确定的I定 bf(积 x)dx分 与值 之 . 对应 a 这意f(味 x)的 着 定b积 f(x)d分 x与它的上 a
之间存在一种函数关系.
固定积分 ,让 下 积 限 分 不 ,上 则 变 限 得变 到
分上限函数:
x
x
F ( x ) a f( x ) d x a f( t) d tx [ a ,b ] .
x
x
由夹逼 x的 定 任 ,即 理 意 F 可 及 (x)性 C 得 (点 a [,b ].)
编辑ppt
8
定理1说明: 定义在区[a间 ,b]上的 积分上限函数是连 . 续的
积分上限函数是否可导?
编辑ppt
9
由 F (x x ) F (x )x xf( t)d t, x
如果 f(x)C(a [,b])则 , 由积分,中 得值定
F ( x ) F ( x x ) F ( x )
x x
x
x x
a f( t) d t a f( t) d t x f( t) d t
又 f( x ) R (a ,[ b ]故 )f ,( x )在 [ a ,b ]上|f有 ( x )| M .界
于 0 | F ( 是 x ) | |x x f ( t ) d t | x x |f ( t ) |d t M x
所以,我们只需讨论积分上限函数.
bf (t)dt 称为积分下限函 . 数 x
编辑ppt
7
定理 1 若 f ( x ) R ( a , b [ ]则 ) F ( x , ) x f ( t ) d t C ( a , b [ ] .) a 证 x [ a , b ] ,且 x x [ a , b ] ,则
了解利用建立递推关系式求积分的方法.