6 微积分的创立
- 格式:ppt
- 大小:5.16 MB
- 文档页数:92
微积分的创立过程微积分,这可是数学世界里的一座巍峨高峰啊!它的创立就像是一场波澜壮阔的冒险之旅,众多伟大的数学家如同勇敢的探险家,在未知的数学领域披荆斩棘。
在微积分诞生之前,数学就像是一个装满各种工具的大箱子,但缺少一种能够处理变化和动态问题的超级工具。
当时的数学家们,就像一群在迷宫里摸索的人,知道目的地就在前方,却找不到那条直达的路。
这时候,牛顿出现了。
牛顿可是个天才,他对物理世界充满了好奇。
他想弄明白物体是怎么运动的,速度是怎么变化的。
你想啊,一个物体从静止开始运动,它的速度在不断地改变,这可不像简单的加减乘除那么容易搞清楚。
牛顿就想,能不能找到一种方法,准确地描述这种速度的变化呢?他就开始了自己的探索。
有一天,牛顿看着树上掉落的苹果,他心里可能就在想:“这苹果下落的速度可是一直在变啊,我怎么才能算出它每个瞬间的速度呢?”他就像一个执着的猎人,紧盯着这个问题不放。
他想到了一个办法,用一种极限的思想。
比如说,要算某个时刻的速度,就看这个时刻前后很短很短时间内的平均速度,这个很短很短的时间越接近零,算出来的平均速度就越接近那个时刻的瞬时速度。
这就像是在黑暗中看到了一丝曙光。
几乎在同一时期,莱布尼茨也在欧洲大陆上进行着类似的探索。
莱布尼茨是个充满想象力的家伙。
他对几何图形和曲线特别感兴趣。
他看着那些弯弯绕绕的曲线,心里琢磨着:“这些曲线下面的面积该怎么求呢?”这可不像求矩形的面积那么简单。
他突发奇想,要是把曲线分成很多很多小段,每一小段近似看成直线,然后把这些小的近似长方形的面积加起来,当分的小段足够多的时候,不就接近曲线下的面积了吗?这就像是把一块奇形怪状的拼图,分成很多小碎片,然后拼起来。
牛顿和莱布尼茨虽然身处不同的地方,但是他们的想法却有着惊人的相似之处。
这就像是两颗在不同地方同时发芽的种子,都向着微积分的大树生长。
他们俩的成果一出来,可在数学界引起了轩然大波。
就像平静的湖面上突然投进了两颗大石头,泛起了层层巨浪。
微积分的创立、发展及意义摘要该文主要论述了微积分的创立过程、微积分的发展历程,以及微积分的重要意义。
在微积分的创立过程中,主要说明了创立背景、微积分的两位创始人独立创立微积分的过程以及微积分的基本内容及基本方法;其次,以欧拉为主要代表介绍了微积分的发展历程;最后论述了微积分对科学、社会、工业、航空等方面的影响及其深远意义。
关键词:微积分数学史创立发展意义论文1、微积分的创立1.1 微积分的创立背景[1]克莱因(M.Klein)认为:微积分的创立,首先是处于17世纪主要两科学问题,即有四种主要类型的问题有待用微积分去解决。
第一类:已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表示为时间的函数的公式,求速度和距离。
第二类:问题是求曲线的切线,这是一个几何问题,但对科学的应用有巨大的影响。
第三类:问题是求函数的极大极小值。
第四类:问题包括求曲线的长度,曲线围成的面积等等。
首先对微积分的创造作出贡献的是开普勒和伽利略。
用无数个无穷小之和计算面积和体积是开普勒的基本思想,而这一思想的精华是从阿基米德的著作中吸收的,伽利略则奠定了实验和理论协调的近代科学精神,这对于微积分的形成是至关重要的。
对于微积分的孕育有重要影响的是1635 年卡瓦列利(B.Cavalieri意大利)的《不可分连续量的几何学》的发表,他对前人的微积分结果作了初步系统的综合,并创立了一种简易形式的积分法——不可分量法,使卡瓦列利的不可分量更接近于定积分计算的,是法国的帕斯卡(B.Pascal)和英国的瓦里士(J.Wallis)。
瓦里士是牛顿、莱布尼茨之前把分析方法引入微积分的工作做得最多的人。
对微积分的孕育具有重要影响的人物是法国的费马(Fermat),最迟在1636年他已达到求积分方法上的算术化程度,微积分的另一个重要课题——求极值的方法也是费马创造的。
在17世纪,至少有10多位大数学家探索过微积分,而牛顿(Newton)、莱布尼茨(Laeibniz),则处于当时的顶峰。
微积分创立的背景与过程微积分是一门综合性的数学学科,它是由牛顿、莱布尼茨等数学家在17世纪末发明的。
微积分的发明是为了解决物理学中的一些问题,如速度、加速度等,因此,它是在物理学的研究中发展起来的。
微积分是研究函数和它们的变化率、极限、积分等的一门数学学科。
微积分的创立过程、背景和发展历程是非常复杂的,这篇文章将从以下几个方面进行介绍。
1. 微积分的背景微积分的发展背景是欧洲文艺复兴时期的科学繁荣。
在这个时期,人们开始追求自由和民主,同时也开始研究自然界和宇宙的规律。
牛顿、莱布尼茨等数学家在这个时期提出了微积分的概念,为物理学和其他科学领域的研究提供了新的数学工具。
