2-3函数与方程及函数的实际应用
- 格式:doc
- 大小:131.00 KB
- 文档页数:7
[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)1.函数的思想函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。
经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。
2.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。
3.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。
4.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=nbax)((n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
函数的反函数与参数方程1. 引言在数学中,函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
函数有许多不同的性质和特点,其中一个重要的概念就是反函数。
反函数是指将函数的输出值作为输入,并将函数的输入值作为输出的函数。
本文将探讨函数的反函数以及与之相关的参数方程。
2. 函数的反函数函数的反函数是指在原函数的定义域和值域上,将函数的输入与输出交换的一种特殊函数。
换句话说,如果函数f将元素x映射到y,那么反函数f^(-1)将元素y映射到x。
反函数表达了函数的相反方向的映射关系。
3. 反函数的性质反函数具有以下性质:- 反函数是原函数的逆转。
即原函数将x映射到y,那么反函数将y 映射回x。
- 函数与其反函数互为逆操作。
即先应用原函数再应用反函数,或者先应用反函数再应用原函数,结果都应该保持不变。
- 反函数的定义域和值域与原函数相互交换。
4. 反函数的例子考虑一个简单的函数f(x) = 2x + 3,它将输入值x映射到输出值2x + 3。
我们可以通过解方程来确定它的反函数。
首先,令y = 2x + 3,然后解方程得到x = (y - 3) / 2。
这样,我们就获得了反函数f^(-1)(x) = (x - 3) / 2。
例如,当x = 4时,原函数的输出为f(4) = 2 * 4 + 3 = 11,而反函数的输出为f^(-1)(11) = (11 - 3) / 2 = 4。
可以看到,原函数和反函数的输入输出相互对应,它们实际上是相互逆转的。
5. 参数方程与反函数的关系在数学中,参数方程是一种使用参数来表示变量之间关系的方程。
它可以通过参数的不同取值来表达一条曲线或者曲面。
参数方程与函数之间存在一种特殊的联系。
考虑一个简单的参数方程:x = 2 + t,y = 3 - 2t。
我们可以看到,这个参数方程实际上描述了一个直线。
将这个参数方程转化为函数形式,我们可以得到y = 3 - 2(x - 2) = -2x + 7。
二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。
本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。
二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。
2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。
(4)零点:即方程ax²+bx+c=0的解。
当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。
3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。
(2)常数函数y=c是一个水平直线,其值始终为c。
(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。
三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。
2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。
可以使用求根公式或配方法等方式来求解。
3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。
例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。
由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。
由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。
三角函数的微分方程与应用题解析在数学中,微分方程是描述自变量与其导数之间关系的方程。
而三角函数是描述角度与其对应比值关系的函数。
本文将探讨三角函数的微分方程及其在应用题中的解析方法。
一、三角函数的微分方程1. 正弦函数的微分方程正弦函数是最常见的三角函数之一,其公式为f(x) = sin(x)。
我们可以通过求正弦函数的导数来得到其微分方程。
求sin(x)的导数可得:f'(x) = cos(x)因此,正弦函数的微分方程为:f'(x) + f(x) = 02. 余弦函数的微分方程余弦函数是另一个常见的三角函数,其公式为f(x) = cos(x)。
同样地,我们可以通过求余弦函数的导数来得到其微分方程。
求cos(x)的导数可得:f'(x) = -sin(x)因此,余弦函数的微分方程为:f'(x) + f(x) = 03. 正切函数的微分方程正切函数是三角函数中较为特殊的一个,其公式为f(x) = tan(x)。
同样地,我们可以通过求正切函数的导数来得到其微分方程。
求tan(x)的导数可得:f'(x) = sec^2(x)因此,正切函数的微分方程为:f'(x) - sec^2(x)f(x) = 0二、三角函数微分方程的应用题解析1. 震动问题三角函数的微分方程在描述振动系统中起到重要作用。
例如,考虑一个弹簧振子,假设其振动规律可以由正弦函数描述。
设弹簧振子的位移函数为y(t),其微分方程可以表示为:y''(t) + ky(t) = 0其中,y''(t)表示位移函数的二阶导数,k为弹簧的劲度系数。
通过求解该微分方程,我们可以得到弹簧振子的运动规律。
2. 电路问题三角函数微分方程还可以用于解决电路中的问题。
考虑一个简单的电容电路,可以利用余弦函数描述电压的变化。
