数字信号处理实验(吴镇扬)答案-4
- 格式:doc
- 大小:154.00 KB
- 文档页数:11
1、时域和频域的区别2、信号在各个频率的幅度分布图称为3、采样率就是4、抗混叠滤波器的目的是5、如果复信号频率是120Hz,采样频率是150Hz,信号的混叠频率是6、对频率在1kHz到1.1kHz的实带限信号进行抽样,若抽样频率为750Hz,则基带信号位于什么频带?7、以800Hz抽样的300Hz实信号的最先4个镜像频率是8、x[n] = cos(n3 /4)可以描述为a每个数字周期 个采样点,覆盖 个模拟信号周期9、低通滤波器的截至频率是1kHz,则将削弱哪个频率a 0 Hzb 500 Hzc 1k Hzd 2k Hz10、在x1[n] = sin(n /9)上作如下( )变化,得到x2[n] = sin(n /9 + /3)a 不变b 右移3位c左移3位d 关于y轴对称11、滤波器y[n] + 0.8y[n-1] = x[n] - 0.5x[n-1] 的单位脉冲响应的头4个样点值为12、h[n] * x[n]数字上等于a 对所有k,将h[k]x[n-k]求和的值b 对所有k,将x[k]h[n-k]求和的值c x[n] * h[n]d以上均是13、描述某系统的差分方程y[n] = 0.7y[n-2] + x[n] - 0.3x[n-1],该系统的转移函数为14、某系统单位脉冲响应h[n] = 0.5d[n] - 0.4d[n-1] + 0.25d[n-2],对应转移函数为a H(z) = 1 - 0.4z^-1 + 0.25z^-2b H(z) = z^2 - 0.4z + 0.25c H(z) = z^-2 - 0.4z^-1 + 0.25d 非以上答案15、极点为0.5 + j0.8和0.5 - j0.8,零点为-1.2的滤波器是a 稳定的b 边缘稳定c 不稳定d 不能决定16、滤波器的单位脉冲响应的DTFT给出了滤波器的a 频谱b 频率响应c 幅度d 相位17、频谱图平坦的信号对应如下哪个信号a 正弦信号b 方波c 白噪声d 直流信号18、离散实正弦信号的频谱的一个周期中包括a 无峰点b 1个峰点c 2个峰点d 多于2个峰点19、讨论连续非周期与离散非周期信号(即连续非周期信号采样前后)以及连续周期与离散周期信号(即连续周期信号采样前后)这四种信号频谱的周期性和连续性,并总结其规律性。
实验一快速Fourier变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉FFT子程序。
2.熟悉应用FFT对典型信号进行频谱分析的方法。
3. 了解应用FFT进行信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT。
4.熟悉应用FFT实现两个序列的线性卷积的方法。
5.初步了解用周期图法作随机信号谱分析的方法。
返回页首二、实验原理与方法在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier 变换的等距采样,因此可以用于序列的谱分析。
FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。
它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。
常用的FFT是以2为基数的,其长度。
它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。
(一)、在运用DFT进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
一、实验目的深刻理解离散时间系统的系统函数在分析离散系统的时域特性、频域特性以及稳定性中的重要作用及意义,熟练掌握利用MATLAB分析离散系统的时域响应、频响特性和零极点的方法。
掌握利用DTFT和DFT 确定系统特性的原理和方法。
二、实验原理MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。
1.离散系统的时域响应2.离散系统的系统函数零极点分析3.离散系统的频率响应4.利用DTFT和DFT确定离散系统的特性三、实验内容1.已知某LTI系统的差分方程为:尹[妇-1. 143尹顷一1] + 0. 412尹- 2]=0. 0675x[妇 + 0. 1349x[A - 1] + 0. 0675x[A - 2]1.初始状态y[-1] = 1, y[-2] = 2,输入= 〃伏]计算系统的完全响应.程序:a=[l,-1.143,0.412];b=[O.O675,0.1349,0.0675];n=40;x=ones(l,n);yi=[l,2];zi=filtic(b,a,yi);y=filter(b,a,x,zi);stem(y)(2)当以下三个信号分别通过系统时,分别计算离散系统的零状态响应:X』妇=cos (—; xS_k\ = cos (—= cos (—10 5 10程序n=100;k=0:n-1;a=[l,-1.143,0.412];b=[0.0675,0.1349,0.0675];xl=cos(pi*k/10);x2 = cos (pi*k/5);x3=cos(7*pi*k/10);yl=filter(b,a,xl);y2=filter(b,a,x2);y3=filter(b,a,x3);subplot(3,1,1);stem(k, yl) subplot(3,1,2); stem(k,y2)subplot(3,1,3); stem(k,y3)10 20 30 40 50 60 70 80 90 1002. 已知某因果LTI 系统的系统函数为:m 、0. 03571 + 0. 1428/T + 0. 2143z~2 + 0. 1428z~3 + 0.0357lz~4 H(z) = -------- - ------- § ----------------------- ------------------------------- 7 -------- 1 - 1. 035/T + 0. 8264/2 — Q. 2605/3 + o. 04033z~4 (1) 计算系统的单位脉冲响应。
