维素和糖原等。
二、糖类的结构糖类的结构可以分为直链式和环式两种形式。
直链式糖分子是以直线连结的方式存在,而环式糖分子则是由直链糖分子在水溶液中发生内酯化反应而得到的。
其中,环式糖分子主要以α型和β型两种存在,它们的空间构型不同,但化学性质相似。
三、糖类的功能1. 提供能量:生物体中的糖类主要以葡萄糖为代表,通过细胞呼吸过程产生能量。
葡萄糖在细胞内被分解为能量单位ATP,提供给细胞进行生命活动。
2. 结构材料:糖类还可以作为生物体的结构材料。
在植物中,纤维素是由葡萄糖分子通过β型连接而成,它是植物细胞壁的重要组成部分,具有保护和支持细胞的功能。
3. 能量储存:多糖类物质如淀粉和糖原是生物体内能量储存的形式。
淀粉主要存在于植物细胞中,而糖原则主要储存于动物的肝脏和肌肉中。
当生物体需要能量时,这些多糖分子会被逐步分解为葡萄糖释放出能量。
4. 免疫功能:糖类还参与生物体的免疫过程。
例如,病毒和细菌通常会通过它们的表面糖链与宿主细胞发生黏附作用,并引发宿主的免疫反应。
5. 调节功能:某些糖类分子在生物体内还承担着调节功能。
例如,一些特定的糖蛋白质可以参与细胞间的信号传递过程,调节细胞的生长、分化和凋亡等生理活动。
四、糖类在生物学中的应用糖类作为生物学中的重要研究对象,在很多领域中得到了广泛应用。
例如,糖类在医学领域中被用于制备药物、疫苗和生物传感器等;在食品工业中,糖类用于制备糖果、饼干和饮料等;在生物技术领域,糖类作为载体可以用于基因转导和细胞培养等。
糖类的化学名词解释糖类是一类广泛存在于自然界中的化合物,它们是生物体内能够提供能量的主要来源之一。
从化学角度来看,糖类属于碳水化合物的一类,由碳、氢和氧元素构成。
它们的分子结构多样,可以是单糖、双糖或多糖,这些不同类型的糖类在生物体内扮演着各自重要的角色。
首先,我们来了解一下单糖,它是最简单的糖类结构。
常见的单糖有葡萄糖、果糖和半乳糖等。
单糖分子由一个六碳脂环和一个氧原子组成,形状类似于一个六边形。
单糖在生物体内被迅速吸收,它们是细胞内能量的主要来源。
能否获得足够的单糖供能是维持人体正常运转的基础。
接下来,我们来了解一下双糖。
双糖由两个单糖分子通过脱水缩合而成。
常见的双糖有蔗糖、乳糖和麦芽糖等。
这些双糖在生物体内的消化吸收过程中需要进一步分解成单糖,才能被人体有效利用。
蔗糖是糖蔗和甜菜中富含的一种双糖,它是我们日常饮食中常见的糖类成分之一。
除了单糖和双糖,多糖也是一类重要的糖类。
多糖由大量的单糖分子通过脱水缩合形成,通常有几十个甚至上百个单糖分子组成。
多糖在生物体内具有多种生理功能,如植物细胞壁中的纤维素就是一种多糖。
此外,动植物体内的糖原也属于多糖范畴,它是动物体内储存能量的主要形式之一。
在我们研究糖类时,还需要了解一些相关的化学名词。
例如,糖醇是一种在糖类中常见的物质,其结构与糖类分子相似,但它少一个羟基。
糖醇具有甜味并可被人体代谢。
葡萄糖酸是葡萄糖经过氧化反应生成的产物,它是维生素C的重要成分之一,具有很高的生理活性。
还有一些化合物类似于糖类,但不具有甜味,例如脱氧糖和胰岛素等。
尽管糖类在生物体内具有重要的生理功能,但大量摄入糖类也会对人体健康造成一定的影响。
过量的糖类摄入可能导致肥胖、糖尿病和心血管疾病等健康问题。
因此,适量控制糖类的摄入量对于维护身体健康至关重要。
总之,糖类在生物体内发挥着重要的能量供给和生理调节作用。
从单糖到双糖再到多糖,糖类以其多样的结构和功能为我们提供了丰富多彩的生物学奇观。
糖类基础知识点总结一、糖类的分类糖类是一类碳水化合物,主要包括单糖、双糖和多糖三大类。
单糖是由简单的碳水化合物分子组成的,例如葡萄糖、果糖、半乳糖等。
双糖是由两个单糖分子通过酶反应而形成的,例如蔗糖(由葡萄糖和果糖组成)、乳糖(由葡萄糖和半乳糖组成)等。