设电容电路中电压的函数为V(t),其微分方程可以表示为:V'(t) + RC * V(t) = 0其中,V'(t)表示电压函数的导数,R为电阻的阻值,C为电容的电容值。
☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第二章 函数2.3 函数与方程、不等式高考对函数应用的考查主要是函数零点个数的判断、零点所在的区间.近几年全国卷考查函数模型及其应用较少,但也要引起重视.题型一.函数零点的个数1.(2015•安徽)下列函数中,既是偶函数又存在零点的是( )A .y =cos xB .y =sin xC .y =lnxD .y =x 2+1【解答】解:对于A ,定义域为R ,并且cos (﹣x )=cos x ,是偶函数并且有无数个零点;对于B ,sin (﹣x )=﹣sin x ,是奇函数,由无数个零点;对于C ,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D ,定义域为R ,为偶函数,都是没有零点;故选:A .2.(2013•天津)函数f (x )=2x |log 0.5x |﹣1的零点个数为( )A .1B .2C .3D .4【解答】解:函数f (x )=2x |log 0.5x |﹣1,令f (x )=0,在同一坐标系中作出y =(12)x .与y =|log 0.5x |,如图,由图可得零点的个数为2.故选:B .3.(2019•新课标Ⅲ)函数f (x )=2sin x ﹣sin2x 在[0,2π]的零点个数为( )A .2B .3C .4D .5【解答】解:函数 f (x )=2sin x ﹣sin2x 在[0,2π]的零点个数,即方程2sin x ﹣sin2x =0 在区间[0,2π]的根个数,即2sin x =sin2x =2sin x cos x 在区间[0,2π]的根个数,即sin x =0 或 cos x =1 在区间[0,2π]的根个数,解得x =0或 x =π 或 x =2π.所以函数f (x )=2sin x ﹣sin2x 在[0,2π]的零点个数为3个.故选:B .4.(2016•新课标Ⅱ)已知函数f (x )(x ∈R )满足f (x )=f (2﹣x ),若函数y =|x 2﹣2x ﹣3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑ m i=1x i =( )A .0B .mC .2mD .4m【解答】解:∵函数f (x )(x ∈R )满足f (x )=f (2﹣x ),故函数f (x )的图象关于直线x =1对称,函数y =|x 2﹣2x ﹣3|的图象也关于直线x =1对称,故函数y =|x 2﹣2x ﹣3|与 y =f (x ) 图象的交点也关于直线x =1对称,不妨设x 1<x 2<…<x m ,则点(x 1,y 1)与点(x m ,y m ),点(x 2,y 2)与点(x m ﹣1,y m ﹣1),…都关于直线x =1对称,所以x 1+x m =x 2+x m ﹣1=…=x m +x 1=2,由倒序相加法可得∑ m i=1x i =12×2m =m , 故选:B .5.(2012•辽宁)设函数f (x )(x ∈R )满足f (﹣x )=f (x ),f (x )=f (2﹣x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos (πx )|,则函数h (x )=g (x )﹣f (x )在[−12,32]上的零点个数为( )A .5B .6C .7D .8 【解答】解:因为当x ∈[0,1]时,f (x )=x 3.所以当x ∈[1,2]时2﹣x ∈[0,1],f (x )=f (2﹣x )=(2﹣x )3,当x ∈[0,12]时,g (x )=x cos (πx ),g ′(x )=cos (πx )﹣πx sin (πx ); 当x ∈[12,32]时,g (x )=﹣x cos πx ,g ′(x )=πx sin (πx )﹣cos (πx ). 注意到函数f (x )、g (x )都是偶函数,且f(0)=g(0),f(1)=g(1)=1,f(−12)=f(12)=18,f(32)=(2−32)3=18,g(−12)=g(12)=g(32)=0,g(1)=1,g′(1)=1>0,根据上述特征作出函数f(x)、g(x)的草图,函数h(x)除了0、1这两个零点之外,分别在区间[−12,0],[0,12],[12,1],[1,32]上各有一个零点.共有6个零点,故选:B.题型二.已知函数零点求参1.(2018•新课标Ⅲ)已知函数f(x)={e x,x≤0lnx,x>0,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.2.(2019•天津)已知函数f (x )={2√x ,0≤x ≤1,1x,x >1.若关于x 的方程f (x )=−14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( )A .[54,94]B .(54,94]C .(54,94]∪{1}D .[54,94]∪{1} 【解答】解:作出函数f (x )={2√x ,0≤x ≤1,1x,x >1.的图象,以及直线y =−14x 的图象,关于x 的方程f (x )=−14x +a (a ∈R )恰有两个互异的实数解,即为y =f (x )和y =−14x +a 的图象有两个交点,平移直线y =−14x ,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a =94或a =54,考虑直线与y =1x 在x >1相切,可得ax −14x 2=1,由△=a 2﹣1=0,解得a =1(﹣1舍去),综上可得a 的范围是[54,94]∪{1}. 故选:D .3.(2016•天津)已知函数f (x )={x 2+(4a −3)x +3a ,x <0log a (x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2﹣x 恰好有两个不相等的实数解,则a 的取值范围是( )A .(0,23]B .[23,34]C .[13,23]∪{34}D .[13,23)∪{34} 【解答】解:y =log a (x +1)+1在[0,+∞)递减,则0<a <1,函数f(x)在R上单调递减,则:{3−4a 2≥00<a <102+(4a −3)⋅0+3a ≥log a (0+1)+1;解得,13≤a ≤34; 由图象可知,在[0,+∞)上,|f (x )|=2﹣x 有且仅有一个解,故在(﹣∞,0)上,|f (x )|=2﹣x 同样有且仅有一个解,当3a >2即a >23时,联立|x 2+(4a ﹣3)x +3a |=2﹣x ,则△=(4a ﹣2)2﹣4(3a ﹣2)=0,解得a =34或1(舍去),当1≤3a ≤2时,由图象可知,符合条件,综上:a 的取值范围为[13,23]∪{34}, 故选:C .4.