2. 微积分的发展过程微积分的发展过程非常漫长,它由牛顿、莱布尼茨等数学家在不同的时间、不同的地方进行研究。
牛顿在1665年至1666年间,在农村避瘟疫的时候,开始研究运动的规律。
他发现物体的速度在不断变化,而速度的变化率就是加速度。
牛顿发明了微积分的基本概念,即导数和积分,从而解决了运动学中的很多问题。
莱布尼茨则在牛顿之后,于1675年左右独立发明了微积分。
他发现导数和积分是可以互相转换的,从而大大简化了微积分的运算。
莱布尼茨还发明了微积分符号,这使得微积分的表达更加简单和精确。
3. 微积分的应用微积分的应用非常广泛,它是物理学、工程学、经济学、生物学、化学等学科中不可或缺的工具。
在物理学中,微积分可以用来研究物体的运动、力学、电磁学等问题。
在工程学中,微积分可以用来设计建筑物、桥梁、道路等。
在经济学中,微积分可以用来研究市场供求关系、价格变动等。
在生物学中,微积分可以用来研究动植物的生长、繁殖等。
在化学中,微积分可以用来研究化学反应的速率、平衡等。
微积分的发明是人类智慧的结晶,它在解决物理学和其他科学领域的问题中发挥了重要作用。
微积分的发展历程是一个漫长而复杂的过程,但它对人类的进步和发展做出了巨大的贡献。
微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。
在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。
在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。
但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。
他的"割圆术"开创了圆周率研究的新纪元。
刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。
用他的话说,就是:"割之弥细,所失弥少。
割之又割,以至于不可割,则与圆合体,而无所失矣。
"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。
大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。
其次明确提出了下面的原理:"幂势既同,则积不容异。
"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。
并应用该原理成功地解决了刘徽未能解决的球体积问题。
欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。
较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。
他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。
但他的方法并没有被数学家们所接受。
后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。
之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。
微积分发展历程微积分的发展历程是数学史上一个充满辉煌成就的章节。
微积分为我们提供了一种强大的工具,用于理解和描述自然界的各种现象,从运动的轨迹到电磁场的行为,从物质的变化到概率的推断,微积分无处不在。
在下面的文章中,我们将探讨微积分的发展历程,包括其起源、关键人物和里程碑事件。
1. 古希腊时期:微积分的历史可以追溯到古希腊时期。
古希腊数学家阿基米德(Archimedes)被认为是微积分的奠基人之一。
他在计算曲线下的面积和体积时使用了无限小的方法,这可以看作微积分的初步尝试。
2. 牛顿和莱布尼兹:微积分的真正发展始于17世纪末。
英国科学家艾萨克·牛顿和德国数学家戈特弗里德·莱布尼兹独立地开发了微积分的基本原理。
牛顿的工作集中在运动和力学方面,而莱布尼兹则更侧重于符号表示法。
他们的成就为微积分的未来发展奠定了坚实的基础。
3. 分析学的建立:18世纪,微积分逐渐成为一门独立的学科,被称为"分析学"。
法国数学家奥古斯丁·路易·柯西(Augustin-Louis Cauchy)和卡尔·威尔斯特拉斯(Karl Weierstrass)等人在微积分中引入了极限概念,从而解决了一些问题的严格性。
4. 黎曼几何和复分析:19世纪中期,德国数学家伯纳尔·黎曼的工作将微积分与几何学相结合,创立了黎曼几何,为曲线和曲面的研究提供了新的工具。
复分析的发展也为微积分的应用领域提供了更多可能性。
5. 泛函分析和分布理论:20世纪,微积分领域进一步扩展,引入了泛函分析和分布理论等新的数学工具,用于研究函数空间和广义函数。
这些理论在数学、物理学、工程学和经济学等领域的应用中发挥了重要作用。
