泛函分析在数值分析中的应用
- 格式:docx
- 大小:62.95 KB
- 文档页数:6
数值分析中的变分法及其收敛性在数值分析中,变分法(Variational Method)是一种通过变分问题求解数值解的方法。
它利用泛函分析的理论和方法,通过构建一个被最小化的泛函,来求解给定问题的最优解。
本文将介绍变分法的基本原理,并讨论其在数值分析中的应用以及收敛性。
一、变分法的基本原理变分法的基本原理可以通过极小化泛函的方法进行描述。
对于一个给定的泛函J[y],其中y是一个函数,我们的目标是找到一个y*,使得J[y*]达到最小值。
为了找到这个最小值,我们可以将问题转化为一个极小化问题,即找到一个y*,使得对于任意的形状变化δy,J[y*]的变化率为零。
这可以通过求解变分问题来实现:δJ[y*] = 0,对任意δy通过变分法,我们可以通过求解变分问题来得到原问题的最优解。
二、变分法在数值分析中的应用1. 最小化问题:变分法可以用于最小化问题的求解。
例如,对于一个函数y(x),我们可以通过构建一个泛函J[y],然后使用变分法来求解最小化问题。
2. 边值问题的求解:变分法在边值问题的求解中也有广泛的应用。
通过构建适当的泛函,我们可以将边值问题转化为一个变分问题,并通过变分法来求解。
3. 偏微分方程的数值解:变分法在偏微分方程的数值解中也有重要的应用。
通过构建适当的泛函,并选择合适的试验函数空间,我们可以使用变分法来求解偏微分方程的数值解。
三、变分法的收敛性在使用变分法求解数值问题时,我们更关注的是变分法的收敛性。
收敛性指的是在一系列逼近过程中,逼近的解是否趋近于真实的解。
对于变分法而言,它的收敛性与使用的试验函数空间以及变分问题的性质有关。
1. 试验函数空间的选择:试验函数空间的选择对于变分法的收敛性至关重要。
通常,我们会选择适当的空间,使得试验函数满足一定的光滑性和边界条件。
选择合适的空间可以提高解的逼近精度,从而提高收敛性。
2. 变分问题的性质:变分问题的性质也会影响到变分法的收敛性。
如果变分问题满足一定的正则性条件,如强解的存在性和唯一性等,那么变分法的收敛性可以得到保证。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
数学分析专题选讲教案一、引言1.1 课程背景1.2 课程目标1.3 课程内容概述1.4 教学方法与手段二、函数极限与连续性2.1 函数极限的概念2.2 极限的性质与运算2.3 无穷小与无穷大2.4 函数的连续性2.5 连续函数的性质与应用三、导数与微分3.1 导数的概念3.2 导数的计算规则3.3 高阶导数3.4 隐函数与参数方程函数的导数3.5 微分学的基本定理与应用四、不定积分与定积分4.1 不定积分的基本概念与计算方法4.2 定积分的基本概念与计算方法4.3 定积分的性质与应用4.4 变限积分的导数4.5 定积分的推广与应用五、微分方程5.1 微分方程的基本概念5.2 常微分方程的解法5.3 线性微分方程5.4 微分方程的应用5.5 线性微分方程组六、级数6.1 级数的基本概念6.2 幂级数6.3 泰勒级数与麦克劳林级数6.4 级数的收敛性6.5 级数的应用七、多元函数微分学7.1 多元函数的基本概念7.2 多元函数的极限与连续性7.3 多元函数的偏导数7.4 全微分与高阶偏导数7.5 多元函数的极值及其判定八、重积分8.1 二重积分的基本概念与计算8.2 二重积分的性质与应用8.3 三重积分的基本概念与计算8.4 三重积分的性质与应用8.5 重积分的应用案例九、常微分方程组9.1 常微分方程组的概述9.2 常微分方程组的解法9.3 常微分方程组的解的存在性与唯一性9.4 常微分方程组的应用9.5 常微分方程组的数值解法十、泛函分析与线性空间10.1 泛函分析的基本概念10.2 线性空间与线性映射10.3 内积空间与正交关系10.4 希尔伯特空间与巴拿赫空间10.5 泛函分析在数学分析中的应用十一、微分几何11.1 微分几何基本概念11.2 曲线和曲面的切线与法线11.3 曲率、挠率和曲率张量11.4 测地线与测地线方程11.5 微分几何在物理学和工程学中的应用十二、偏微分方程12.1 偏微分方程的定义与分类12.2 偏微分方程的基本解法12.3 偏微分方程的解的存在性与唯一性12.4 偏微分方程的应用案例12.5 偏微分方程的数值解法十三、复变函数13.1 复数与复平面13.2 复变函数的基本概念13.3 复变函数的积分13.4 复变函数的级数13.5 复变函数在复平面上的应用十四、随机变量与概率积分14.1 随机变量及其分布14.2 随机变量的数字特征14.3 概率积分与变换14.4 随机过程的基本概念14.5 随机过程的应用十五、数值分析15.1 数值分析概述15.2 插值法与函数逼近15.3 数值微积分15.4 常微分方程的数值解法15.5 非线性方程与系统的数值解法重点和难点解析一、函数极限与连续性重点:函数极限的性质与运算,无穷小与无穷大的概念,函数的连续性及其性质。