(2016•山东)已知函数f (x )={|x|,x ≤m x 2−2mx +4m ,x >m,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是 (3,+∞) .【解答】当m >0时,函数f (x )={|x|,x ≤mx 2−2mx +4m ,x >m的图象如下:∵x >m 时,f (x )=x 2﹣2mx +4m =(x ﹣m )2+4m ﹣m 2>4m ﹣m 2,∴y 要使得关于x 的方程f (x )=b 有三个不同的根,必须4m ﹣m 2<m (m >0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).5.(2021•濂溪区校级开学)已知f (x )={−sin π2x ,−2≤x ≤0,|lnx|,x >0,若关于x 的方程f (x )=k 有四个实根x 1,x 2,x 3,x 4.(其中x 1<x 2<x 3<x 4)则x 1+x 2+x 3+2x 4的取值范围是( )A .(0,2e +1e −2)B .(0,e +1e −2)C .(1,e +1e −2)D .(1,2e +1e −2) 【解答】解:关于x 的方程f (x )k 有四个实根,则y =f (x )与y =k 有四个交点,横坐标为x 1,x 2,x 3,x 4.则x 1+x 2=﹣2,1e <x 3<1<x 4<e ,且ln |x 3|=ln |x 4|,即x 3x 4=1, ∴x 1+x 2+x 3+2x 4=−2+x 3+2x 4=x 3+2x 3−2, 令g(x)=x +2x −2,x ∈(1e ,1),则g′(x)=1−2x 2<0,所以g (x )在(1e ,1)上单调递减, ∴1<g(x)<2e +1e −2,即x 1+x 2+x 3+2x 4的取值范围为(1,2e +1e −2).故选:D .6.(2017•新课标Ⅲ)已知函数f (x )=x 2﹣2x +a (e x ﹣1+e ﹣x +1)有唯一零点,则a =( )A .−12B .13C .12D .1【解答】解:f (x )=x 2﹣2x +a (e x ﹣1+e﹣x +1)=(x ﹣1)2+a (e x ﹣1+e ﹣x +1)﹣1, 令t =x ﹣1,则y =t 2+a (e t +e ﹣t )﹣1为偶函数,图象关于t =0对称,若y =0有唯一零点,则根据偶函数的性质可知当t =0时,y =﹣1+2a =0,所以a =12.故选:C .题型三.函数与不等式1.(2014•新课标Ⅲ)设函数f (x )={e x−1,x <1x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是 x ≤8 . 【解答】解:x <1时,e x ﹣1≤2,∴x≤ln2+1,∴x<1;x ≥1时,x 13≤2,∴x ≤8,∴1≤x ≤8,综上,使得f (x )≤2成立的x 的取值范围是x ≤8.故答案为:x ≤8.2.(2018•新课标Ⅲ)设函数f (x )={2−x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(﹣∞,﹣1] B .(0,+∞)C .(﹣1,0)D .(﹣∞,0) 【解答】解:函数f (x )={2−x ,x ≤01,x >0,的图象如图: 满足f (x +1)<f (2x ),可得:2x <0<x +1或2x <x +1≤0,解得x ∈(﹣∞,0).故选:D .3.(2013•新课标Ⅲ)已知函数f (x )={−x 2+2x ,x ≤0ln(x +1),x >0,若|f (x )|≥ax ,则a 的取值范围是( ) A .(﹣∞,0] B .(﹣∞,1] C .[﹣2,1] D .[﹣2,0]【解答】解:由题意可作出函数y =|f (x )|的图象,和函数y =ax 的图象,由图象可知:函数y =ax 的图象为过原点的直线,当直线介于l 和x 轴之间符合题意,直线l 为曲线的切线,且此时函数y =|f (x )|在第二象限的部分解析式为y =x 2﹣2x ,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D .4.(2014•辽宁)已知f (x )为偶函数,当x ≥0时,f (x )={cosπx ,x ∈[0,12]2x −1,x ∈(12,+∞),则不等式f (x ﹣1)≤12的解集为( ) A .[14,23]∪[43,74]B .[−34,−13]∪[14,23]C .[13,34]∪[43,74]D .[−34,−13]∪[13,34]【解答】解:当x ∈[0,12],由f (x )=12,即cosπx =12, 则πx =π3,即x =13,当x >12时,由f (x )=12,得2x ﹣1=12,解得x =34, 则当x ≥0时,不等式f (x )≤12的解为13≤x ≤34,(如图)则由f (x )为偶函数,∴当x <0时,不等式f (x )≤12的解为−34≤x ≤−13, 即不等式f (x )≤12的解为13≤x ≤34或−34≤x ≤−13,则由13≤x ﹣1≤34或−34≤x ﹣1≤−13,解得43≤x ≤74或14≤x ≤23,即不等式f (x ﹣1)≤12的解集为{x |14≤x ≤23或43≤x ≤74},故选:A .1.已知函数f(x)={|lnx|,x >0−2x(x +2),x ≤0,则函数y =f (x )﹣3的零点个数是( )A .1B .2C .3D .4【解答】解:因为函数f(x)={|lnx|,x >0−2x(x +2),x ≤0,且x ≤0时f (x =﹣2x (x +2)=﹣2(x +1)2+2; 所以f (x )的图象如图,由图可得:y =f (x )与y =3只有两个交点; 即函数y =f (x )﹣3的零点个数是2; 故选:B .2.已知函数f (x )=log 2(x +1)+3x +m 的零点在区间(0,1]上,则m 的取值范围为( ) A .(﹣4,0)B .(﹣∞,﹣4)∪(0,+∞)C .(﹣∞,﹣4]∪(0,+∞)D .[﹣4,0)【解答】解:因为f (x )=log 2(x +1)+3x +m 在区间(0,1]上是单调递增, 函数f (x )=log 2(x +1)+3x +m 的零点在区间(0,1]上, 所以{f(0)<0f(1)≥0,即{m <0log 22+3+m ≥0,解得﹣4≤m <0.