6. 现代微积分的应用:现代微积分广泛应用于科学、工程、计算机科学、经济学和社会科学等各个领域。
它不仅有助于解决实际问题,还推动了数学自身的发展。
微积分的方法和概念也在其他数学分支中找到了应用,如微分方程、积分方程和泛函分析。
微积分发展史简述微积分是数学中的重要分支,广泛应用于自然科学、工程学、经济学等领域。
它的发展历史可以追溯到古希腊时期,但直到17世纪才得到了系统的发展和完善。
本文将简要介绍微积分的发展史。
1. 古希腊时期:微积分的雏形在古希腊时期,数学家们对于几何学有着深入的研究。
亚里士多德和欧几里得等人提出了许多与微积分相关的概念,如无穷小量和极限。
然而,由于当时的数学工具和观念的限制,微积分的发展受到了很大的阻碍。
2. 牛顿和莱布尼茨:微积分的创始人17世纪,牛顿和莱布尼茨几乎同时独立地发展出微积分学。
牛顿创立了微积分的主要思想和方法,他提出了差分和积分的概念,并建立了微分方程和牛顿运动定律等基本理论。
莱布尼茨独立地发展出了微积分的符号表示法,引入了微积分中的极限和导数的概念。
牛顿和莱布尼茨的工作为微积分的发展奠定了基础。
3. 微积分的完善:极限与连续性18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。
欧拉进一步完善了微积分的符号表示法,并提出了欧拉公式等重要结果。
拉格朗日则对微积分中的极限和连续性进行了系统的研究,提出了拉格朗日中值定理和泰勒展开等重要定理。
这些工作使微积分的理论更加严谨和完备。
4. 微积分的应用:物理学和工程学19世纪,微积分的应用开始扩展到物理学和工程学等实际问题中。
拉普拉斯和傅里叶等数学家使用微积分的方法解决了一系列的物理学问题,为微积分的应用奠定了基础。
同时,微积分也在工程学中得到了广泛的应用,如力学、电磁学和流体力学等领域。
微积分的应用使得工程学的发展取得了重大的突破。
5. 微积分的发展与现代数学的关系20世纪,微积分的发展与现代数学的发展密切相关。
在集合论和数理逻辑的基础上,数学家们对微积分的理论进行了深入的研究和推广。
勒贝格和黎曼等数学家提出了测度论和黎曼积分等新的概念和方法,为微积分的发展带来了新的思路和工具。
同时,微积分也成为了现代数学的重要组成部分,在数学的其他分支中得到了广泛的应用。
微积分的创立,被誉为“人类精神的最高胜利”。
在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。
在数学史上,18世纪可以说是分析的时代,也是向现代数学过渡的重要时期。
18世纪微积分最重大的进步是由欧拉(Leonard Euler ,1707—1783)作出的。
欧拉在1748年出版的《无限小分析引论》(Introductio in Anclysin infinitorum )以及他随后发表的《微分学》(Institutionis Calculi differentialis ,1755)和《积分学》(Institutiones Calculi integralis ,共3卷,1768—1770)是微积分史上里程碑式的著作,它们在很长时间里被当作分析课本的典范而普遍使用着。
这三部著作包含了欧拉本人在分析领域的大量创造,同时引进了一批标准的符号如:()f x e i --∑------函数符号求和号自然对数底虚数号等等,对分析表述的规范化起了重要作用。
欧拉出生于瑞士巴塞尔一个牧师家庭,13岁就进入巴塞尔大学,数学老师是约翰。
伯努利。
师生之间建立了极亲密的关系,伯努利后来在给欧拉的一封信中这样赞许自己这位学生在分析方面的青出于兰:“我介绍高等分析时,它还是个孩子,而您正在将它带大成人。
” 欧拉主要的科学生涯是在俄国圣彼德堡科学院(1727—1741;1766—1783)和德国柏林科学院(1741—1766)度过的。
他对彼德堡科学院怀有特殊的感情,曾将自己的科学成就归功于“在那儿拥有的有利条件”。
欧拉是历史上最多产的数学家。
他生前发表的著作与论文有560余种,死后留下了大量手稿。
欧拉自己说他未发表的论文足够彼德堡科学院用上20年,结果是直到1862年即他去世80年后,彼德堡科学院院报上还在刊登欧拉的遗作。
微积分的发展史简述作者:周锐来源:《当代人(下半月)》2018年第04期摘要:微积分是数学的一个分支,在数学史上占有重要地位。
本文根据时间进程阐述了微积分的发展史及其简要应用。
关键词:微积分;发展史;牛顿;莱布尼兹微积分是数学中的基础学科,也是近现代数学中的重要基石和起点。
它在物理、化学、生物等自然学科中被普遍利用,在社会、经济、人文等范畴也是重要的研究工具之一。
本文将沿着微积分学的发展时间历程,简要论述微积分的发展史。
一、微积分的萌芽之初微积分学发展得最早的是积分学的思想,可以追溯到古希腊时期[1]。
其中做出重要贡献的有古希腊数学家芝诺提出的四大悖论。