中国地质大学研究生课程论文封面课程名称应用泛函分析教师姓名研究生姓名研究生学号研究生专业所在院系类别: 硕士日期: 2013年12月12日评语注:1、无评阅人签名成绩无效;2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效;3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。
应用泛函分析课程报告——泛函分析及其在地球物理中的应用1 前言1.1概述泛函分析是现代数学的一个分支,隶属于分析学,其主要研究对象是无穷维空间和这类空间之间各种映射的一般性质。
它是从分析数学、变分法、积分方程、微分方程、逼近论和理论物理等的研究中发展起来的,成为近代分析的基础之一。
它以集合论为基础,综合运用分析、代数和几何的观点方法,来研究分析学的课题。
可看作无限维分析学。
泛函分析是20世纪30年代形成的。
它的产生和发展主要受两各因素的影响。
一方面,由于数学本身的发展,需要探求其各分支里被孤立讨论过的结论和方法的一般性和统一性。
分析、代数、变分法、积分方程、集合的许多概念和方法常常存在相似的地方,它启发人们从类似的东西中探寻一般的真正属于本质的东西,加以总结和整理,建立一套理论,用统一的观点理解和处理已有的或将要出现的对象,促使了泛函分析抽象理论的形成与提升。
另一方面,正如Newton力学对微积分的发展所起的作用一样,量子物理学的需要对泛函分析的发展起到重要作用。
泛函分析具有高度抽象性和概括性,并具有广泛的应用性以及表述形式的简洁性,使得它的概念和方法已渗透到数学、理论物理和现代工程技术的许多分支。
半个多世纪以来,泛函分析一方面以其他众多学科所提供的素材来提取资自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子普理论、Banach代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力的推动着其它不少学科的发展。
它在微分方程、概率论、函数论、计算数学、控制论、最优化理论等学科中都有重要应用;它也是研究无限个自由度物理系统的重要而自然的工具之一,其方法大量的使用于连续介质力学、电磁场理论、量子场论等学科;此外,它的观点和方法已经渗入到不少工程技术性的学科当中,其概念、术语和符号作为科学的语言已被频频应用于许多技术问题的表述之中,成为一种方便的数学语言和工具。
第1篇一、数学分析1. 请解释实数的完备性及其意义。
2. 证明:若数列{an}单调有界,则{an}收敛。
3. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
4. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
5. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
6. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
7. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
8. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
9. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
10. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
二、高等代数1. 请解释行列式的定义及其性质。
2. 证明:若矩阵A可逆,则|A|≠0。
3. 设矩阵A为n阶方阵,求证:A的行列式|A|等于其特征值的乘积。
4. 证明:若矩阵A为n阶方阵,且|A|=0,则A不可逆。
5. 设矩阵A为n阶方阵,求证:A的行列式|A|等于其特征值的乘积。
实变函数论与泛函分析实变函数论与泛函分析是以函数论为基础的一门数学分支,它不仅涉及到函数的定义、性质及其变换,还研究函数的结构和局部行为,它是近代数学研究中一个新兴的领域。
它研究多元可积函数、变分和微分方程、变分方程等。
实变函数论与泛函分析在统计学、数值分析、动力系统以及经济学等各个领域得到了广泛的应用。
实变函数论的发展源于传统的泛函分析,它集中研究变分的无穷维函数的性质。
由于它涉及到函数的分析,无穷维函数的构造以及复杂而难懂的定理,它是抽象的数学学科。
随着函数论的发展,实变函数论逐渐从泛函分析研究中分离出来,成为一门独立的理论。
实变函数论与泛函分析的研究内容与传统的泛函分析有很大的不同,主要包括:首先,它研究实变函数之间的关系,而不是复变函数之间的关系;其次,它研究实变函数及其变分的本质特性,而不是实变函数及其狄拉克或拉格朗日变分的表达式。