故选:D .3.设偶函数f (x )(x ∈R )满足f (x )=f (2﹣x ),且当x ∈[0,1]时,f (x )=x 2.又函数g (x )=|cos (πx )|,则函数h (x )=g (x )﹣f (x )在区间[−12,32]上的零点个数为( ) A .5B .6C .7D .8【解答】解:∵f (x )=f (2﹣x ),故f (x )的图象关于x =1对称, 又函数f (x )是R 上的偶函数,∴f (x +2)=f (﹣x )=f (x ),∴f(x)是周期函数,T=2,当x∈[﹣1,0]时,f(x)=f(﹣x)=x2.令h(x)=0,则f(x)=g(x),在同一坐标系中作y=f(x)和y=g(x)在区间[−12,32]上的图象,由图象可得y=f(x)和y=g(x)有5个交点,故函数h(x)=f(x)﹣g(x)的零点个数为5.故选:A.4.已知函数f(x)={ax+1,x<0lnx,x>0若函数f(x)的图象上存在关于坐标原点对称的点,则实数a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[−12,0]D.(12,1]【解答】解:函数f(x)={ax+1,x<0lnx,x>0若函数f(x)的图象上存在关于坐标原点对称的点,可得x>0时,ax﹣1=lnx,有解;可得a=lnx+1x,令g(x)=lnx+1x,g′(x)=−lnxx2,所以x∈(0,1)时,g′(x)>0,函数是增函数,x>1时,g′(x)<0,函数g(x)是减函数,所以g(x)的最大值为:g(1)=1,所以a≤1.故选:B.5.已知函数f(x)=lnxx,g(x)=xe﹣x,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则x1x2的最小值为()A.﹣1B.−2e C.−2e2D.−1e【解答】解:g(x)=xe﹣x=xe x=lnexe x=f(e x),函数f(x)定义域{x|x>0},f′(x)=1−lnx x2,当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x=1时,f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,e)时,f(x)>0;当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,此时f(x)>0,所以若存在x 1∈(0,+∞),x 2∈R ,使得f (x 1)=g (x 2)=k (k <0)成立, 则0<x 1<1且f (x 1)=g (x 2)=f (e x 2),所以x 1=ex 2,即x 2=lnx 1,所以x 1x 2=x 1 lnx 1,x 1∈(0,1), 令h (x )=xlnx ,x ∈(0,1), h ′(x )=lnx +1,当x ∈(1e ,1)时,h ′(x )>0,h (x )单调递增,当x ∈(0,1e)时,h ′(x )<0,h (x )单调递减,所以当x =1e时,h (x )min =h (1e)=1e ln 1e =−1e.故选:D .6.(多选)已知函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx +x ﹣2的零点为b ,则下列不等式中成立的是( ) A .e a +lnb >2B .e a +lnb <2C .a 2+b 2<3D .ab <1【解答】解:由f (x )=0,g (x )=0得e x =2﹣x ,lnx =2﹣x ,函数y =e x 与y =lnx 互为反函数, 在同一坐标系中分别作出函数y =e x ,y =lnx ,y =2﹣x 的图象, 如图所示,则A (a ,e a ),B (b ,lnb ),由反函数性质知A ,B 关于(1,1)对称,则a +b =2,e a+lnb =2,ab <(a+b)24=1,∴A 、B 错误,D 正确.∵f '(x )=e x +1>0.∴f (x )在R 上单调递增,且f (0)=﹣1<0,f(12)=√e −32>0, ∴0<a <12.∵点A (a ,e a )在直线y =2﹣x 上,即e a =2﹣a =b , ∴a 2+b 2=a 2+e 2a <14+e <3.C 正确.故选:CD .。
第一章第一章 集合与函数概念集合与函数概念 1.1 集合集合1.2 函数及其表示函数及其表示 1.3 函数的基本性质函数的基本性质 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 基本初等函数(Ⅰ)基本初等函数(Ⅰ) 2.1 指数函数指数函数 2.2 对数函数对数函数 2.3 幂函数幂函数 小结小结 复习参考题复习参考题第三章第三章 函数的应用函数的应用 3.1 函数与方程函数与方程 3.2 函数模型及其应用函数模型及其应用 实习作业实习作业 小结小结 复习参考题复习参考题 必修一必修一第一章第一章 集合与函数概念集合与函数概念 1.1 集合集合1.2 函数及其表示函数及其表示 1.3 函数的基本性质函数的基本性质实习作业实习作业 小结小结复习参考题复习参考题第二章第二章 基本初等函数(Ⅰ)基本初等函数(Ⅰ) 2.1 指数函数指数函数 2.2 对数函数对数函数 2.3 幂函数幂函数 小结小结 复习参考题复习参考题第三章第三章 函数的应用函数的应用 3.1 函数与方程函数与方程 3.2 函数模型及其应用函数模型及其应用 实习作业实习作业 小结小结 复习参考题复习参考题 必修二必修二第一章第一章 空间几何体空间几何体 1.1 空间几何体的结构空间几何体的结构1.2 空间几何体的三视图和直观图空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积空间几何体的表面积与体积 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系置关系2.2 直线、直线、平面平行的判定及其性平面平行的判定及其性质2.3 直线、直线、平面垂直的判定及其性平面垂直的判定及其性质 小结小结 复习参考题复习参考题第三章第三章 直线与方程直线与方程3.1 直线的倾斜角与斜率直线的倾斜角与斜率 3.2 直线的方程直线的方程3.3 直线的交点坐标与距离公式直线的交点坐标与距离公式 小结小结 复习参考题复习参考题 必修三必修三第一章第一章 算法初步算法初步 1.1 算法与程序框图算法与程序框图 1.2 基本算法语句基本算法语句 1.3 算法案例算法案例 阅读与思考阅读与思考 割圆术割圆术 小结小结 复习参考题复习参考题第二章第二章 统计统计2.1 随机抽样随机抽样阅读与思考阅读与思考 