多糖是由多个单糖分子通过酶反应而形成的,例如淀粉(由α-葡萄糖分子组成)、纤维素(由β-葡萄糖分子组成)等。
二、糖类的结构糖类的分子结构包括碳、氧、氢三种元素,通常以化学式(CH2O)n 表示,其中 n 为一个整数。
单糖的分子结构主要由一个环状的六碳或五碳骨架构成,它们的结构不同主要取决于羟基的位置。
双糖和多糖则由多个单糖分子通过酶反应而形成,它们的分子结构通常比较复杂。
三、糖类的代谢糖类在人体内的代谢过程主要包括消化、吸收和利用三个过程。
在消化过程中,食物中的淀粉和糖类会被唾液和胃液中的酶分解为单糖,然后在小肠中被吸收进入血液循环。
在吸收过程中,单糖通过小肠黏膜上的细胞膜转运蛋白被吸收到血液中,然后在利用过程中,单糖在细胞内经过一系列酶反应被氧化分解,产生能量和二氧化碳。
四、糖类的应用糖类在食品工业、医药工业和生物工业中有着广泛的应用。
在食品工业中,糖类是一种重要的食品添加剂,可以增加食品的甜味、口感和保存时间,同时也被用于食品加工和饲料生产。
在医药工业中,葡萄糖和果糖等单糖被用于制备口服补液和输液等,而多糖则被用于制备口服补液和糖皮质激素等。
在生物工业中,糖类被用于生物发酵和细胞培养等,例如利用葡萄糖作为细胞培养基的碳源。
总之,糖类是一类重要的碳水化合物,它们在食品工业、医药工业和生物工业中都有着重要的应用。
通过对糖类的分类、结构、代谢和应用等方面的了解,可以更好地掌握糖类基础知识,为相关领域的研究和应用奠定基础。
糖类的分类和功能1、糖类的化学元素组成及特点:元素组成:只有C,H.O三种元素特点: 大多数糖H:O=2:1,类似水分子,因而糖类又称为:碳水化合物2、糖类的分类,分布及功能:(1)单糖:指不能水解的糖,可以直接被细胞吸收包括:(1)六碳糖(C6H1206):葡萄糖;细胞生命活动所需要的主要能源物质,是生命的燃料果糖:半乳糖:(2)五碳糖:核糖(C5H1204):组成RNA的成分脱氧核糖(C5H1205):组成DNA的成分(2)二糖:是由两分子单糖脱水缩合而成的,必须水解为单糖才能被细胞吸收常见的二糖有:蔗糖:主要在甘蔗,甜菜里含量丰富,大多数水果和蔬菜中也都含有麦芽糖:发芽的小麦和谷粒中含有丰富的麦芽糖乳糖:人和动物的乳汁中含有丰富的乳糖1分子蔗糖水解为1分子果糖+1分子葡萄糖1分子麦芽糖水解为2分子葡萄糖1分子乳糖水解为1分子半乳糖+1分子葡萄糖(3)多糖:生物体的糖类,绝大多数以多糖的形式存在,由许多的葡萄糖分子脱水缩合而成常见的多糖有:淀粉:是植物细胞中最重要的储能物质,粮食作物中含有丰富的淀粉,淀粉必须经过消化,分解为葡萄糖后才能被细胞吸收利用。
糖原:人和动物细胞中最重要的储能物质,主要分布在肝脏和肌肉中纤维素:指植物细胞壁的重要组成成分,在人体和动物体内很难被消化3、根据在动植物体内的分布,糖类可以分为:动物细胞:糖原,乳糖,半乳糖,葡萄糖,核糖,脱氧核糖植物细胞:淀粉,纤维素,蔗糖,麦芽糖,果糖,葡萄糖,核糖,脱氧核糖动物和植物细胞均有:葡萄糖,核糖,脱氧核糖4、按照化学性质分类,糖类又可以分为:还原糖和非还原糖还原糖:葡萄糖,乳糖,半乳糖,果糖,麦芽糖非还原糖:淀粉,纤维素,糖原,蔗糖5、画成一个表格就是这样的:6、单糖、二糖、多糖是怎么区分的?单糖:不能水解的糖,可被细胞直接吸收。
二糖:由两分子的单糖脱水缩合而成。
如麦芽糖由两个葡萄糖分子脱水缩合而成 , 蔗糖可以水解为一分子果糖和一分子葡萄糖 , 乳糖可以水解为一分子葡萄糖和一分子半乳糖 .多糖:由许多的葡萄糖分子连接而成。
glp-1的原理-回复GLP-1(糖类肽1)是一种胃肠激素,由肠道中的特定细胞产生并从胰腺分泌。
GLP-1在调节血糖、食欲和胃肠道功能方面起着重要的作用。