数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)第二章测试训练题解1.DFT和DTFT之间的关系是2.DFT和DFS之间的关系是3.对于一个128点的DFT,最先4个DFT相应于数字频率4.某滤波器的频响为H(ω) = 0.3cos2ω- 0.2cosω+ 0.05,相应于6点的DFT的H[k]为5.采样频率为22.05kHz的1024点DFT所对应的频率分辨率为6.采样率为8kHz的信号的256点DFT的第一个周期覆盖的频率范围是从0Hz至7.信号[ 1 0 2 ]的DFT每隔3个样点值重复,为8.以1600Hz对一220Hz的信号采样,进行64点DFT,最接近的DFT频率为9.以12kHz的信号对一4.25kHz的信号抽样,其256点DFT幅谱图的基带最大峰值点所对应的下标为10.采样频率为6kHz,1kHz信号的频率分辨率要达到50Hz,需11.采样频率为16kHz,1024点DFT的窗口长度为12.关于谱泄漏与窗口长度的关系是13.频谱图是展现信号的什么14.周期性方波的频谱图15.在FFT中的乘数因子是16.与512点的DFT相比,512点的FFT只需约几分之一的计算量17、一个长度为N的有限长序列可否用N个频域的采样值唯一地确定?18、计算两个N点序列的线性卷积,至少要做多少点的DFT?19、x(2n)与x(n)的关系20、对于高斯序列x(n)=exp[-(n-p)2/q],取16点作FFT,其幅度谱中低频分量最多的是21、一般地说按时间抽取基二FFT的_______序列是按位反转重新排列的。
22、信号x(n)=sin(nπ/4) - cos(nπ/7)的数字周期为23、N=2L点基二FFT,共有______列蝶形,每列有____个蝶形。
24、信号s(t)=sin(4000πt)+sin(600πt),则采样频率至少应为25、用按时间抽取法计算256点的FFT时,n=233的二进制位反转值是26、FFT之所以能减少DFT的运算量,是因为:,FFT减少DFT 运算量的基本处理思想是。
【最新整理,下载后即可编辑】习题一 (离散信号与系统)1.1周期序列,最小周期长度为5。
1.2 (1) 周期序列,最小周期长度为14。
(2) 周期序列,最小周期长度为56。
1.5()()()()()()()11s a s s s a n s s a s n X j x t p t X j ΩP j Ω2n τn τj sin j Ωjn e X 2n π2n n τj Sa X j jn e 2T 2πττ∞=-∞∞=-∞Ω==*⎡⎤⎣⎦ΩΩ⎛⎫-=-Ω ⎪⎝⎭ΩΩ⎛⎫-=Ω-Ω ⎪⎝⎭∑∑ 1.6 (1) )(ωj e kX (2) )(0ωωj n j e X e (3) )(21)(2122ωωj j e X e X -+ (4) )(2ωj e X1.7 (1) 0n z -(2) 5.0||,5.0111>--z z (3) 5.0||,5.0111<--z z (4)0||,5.01)5.0(11101>----z z z1.8 (1) 0,)11()(211>--=---z zz z z X N(2) a z az az z X >-=--,)1()(211 (3) a z az z a az z X >-+=---,)1()(311211.91.10 (1))1(2)(1----+n u n u n (2))1(24)()5.0(6--⋅--n u n u n n (3))()sin sin cos 1(cos 000n u n n ωωωω++(4) )()()(1n u a a a n a n ---+-δ 1.11(1))(1z c X - (2) )(2z X (3))()1(21z X z -+ (4)-+<<x x R z R z X /1/1),/1(1.12 (1) 1,11<-ab ab(2) 1 (3)00n a n1.13 (1) 该系统不是线性系统;该系统是时不变系统。
实验四 有限长单位脉冲响应滤波器设计朱方方 03 通信四班(1) 设计一个线性相位FIR 高通滤波器,通带边界频率为π,阻带边界频率为π,阻带衰减不小于40dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
解:(1)求数字边界频率:0.6 , 0.4c r ωπωπ== (2)求理想滤波器的边界频率:0.5n ωπ=(3)求理想单位脉冲响应:[]d sin ()sin[()]()()1n n n n n n h n n παωααπαωαπ⎧---≠⎪⎪-=⎨⎪-=⎪⎩(4) 选择窗函数。
阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤波器的过渡带宽为ππ=π,因此6.210.231 , 152N N N ππα-=⇒=== (5) 求FIR 滤波器的单位脉冲响应h(n):[]31d sin (15)sin[0.5(15)]1cos ()15()()()15(15)115n n n R n n h n w n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪ ⎪⎢⎥==-⎝⎭⎨⎣⎦⎪=⎩程序:clear;N=31; n=0:N-1;hd=(sin(pi*(n-15))-sin*pi*(n-15)))./(pi*(n-15)); hd(16)=; win=hanning(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3plot(w/pi,H);axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB');grid;title('FIR 高通滤波器,hanning 窗,N=31');51015202530nh (n )FIR 高通滤波器的单位脉冲响应h(n)0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 高通滤波器,hanning 窗,N=31分析:由图知阻带衰减最小值大于40,满足要求。