一个著名的案例一个著名的案例阅读与思考阅读与思考 广告中数据的可靠性广告中数据的可靠性 阅读与思考阅读与思考 如何得到敏感性问题的诚实反应的诚实反应2.2 用样本估计总体用样本估计总体 阅读与思考阅读与思考 生产过程中的质量控制图制图2.3 变量间的相关关系变量间的相关关系 阅读与思考阅读与思考 相关关系的强与弱相关关系的强与弱 实习作业实习作业 小结小结 复习参考题复习参考题第三章第三章 概率概率3.1 随机事件的概率随机事件的概率阅读与思考阅读与思考 天气变化的认识过程天气变化的认识过程 3.2 古典概型古典概型 3.3 几何概型几何概型阅读与思考阅读与思考 概率与密码概率与密码 小结小结 复习参考题复习参考题 必修四第一章 三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式1.4 三角函数的图象与性质 1.5 函数y=Asin (ωx+ψ) 1.6 三角函数模型的简单应用 小结 复习参考题第二章 平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积 2.5 平面向量应用举例 小结 复习参考题第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换 小结 复习参考题 必修五必修五第一章第一章 解三角形解三角形1.1 正弦定理和余弦定理正弦定理和余弦定理探究与发现探究与发现 解三角形的进一步讨论1.2 应用举例应用举例阅读与思考阅读与思考 海伦和秦九韶海伦和秦九韶 1.3 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 数列数列2.1 数列的概念与简单表示法数列的概念与简单表示法 阅读与思考阅读与思考 斐波那契数列斐波那契数列 阅读与思考阅读与思考 估计根号下2的值的值 2.2 等差数列等差数列2.3 等差数列的前n 项和项和 2.4 等比数列等比数列2.5 等比数列前n 项和项和 阅读与思考阅读与思考 九连环九连环 探究与发现探究与发现 购房中的数学购房中的数学 小结小结 复习参考题复习参考题第三章第三章 不等式不等式3.1 不等关系与不等式不等关系与不等式 3.2 一元二次不等式及其解法一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题的线性规划问题阅读与思考阅读与思考 错在哪儿错在哪儿信息技术应用 用Excel解线性规信息技术应用划问题举例划问题举例3.4 基本不等式基本不等式小结小结复习参考题复习参考题必修三实用性和适用性在高一作用不大,所以高一上学期学必修一二,下学期学必修四五,跳过必修三学期学必修四五,跳过必修三。
函数与方程式的关系一、引言函数与方程式是高中数学中的重要概念,对于学生理解它们之间的关系和应用具有重要意义。
本教案主要介绍函数与方程式的关系,并通过实际例子展示其实际应用。
通过本课的学习,学生将能够深入理解函数与方程式之间的联系,并能够应用它们进行问题的求解。
二、函数与方程式的定义及关系1. 函数的定义:函数是一种关系,它将一个集合中的每个元素都与另一个集合中的唯一元素相对应。
函数可以用来描述不同变量之间的依赖关系。
2. 方程式的定义:方程式是一个等式,其中包含了一个或多个未知数。
方程式表示了一种平衡关系或者相等关系。
3. 函数与方程式的关系:函数可以通过方程式来表示。
一个方程式被称为函数的解,当且仅当它满足该函数的定义。
三、函数与方程式的实际应用1. 函数与图像:函数可以通过图像来表示,图像的每一个点都表示了一个函数的解。
通过观察函数的图像,我们可以获得更多关于函数性质的信息。
2. 函数与实际问题:函数可以用来描述实际问题中的关系。
例如,利用函数可以描述物体的运动轨迹、销售额的增长等等。
3. 方程式的应用:通过解方程式,我们可以求得函数的解,进而解决实际问题。
例如,求解一元二次方程可以确定抛物线上的点的横坐标。
四、函数与方程式的解法1. 方程式的解法:通过一系列数学变换和运算,可以解得方程式的解。
例如,对于一元一次方程式,可以通过移项等操作求解;对于一元二次方程式,可以通过配方法、求根公式等方法求解。
2. 函数的解法:函数的解是函数的自变量取某个值时,函数的值。
对于一元函数,我们可以通过代入自变量的值来求得函数的值。
五、实例展示通过一些实际问题的例子,我们来演示函数与方程式的关系和应用。
1. 例子1:某公司生产的产品每天的销售量可以用函数y = 2x + 5来表示,其中x表示天数,y表示销售量。
请问第10天的销售量是多少?解:将x = 10代入函数中,得到y = 2*10 + 5 = 25。
所以第10天的销售量为25。
二次函数与一元二次方程、不等式一元二次不等式及其解法①二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:(以下均以a>0为例)②二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系,可充分利用二次函数图像去理解;③ 求解一元二次不等式时,利用二次函数图像思考,需要确定二次函数的开口方向,判别式,两根的大小与不等式的解集有关,而对称轴是不会影响解集的.【例】填表解析【练1】二次不等式ax 2+bx +c <0的解集是R 的条件是( ) A .{a >0△>0B .{a >0△<0C .{a <0△>0D .{a <0△<0解析 由题意可知二次不等式ax 2+bx +c <0,对应的二次函数y =ax 2+bx +c 开口向下,所以a <0 二次不等式ax 2+bx +c <0的解集是R ,所以△<0. 故选:D . 【练2】解不等式(1) x 2−x −6≤0 (2) x 2−3x +4<0 (3) x 2−4x +4>0 解析 (1) −2≤x ≤3 (2) ∅ (3)x ≠2 3 一元二次不等式的应用 (1) 分式不等式的解法解分式不等式可等价为有理整式不等式(组)求解.由于a b>0与ab >0均意味a,b 同号,故ab>0与ab >0等价的;ab<0与ab <0均意味a,b 异号,故ab <0与ab <0等价的; 可得① f (x )g(x)>0⇒f (x )g (x )>0,f (x )g(x)≥0⇒f (x )g (x )≥0且g (x )≠0. 比如x−1x−2>0⇒(x −1)(x −2)>0 ; x−1x−2≥0⇒(x −1)(x −2)≥0且x −2≠0. ② f (x )g(x)<0⇒f (x )g (x )<0,f (x )g(x)≤0⇒f (x )g (x )≤0且g (x )≠0.比如x−1x−2<0⇒(x −1)(x −2)<0 ; x−1x−2≤0⇒(x −1)(x −2)≤0且x −2≠0. 