本文将详细介绍GLP-1的原理,探讨其在胃肠道中的产生和功能调节,并讨论GLP-1受体激动剂在糖尿病治疗中的应用。
一、GLP-1的产生与分泌GLP-1主要由肠道中的L细胞产生,L细胞主要分布在小肠的回肠和结肠部分。
当食物通过消化吸收后,GLP-1产生并被分泌进入血液循环系统。
GLP-1的分泌与食物的糖类含量、肠道内营养物质和神经系统调节有关。
二、GLP-1的作用机制1. 胰岛素分泌:GLP-1可促进胰岛β细胞分泌胰岛素,特别是在血糖升高时。
该激素通过增加胰岛β细胞的膜通透性、促进钙离子进入细胞、促进胰岛素的合成和分泌等方式,提高胰岛素的水平。
2. 食欲调节:GLP-1可通过抑制饥饿中枢以及中枢神经系统的非饥饿中枢区域,减少食欲感。
此外,GLP-1还能延缓胃排空速度,增加饱腹感,从而减少进食量。
3. 胃肠道功能调节:GLP-1可调节胃酸分泌、胃排空速度和胆固醇代谢。
它能抑制胃酸分泌,减少胃酸对食管黏膜的侵蚀。
同时,GLP-1还能减慢胃排空速度,延缓食物通过胃肠道的时间,有利于营养物质消化和吸收。
三、GLP-1受体激动剂的应用GLP-1受体激动剂是一类能模拟GLP-1活性的药物。
它们与GLP-1受体结合后,可产生类似GLP-1的作用机制,从而达到降低血糖水平的效果。
GLP-1受体激动剂可以用于糖尿病治疗中,尤其是对于2型糖尿病患者。
1. 血糖控制:GLP-1受体激动剂可通过增加胰岛素的分泌和抑制胰高血糖素的释放,降低血糖水平。
此外,GLP-1受体激动剂还能抑制胰高血糖素,促进胰岛素对葡萄糖的利用,提高胰岛β细胞对葡萄糖的敏感性。
2. 体重控制:GLP-1受体激动剂还能减轻体重,降低体脂肪含量。
这是因为GLP-1受体激动剂能抑制食欲,减少能量摄入;同时,它们还能增加饱腹感,降低食物的摄入量。
第一章糖类第一节引言一、糖类的存在与来源碳水化合物是地球上最丰富的有机化合物,每年全球植物和藻类光合作用可转换1000亿吨CO2和H2O 成为纤维素和其他植物产物。
植物体85-90%的干重是糖类。
总的说来,糖类在生物体内所起的作用包括:能量物质、结构物质和活性物质。
二、糖类的生物学作用绿色植物的皮、杆等的多糖(纤维素、半纤维素和果胶物质等);昆虫、蟹、虾等外骨骼糖(几丁质);结缔组织中的糖(肝素、透明质酸、硫酸软骨素、硫酸皮肤素等);细菌细胞壁糖称作结构多糖。
粮食及块根、块茎中的多糖(淀粉);动物体内的贮藏多糖(糖元)是重要的能源物质。
糖蛋白(蛋白聚糖)中的糖;细胞膜及其他细胞结构中的糖如血型糖;活性糖分子是重要的信息分子。
医疗用糖(葡萄糖及其衍生物,如葡萄糖酸的钠、钾、钙、锌盐等);食用菌中的糖(香菇多糖、茯苓多糖、灵芝多糖、昆布多糖等)可以作为药物使用。
糖类是重要的中间代谢物,可以转化为氨基酸、核苷酸和脂类。
三、糖类的元素组成和化学本质糖类主要由C、H、O三种元素组成,有些还有N、S、P等。
单糖多符合结构通式:(CH2O)n,但仅从通式上并不能判断某分子是否就是糖,即:符合通式的不一定是糖,如CH3COOH(乙酸),CH2O(甲醛),C3H6O3(乳酸);是糖的不一定都符合通式,如C5H10O4(脱氧核糖),C6H12O5(鼠李糖)。
糖类可以定义为:多羟基醛;多羟基酮;多羟基醛或多羟基酮的衍生物;可以水解为多羟基醛或多羟基酮或它们的衍生物的物质。
四、糖的命名与分类单糖(monosaccharides):不能水解为其他糖的糖,按碳原子数分为:丙糖(甘油醛);丁糖(赤藓糖);戊糖(木酮糖、核酮糖、核糖、脱氧核糖等);己糖(葡萄糖、果糖、半乳糖等)等。
寡糖(oligosaccharides):可以水解为几个至十几个单糖的糖,一般包括:二糖(disaccharides):蔗糖、麦芽糖、乳糖。
三糖(trisaccharides):棉籽糖和其他寡糖。