J I A N G S U U N I V E R S I T Y数字信号处理实验报告实验一熟悉MATLAB环境实验二快速变换及其应用实验三 IIR数字滤波器的设计实验四 FIR数字滤波器的设计实验八信号的谱分析及分段卷实验一熟悉MATLAB环境一、实验目的(1)熟悉MATLAB的主要操作命令。
(2)学会简单的矩阵输入和数据读写。
(3)掌握简单的绘图命令。
(4)用MATLAB编程并学会创建函数。
(5)观察离散系统的频率响应。
二、实验内容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。
在熟悉了MATLAB基本命令的基础上,完成以下实验。
上机实验内容:(1)数组的加、减、乘、除和乘方运算。
输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。
实验程序:A=[1 2 3 4];B=[3 4 5 6];n=1:4;C=A+B;D=A-B;E=A.*B;F=A./B;G=A.^B;subplot(4,2,1);stem(n,A,'fill');xlabel ('时间序列n');ylabel('A');subplot(4,2,2);stem(n,B,'fill');xlabel ('时间序列n ');ylabel('B');subplot(4,2,3);stem(n,C,'fill');xlabel ('时间序列n ');ylabel('A+B');subplot(4,2,4);stem(n,D,'fill');xlabel ('时间序列n ');ylabel('A-B');subplot(4,2,5);stem(n,E,'fill');xlabel ('时间序列n ');ylabel('A.*B');subplot(4,2,6);stem(n,F,'fill');xlabel ('时间序列n ');ylabel('A./B');subplot(4,2,7);stem(n,G,'fill');xlabel ('时间序列n ');ylabel('A.^B');运行结果:(2)用MATLAB实现以下序列。
实验四 有限长单位脉冲响应滤波器设计朱方方 0806020433 通信四班(1) 设计一个线性相位FIR 高通滤波器,通带边界频率为0.6π,阻带边界频率为0.4π,阻带衰减不小于40dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
解:(1) 求数字边界频率:0.6,.c r ωπωπ== (2) 求理想滤波器的边界频率:0.5n ωπ= (3) 求理想单位脉冲响应:[]d s i n ()s i n [()]()()1n nn n n n h n n παωααπαωαπ⎧---≠⎪⎪-=⎨⎪-=⎪⎩(4) 选择窗函数。
阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤波器的过渡带宽为0.6π-0.4π=0.2π,因此6.210.231 , 152N N Nππα-=⇒===(5) 求FIR 滤波器的单位脉冲响应h(n):[]31d sin (15)sin[0.5(15)]1cos ()15()()()15(15)115n n n R n n h n w n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪⎪⎢⎥==-⎝⎭⎨⎣⎦⎪=⎩程序: clear;N=31; n=0:N-1;hd=(sin(pi*(n-15))-sin(0.5*pi*(n-15)))./(pi *(n-15)); hd(16)=0.5; win=hanning(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3plot(w/pi,H); axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB'); grid;title('FIR 高通滤波器,hanning 窗,N=31');51015202530nh (n )0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 高通滤波器,hanning 窗,N=31分析:由图知阻带衰减最小值大于40,满足要求。
(2) 设计一个线性相位FIR 带通滤波器,采样频率为20kHz ,通带边界频率为4kHz 和6kHz ,阻带边界频率为2kHz 和8kHz ,阻带衰减不小于50dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
解:(1) 求数字边界频率:12120.4 , 0.6 , 0.2,0.8c c r r ωπωπωπωπ==== (2) 求理想滤波器的边界频率:120.3,0.7n n ωπωπ== (3) 求理想单位脉冲响应:[]21d 21sin ()sin[()]()()n n n n n n n n h n n ωαωααπαωωαπ⎧---≠⎪⎪-=⎨-⎪=⎪⎩(4) 选择窗函数。
阻带最小衰减为-50dB ,因此选择汉明窗(其阻带最小衰减为-53dB);滤波器的过渡带宽为0.4π-0.2π=0.8π-0.6π=0.2π,因此6.610.233 , 162N N Nππα-=⇒===(5) 求FIR 滤波器的单位脉冲响应h(n):[]33d sin 0.7(16)sin[0.3(16)]0.540.46cos ()16()()()16(16)0.416n n n R n n h n w n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪ ⎪⎢⎥==-⎝⎭⎨⎣⎦⎪=⎩程序:clear;N=33; n=0:N-1;hd=(sin(0.7*pi*(n-16))-sin(0.3*pi*(n-16)))./(pi*(n-16)); hd(17)=0.4; win=hamming(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 带通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;plot(w/pi,H);axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 带通滤波器,hamming 窗,N=33');5101520253035nh (n )0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 带通滤波器,hamming 窗,N=33(3) 设计一个线性相位FIR 带阻滤波器,采样频率为4000Hz ,通带边界频率为600Hz 和1400Hz ,阻带边界频率为800Hz 和1200Hz ,阻带衰减不小于50dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