【例】解不等式x+1x−2<0的解集是 .解析 不等式x+1x−2<0,等价于(x +1)(x −2)≤0,解得−1<x <2. 【练】解不等式x−1x−3≤0的解集是 .解析 不等式x−1x−3≤0,等价于{(x −1)(x −3)≤0x −3≠0,解得1≤x <3. .【题型1】二次函数、一元二次方程与一元二次不等式的关系 【典题1】 解下列不等式:(1) −12x 2+72x −5<0;(2) 4x 2+18x +814>0;(3) x−2x+3≥2.解析(1) 二次项系数化为1得:x 2−7x +10>0, 十字相乘得:(x −2)(x −5)>0,解得x >5或x <2. (2) 4x 2+18x +814>0⇔(2x +92)2>0,结合二次函数图像易得不等式解集是{x|x ≠−94}. (3)不等式x−2x+3≥2⇔x−2x+3−2≥0⇔−x−8x+3≥0⇔x+8x+3≤0,等价于{(x +8)(x +3)≤0x +3≠0,解得−8≤x <−3.点拨1.求解不等式ax 2+bx +c >0(或<0),其中a >0,有个口诀:大于取两边、小于取中间;这结合二次函数图像也很好理解;2.求解分式不等式时,等价过程中要注意严谨.【典题2】若不等式2kx 2+kx −38≥0的解集为空集,则实数k 的取值范围是( ) A .(−3,0) B .(),3-∞- (−∞,−3) C .(−3,0] D .(−∞,−3)∪(0,+∞) 解析 由题意可知2kx 2+kx −38<0恒成立,当k =0时成立,当k ≠0时需满足{k <0Δ<0,代入求得−3<k <0,所以实数k 的取值范围是(−3,0].点拨 注意二次系数是否为0,涉及到一元二次不等式可理解二次函数图像进行分析.【典题3】 若不等式ax 2+2x +c <0的解集是(−∞,−13)∪(12,+∞),则不等式cx 2−2x +a ≤0的解集是( )A .[−12,13]B .[−13,12]C .[−2,3]D .[−3,2]解析 不等式ax 2+2x +c <0的解集是(−∞,−13)∪(12,+∞), ∴−13和12是方程ax 2+2x +c =0的两个实数根,由韦达定理得{−13+12=−2a−13×12=c a,解得a =−12,c =2,故不等式cx 2−2x +a ≤0,即2x 2−2x −12≤0,解得−2≤x ≤3, 所以所求不等式的解集是[−2,3], 故选:C . 【巩固练习】1.下列不等式的解集是空集的是 ( )A .x 2−x +1>0B .−2x 2+x +1>0C .2x −x 2>5D .x 2+x >2 答案 C2.若不等式kx 2+2kx +2<0的解集为空集,则实数k 的取值范围是( )A .0<k <2B .0≤k <2C .0≤k ≤2D .k >2答案 C 解析 当k =0时,满足题意;当k >0时,△=4k 2−8k ≤0,解得0<k ≤2; ∴实数k 的取值范围是0≤k ≤2.故选:C .3.关于x 的不等式x 2+ax −3<0,解集为(−3,1),则不等式ax 2+x −3<0的解集为 . 答案 {x|−32<x <1}解析由题意知,x=−3,x=1是方程x2+ax−3=0的两根,可得−3+1=−a,解得a=2;所以不等式为2x2+x−3<0,即(2x+3)(x−1)<0,解得−32<x<1,所以不等式的解集为{x|−32<x<1}.4.不等式2x2−x−3>0的解集为.答案{x|x>32或x<−1}解析2x2−x−3>0⇒(2x−3)(x+1)>0⇒x>32或x<−1.5.不等式x2x−1>1的解集为.答案{x|12<x<1}解析原不等式等价于x2x−1−1>0,即x−(2x−1)2x−1>0,整理得x−12x−1<0,不等式等价于(2x−1)(x−1)<0,解得12<x<1.6.若不等式ax2+5x−2>0的解集是{x|12<x<2}(1)求不等式ax2−5x+a2−1>0的解集.(2)已知二次不等式ax2+bx+c<0的解集为{x|x<13或x>12},求关于x的不等式cx2−bx+a>0的解集.答案(1){x|−3<x<12}(2){x|−3<x<−2}解析(1)因为等式ax2+5x−2>0的解集是{x|12<x<2},所以12和2是一元二次方程ax2+5x−2=0的两根,∴12×2=−2a,解得a=−2,∴不等式ax2−5x+a2−1>0可化为−2x2−5x+3>0,即2x2+5x−3<0,∴(2x−1)(x−3)<0,解得−3<x<12,所以不等式ax2−5x+a2−1>0的解集为{x|−3<x<12};(2)由(1)知a=−2,∴二次不等式−2x2+bx+c<0的解集为{x|x<13或x>12},∴13和12是一元二次方程−2x 2+bx +c =0的两根,∴13+12=−b−2,13×12=−c 2,解得b =53,c =−13,所以不等式cx 2−bx +a >0可化为:−13x 2−53x −2>0, 即x 2+5x +6<0,解得−3<x <−2.所以关于x 的不等式cx 2−bx +a >0的解集为{x|−3<x <−2}. 【题型2】求含参一元二次不等式(选学)角度1 按二次项的系数a 的符号分类,即a >0 ,a =0 ,a <0; 解不等式ax 2+(a +2) x +1>0. 解析(不确定不等式对应函数y =ax 2+(a +2) x +1是否是二次函数,分a =0与a ≠0讨论) (1) 当a =0时,不等式为2x +1>0,解集为{x | x >−12} ; (2) 当a ≠0时,∵Δ=(a +2)2−4a =a 2+4>0 (二次函数y =ax 2+(a +2) x +1与x 轴必有两个交点) 解得方程ax 2+(a +2) x +1=0两根x 1=−a−2−√a 2+42a,x 2=−a−2+√a 2+42a;(二次函数的开口方向与不等式的解集有关,分a >0与a <0讨论) (i)当a >0时,解集为{x | x >−a−2+√a 2+42a或x <−a−2−√a 2+42a};(ii)当a <0时, 解集为{x |−a−2+√a 2+42a<x <−a−2−√a 2+42a}.(注意x 1,x 2的大小)综上,当a =0时,解集为{x | x >−12}; 当a >0时,解集为{x | x >−a−2+√a 2+42a或x <−a−2−√a 2+42a};当a <0时, 解集为{x |−a−2+√a 2+42a<x <−a−2−√a 2+42a}.角度2 按判别式的符号分类解不等式x 2+ax +4>0. 