古希腊哲学家德谟克利特斯的原子论则充分体现了近代积分的思想,他认为任意事物都是由原子构成。
古希腊诡辩家安提丰提出的“穷竭法”是极限理论最早的表现形式。
古希腊数学家欧多克斯进一步研究原子论和穷竭法,使这两个理论得以稳健前进。
古希腊著名数学家阿基米德所提出的“平衡法”实质上是一种较原始的“积分法”。
他在著作《抛物线求积法》一书中运用穷竭法求出了抛物线构成的弓形的面积。
二、微积分创立之前的酝酿由于种种影响,微积分的概念在15世纪之前一直处于萌芽阶段[2]。
推动欧洲崛起的新航路开辟和文艺复兴是15世纪的大事件。
从14世纪到16世纪的文艺复兴在意大利各城市兴起,之后推广到西欧各国,带来了一场关于科学与艺术的革命。
随着文艺复兴的兴起,生产的发展带动了科学的发展。
与此同时希腊的著作大量进入欧洲,随着活板印刷的发明,知识的传播更加迅速,自然学科开始活跃,自然学科中的数学得以有进一步发展的机会。
在时代背景下,数学成为唯一被公认的真理得以推广。
天文学、光学、力学等自然学科的发展被生产力的发展所推动,为数学带来了大量的研究问题[3],许多学者开始考虑研究微积分的思想[4]。
开普勒是德国杰出的天文学家、物理学家、数学家和哲学家。
他在《测量酒桶的新立体几何》一书中主要对如何求解旋转体体积的方法进行研究。
微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。
大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。
这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。
第一、二、三问题导致微分的概念,第四个问题导致积分的概念。
微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。
开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。
1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。
这个比较接近于微积分基本定理。
牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。
可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。
微积分基本定理的建立标志着微积分的诞生。
牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。
微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨.微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇"中,著有“一尺之棰,日取其半,万世不竭"。
三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。
他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。
圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。
意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。
解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景.到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作.笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。
微积分基本公式的创始人
微积分是莱布尼兹、牛顿创立的。
牛顿从研究物理问题出发创立了微积分,牛顿称之为“流数术理论”。
莱布尼兹从几何角度出发独立创立了微积分,莱布尼兹把微积分称之为“无穷小算法”。
十七世纪以来,微积分的概念和技巧不断扩展并被广泛应用来解决天文学、物理学中的各种实际问题,取得了巨大的成就。
但直到十九世纪以前,在微积分的发展过程中,其数学分析的严密性问题一直没有得到解决。
十八世纪中,包括牛顿和莱布尼兹在内的许多大数学家都觉察到这一问题并对这个问题作了努力,但都没有成功地解决这个问题。
整个十八世纪,微积分的基础是混乱和不清楚的,许多英国数学家也许是由于仍然为古希腊的几何所束缚,因而怀疑微积分的全部工作。
这个问题一直到十九世纪下半叶才由法国数学家柯西得到了完整的解决,柯西极限存在准则使得微积分注入了严密性,这就是极限理论的创立。
极限理论的创立使得微积分从此建立在一个严密的分析基础之上,它也为20世纪数学的发展奠定了基础。