(1) 求数字边界频率:12120.3 , 0.7 , 0.4,0.6c c r r ωπωπωπωπ==== (2) 求理想滤波器的边界频率:120.35,0.65n n ωπωπ== (3) 求理想单位脉冲响应:[][]12d 12sin ()sin ()sin[()]()()1n n n n n n n n n h n n παωαωααπαωωαπ⎧-+---≠⎪⎪-=⎨-⎪+=⎪⎩(4) 选择窗函数。
阻带最小衰减为-50dB ,因此选择汉明窗(其阻带最小衰减为-53dB);滤波器的过渡带宽为0.4π-0.3π=0.7π-0.6π=0.1π,因此6.610.166, 32.52N N Nππα-=⇒===(5) 求FIR 滤波器的单位脉冲响应h(n):[][]d sin (32.5)sin 0.35(32.5)sin[0.65(32.5)]()()()(32.5)n n n h n w n h n n ππππ-+---==-程序:clear;N=66; n=0:N-1;hd=(sin(pi*(n-32.5))+ sin(0.35*pi*(n-32.5))-sin(0.65*pi*(n-32.5)))./(pi*(n-32.5)); win=hamming(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 带通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure; plot(w/pi,H);axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 带阻滤波器,hamming 窗,N=66');010203040506070nh (n )FIR 带通滤波单位脉冲响应h(n)0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 带阻滤波器,hamming 窗,N=66(4) 用凯塞窗设计一个多带线性相位滤波器,幅频特性如下图所示,N=40,β分别取4、6、10,比较不同β值时的幅频特性和相频特性。
0.10.20.30.40.50.60.70.80.9100.20.40.60.811.21.41.61.8ω/π|H d (e j ω)|理想滤波器的幅频特性解: 程序: clear;%beta=4Wd=[0.2 0.4 0.6 0.8]; M=39; beta=4; hh = fir1(M, Wd, 'DC-0', kaiser(M+1,beta)); [H, w] = freqz(hh, 1); figure; subplot(2,1,1);plot(w/pi,abs(H));xlabel('\omega/\pi'); ylabel('幅度'); grid; title('幅频特性, beta=4'); subplot(2,1,2);plot(w/pi,angle(H));xlabel('\omega/\pi'); ylabel('弧度'); grid; title('相频特性');%beta=6;Wd=[0.2 0.4 0.6 0.8]; M=39; beta=6; hh = fir1(M, Wd, 'DC-0', kaiser(M+1,beta)); [H, w] = freqz(hh, 1); figure; subplot(2,1,1); plot(w/pi,abs(H)); xlabel('\omega/\pi');ylabel('幅度'); grid; title('幅频特性, beta=6'); subplot(2,1,2); plot(w/pi,angle(H)); xlabel('\omega/\pi'); ylabel('弧度'); grid; title('相频特性'); %beta=10;Wd=[0.2 0.4 0.6 0.8]; M=39; beta=10; hh = fir1(M, Wd, 'DC-0', kaiser(M+1,beta));[H, w] = freqz(hh, 1); figure; subplot(2,1,1); plot(w/pi,abs(H));xlabel('\omega/\pi'); ylabel('幅度'); grid; title('幅频特性, beta=10');subplot(2,1,2);plot(w/pi,angle(H));xlabel('\omega/\pi'); ylabel('弧度'); grid; title('相频特性');00.10.20.30.40.50.60.70.80.910.511.5ω/π幅度0.10.20.30.40.50.60.70.80.91-4-2024ω/π弧度相频特性00.10.20.30.40.50.60.70.80.910.51ω/π幅度幅频特性, beta=60.10.20.30.40.50.60.70.80.91-4-2024ω/π弧度相频特性00.10.20.30.40.50.60.70.80.910.51ω/π幅度0.10.20.30.40.50.60.70.80.91-4-2024ω/π弧度相频特性分析:Beta=4时幅频图比较接近理想滤波器,相频特性不太明显,随着Beta 的增大,幅频图过渡带开始增加,相频特性越来越明显。