解析 ∵Δ=a 2−16(此时不确定二次函数y =x 2+ax +4是否与x 轴有两个交点,对判别式进行讨论) ∴①当−4<a <4,即Δ<0时,解集为R ; ②当a =±4,即Δ=0时,解集为{x | x ≠−a2};③当a>4或a<−4,即Δ>0时,此时两根为x1=−a+√a2−162 ,x2=−a−√a2−162,显然x1>x2,∴不等式的解集为{x | x>−a+√a2−162或x<−a−√a2−162}.综上,当−4<a<4时,解集为R;当a=±4时,解集为{x | x≠−a2};当a>4或a<−4时,解集为{x | x>−a+√a2−162或x<−a−√a2−162}.角度3 按方程的根大小分类解不等式:x2−(a+1a)x+1<0 (a≠ 0).解析原不等式可化为:(x−a)(x−1a)<0 ,令(x−a)(x−1a )=0,得x1=a ,x2=1a;(因式分解很关键,此时确定y=(x−a)(x−1a)与x轴有交点,x1 ,x2的大小影响不等式解集)∴(i)当x1=x2时,即a=1a⇒a=±1时,解集为ϕ;(ii)当x1<x2时,即a<1a ⇒a<−1 或0<a<1时,解集为{x | a<x<1a};(iii)当x1>x2时,即a>1a ⇒−1<a<0或a>1时,解集为{x |1a<x<a}.综上,当a=±1时,解集为ϕ;(ii)当a<−1 或0<a<1时,解集为{x | a<x<1a};(iii)当−1<a<0或a>1时,解集为{x |1a<x<a}.点拨①当求解一元二次不等式时,它是否能够因式分解,若可以就确定对应的二次函数与x轴有交点,就不需要考虑判别式.常见的形式有x2−(a+1)x+a=(x−1)(x−a) ,x2−(a+1a )x+1=(x−a)(x−1a),ax2+(a+1)x+1=(ax+1)(x+1)等,若判别式Δ是一个完全平方式,它就能做到“较好形式的十字相乘”,当然因式分解也可以用公式法求解;②在求解含参的一元二次不等式,需要严谨,多从二次函数的开口方向、判别式、两根大小的比较三个角度进行分类讨论,利用图像进行分析.【巩固练习】1.解关于x的不等式:12x2−ax−a2<0.解析方程12x2−ax−a2=0∴(4x+a)(3x−a)=0,即方程两根为x1=−a4,x2=a3,(1)当a>0时,x2>x1,不等式的解集是{x∣−a4<x<a3};(2)当a=0时,x1=x2,不等式的解集是ϕ;(3)当a<0时,x1<x2,不等式的解集{x∣a3<x<−a4}2.解关于x的不等式 x2+2x+a>0.解析方程x2+2x+a=0中△=4−4a=4(1−a),①当1−a<0即a>1时,不等式的解集是R,②当1−a=0,即a=1时,不等式的解集是{x|x≠−1},③当1−a>0即a<1时,由x2+2x+a=0解得:x1=−1−√1−a,x2=−1+√1−a,∴a<1时,不等式的解集是{x|x>−1+√1−a或x<−1−√1−a},综上,a>1时,不等式的解集是R,a=1时,不等式的解集是{x|x≠−1},a<1时,不等式的解集是{x|x>−1+√1−a或x<−1−√1−a}.3.若a∈R,解关于x的不等式ax2+(a+1)x+1>0.解析当a=0时,x>−1.当a≠0时,a(x+1a)(x+1)>0.。
专题2 第3讲 函数与方程及函数的实际应用一、选择题1.(2011·合肥质检)函数f (x )=ln x +2x -1零点的个数为( ) A .0 B .1 C .2 D .3[答案] B[解析] 作出函数y =ln x 和y =1-2x 的图像,可看出交点只有一个.故选B.2.(2011·南昌调研)用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈__________,第二次应计算__________.以上横线上应填的内容为( )A .(0,0.5),f (0.25)B .(0,1),f (0.25)C .(0.5,1),f (0.75)D .(0,0.05),f (0.125) [答案] A[解析] 由f (0)<0,f (0.5)>0.则在(0,0.5)内必有一个零点,故在下一次应计算f (0.25),故选A.3.(2010·上海理,17)若x 0是方程⎝⎛⎭⎫12x =x 13的解,则x 0属于区间( ) A.⎝⎛⎭⎫23,1 B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫0,13 [答案] C[解析] 令f (x )=⎝⎛⎭⎫12x -x 13,f (1)=12-1=-12<0, f ⎝⎛⎭⎫12=⎝⎛⎭⎫1212-⎝⎛⎭⎫1213<0, f ⎝⎛⎭⎫13=⎝⎛⎭⎫1213-⎝⎛⎭⎫1313>0,f ⎝⎛⎭⎫23=⎝⎛⎭⎫1223-⎝⎛⎭⎫2313=⎝⎛⎭⎫1413-⎝⎛⎭⎫2313<0, ∴f (x )在区间⎝⎛⎭⎫13,12内有零点.4.(2011·北京理,6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16[答案] D[解析] 依题意:当x ≤A 时,f (x )单调递减;当x ≥A 时,f (x )恒为常数. 因此,c 4=30,cA=15,解得:c =60,A =16,故选D. 5.(文)(2011·海淀期末)函数f (x )=|x -2|-ln x 在定义域内零点的个数为( ) A .0 B .1 C .2 D .3[答案] C[解析] 由题意知,所求零点的个数即函数y 1=|x -2|的图像与函数y 2=ln x 的图像交点的个数,y 1、y 2的图像如图所示,显然二者有两个交点,故选C.(理)(2011·陕西二检)方程sin x =|lg x |的根的个数是( ) A .5 B .4 C .3 D .2 [答案] B[解析] 如图,分别画出函数y =sin x 和y =|lg x |的图像,显然,当0<x <1时,函数y =sin x 与y =|lg x |的图像有一个交点;当x >1时,因为y =sin x ∈[-1,1],故可只考虑函数y =|lg x |在区间[1,10]上的图像,由图可知,在区间[1,10]上这两个函数的图像有三个公共点.综上所述,两个函数图像有四个公共点,即方程sin x =|lg x |有四个不同的实根,故选B.6.(2011·襄阳一调)利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为( )A .240B .200C .180D .160[答案] B[解析] 依题意得每吨的成本是y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x ,即x =200时取等号,因此当每吨的成本最低时,相应的年产量是200吨,选B.7.(2011·山东济宁)已知函数f (x )=log 2(a -2x )+x -2,若f (x )存在零点,则实数a 的取值范围是( )A .(-∞,-4]∪[4,+∞)B .[1,+∞)C .[2,+∞ )D .[4,+∞)[答案] D[解析] 由题意知,log 2(a -2x )=2-x 有解, 即a -2x =22-x 有解,也即a =2x +4·2-x ,∵2x +4·2-x ≥4,∴a ≥4.故选D.8.(2011·绍兴模拟)已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则a -b 的取值范围为( )A .(-∞,-1)B .(-1,+∞)C .(-∞,1)D .(-1,1)[答案] B[解析] 函数f (x )=ax 2+bx -1(a >0)有两个零点,其中一个零点在区间(1,2)内,结合二次函数的图像知⎩⎪⎨⎪⎧ f (1)<0f (2)>0,即满足⎩⎪⎨⎪⎧a +b -1<04a +2b -1>0,所以a -b 的取值范围即为:满足可行域⎩⎪⎨⎪⎧a >0a +b -1<04a +2b -1>0内的点P (a ,b )的目标函数z =a -b 的取值范围,作出可行域如图:当b =a -z 的一族平行线经过可行域时,目标函数z =a -b 在点(0,1)处取得最小值-1,最大值趋向正无穷,故答案选B.二、填空题9.(2011·芜湖模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围________.[答案] (0,1)[解析] 函数f (x )的图像如图所示:当0<m <1时,直线y =m 与函数f (x )的图像有三个交点.10.关于x 的方程cos 2x -sin x +a =0在(0,π2]上有解,则a 的取值范围为________.[答案] (-1,1][解析] 原方程可化为a =sin x -cos 2x , 令y =sin x -cos 2x ,则y =sin 2x +sin x -1=(sin x +12)2-54,∵x ∈(0,π2],∴0<sin x ≤1,∴-1<y ≤1.因为方程有解,所以a ∈(-1,1].11.(2010·浙江文,16)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________.[答案] 20[解析] 本题考查了不等式的实际应用.由题意列出不等式:3860+500+2[500(1+x %)+500(1+x %)2]≥7000 (x >0) 整理可得:x 2+300x -6400≥0,解之得,x ≥20. ∴x 的最小值为20.12.若抛物线y =-x 2+mx -1和两端点为A (0,3)、B (3,0)的线段AB 有两个不同的交点,则m 的取值范围为________.[答案] (3,103][解析] 线段AB 的方程为y =-x +3(0≤x ≤3).由⎩⎪⎨⎪⎧y =-x 2+mx -1,y =-x +3(0≤x ≤3)消去y 得x 2-(m +1)x +4=0(0≤x ≤3). ∵抛物线与线段AB 有两个不同的交点, ∴x 2-(m +1)x +4=0在[0,3]上有两个不同的解. 设f (x )=x 2-(m +1)x +4,则f (x )的图像在[0,3]上与x 轴有两个不同的交点,∴⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0<m +12<3,f (0)=4>0,f (3)=9-3(m +1)+4≥0,解得3<m ≤103.三、解答题13.如图所示是函数y =(12)x 和y =3x 2图像的一部分,其中x =x 1,x 2(-1<x 1<0<x 2)时,两函数值相等.(1)给出如下两个命题: ①当x <x 1时,(12)x <3x 2;②当x >x 2时,(12)x <3x 2,试判断命题①②的真假并说明理由; (2)求证:x 2∈(0,1). [解析] (1)当x =-8时, (12)-8=28=256,3×(-8)2=192, 此时(12)-8>3×(-8)2,故命题①是假命题.又当x ∈(0,+∞)时,y =(12)x 是减函数,y =3x 2是增函数,故命题②是真命题.(2)证明:令f (x )=3x 2-(12)x ,则f (0)=-1<0,f (1)=52>0,∴f (x )在区间(0,1)内有零点,又∵函数f (x )=3x 2-(12)x 在区间(0,+∞)上单调递增,∴x 2∈(0,1).14.(2011·佛山质检)桑基鱼塘是广东省珠江三角洲一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块占地1800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S 平方米,其中a :b =1:2.(1)试用x ,y 表示S ;(2)若要使S 最大,则x ,y 的值各为多少? [解析] (1)由题可得:xy =1800,b =2a , 则y =a +b +6=3a +6, S =(x -4)a +(x -6)b =(3x -16)a =(3x -16)·y -63=1832-6x -163y .(2)S =1832-6x -163y ≤1832-26x ·163y =1832-480=1352,当且仅当6x =163y ,即x =40米,y =45米时,S 取得最大值1352平方米.15.(2011·湖北理,17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)[解析] (1)由题意:当0≤x ≤20时,v (x )=60; 当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎨⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60, 0≤x <20,13(200-x ), 20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x <20,13x (200-x ), 20≤x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1200; 当20≤x ≤200时,f (x )=13x (200-x )≤13[x +(200-x )2]2=100003, 当且仅当x =200-x ,即x =100时,等号成立.所以,当x =100时,f (x )在区间[20,200]上取得最大值100003.综上,当x =100时,f (x )在区间[0,200]上取得最大值100003≈3333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.。