实变函数的特性与变分的表达式有很大的不同,需要引入新的概念和思想来研究它们。
实变函数论与泛函分析的应用领域也很广泛,对于统计、机器学习和数值分析有着重要的意义。
它可以用来解决各种复杂的数据模型中出现的复杂的优化问题,如机器学习中的支持向量机问题,可以用实变函数论来分析数据,从而获得更准确的结果。
另外,实变函数论也可以用来研究微分方程、动力系统和经济学中的经典模型。
比如Rogosin的模型就是基于实变函数论的理论研究,它可以用来评估经济影响的结果。
实变函数论与泛函分析是一门新兴的领域,它和传统的泛函分析有很大的不同。
它研究实变函数之间的关系,以及实变函数及其变分的本质特性,应用领域也很广泛,对于统计学、机器学习、数值分析以及动力系统、经济学等都有重要的意义。
它不仅可以评估经济影响的结果,还可以用来解决复杂的数据模型中出现的优化问题,从而取得更准确的结果。
实变函数论与泛函分析是多学科数学研究的新兴领域,具有广阔的发展前景。
泛函分析在数值分析中的应用公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]泛函分析在数值分析中的应用刘肖廷工程力学一、数学概述数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自然学科。
它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学又可以划分为纯数学和基础应用数学两大范畴。
其中,纯数学是建立在基础应用数学基础上进行的单纯的数学研究。
可见基础应用数学是数学学科的基础。
基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数学关系与空间形式。
分而言之,代数学主要是从集合概念角度去研究物质世界的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。
应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨物质世界不同类型的数量关系与空间形式的。
它主要包括三角学,概率论,数理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数值分析,数值代数,矩阵论,测度论,李群与李代数等领域。
当然,我们同样不能忽视应用数学对基础数学在理论上的支持与贡献。
由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的支柱,此四者同时又是相互联系,不可分割的。
这一点印证了一句名言,数学的魅力正在于其中各个分支之间的相互联系。
泛函分析的基本内容和基本特征(一)度量空间和赋范线性空间1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。
19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。
20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的d⨯→。
若对于任何x,概念。
定义:设x 为一个集合,一个映射: X X Ry,z属于x,有(1) (正定性)(x,y)0d=。
当且仅当x yd≥,且(x,y)0=; (2)(对称性) (,)(,)d x y d y x =;(3) (三角不等式) (,)(,)(,)d x y d x z d y z ≤+,则称d 为集合x 的一个度量(或距离)。
称偶对(X ,d ) 为一个度量空间,或者称x 为一个对于度量d 而言的度量空间。
度量空间中最为我们所熟知的是三维欧氏空间,这个空间中的度量定义为连接该两点线段的长度。
2 、泛函分析所要研究的主要是实数域或复数域上完备的赋范线性空间。
这类空间称为巴拿赫空间,巴拿赫空间中最重要的特例称为希尔伯特空间。
希尔伯特空间可以利用以下结论来完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。
对于有限维希尔伯特空间而言, 其上的连续线性算子即是线性代数中所研究的线性变换。
对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50) 上的态射, 所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。
希尔伯特空间中个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。
该问题在某些特定情况下的答案是肯定的。
3 、巴拿赫空间理论(Banach space) 是1920 年由波兰数学家巴拿赫(S. Banach)一手创立的, 数学分析中常用的许多空间都是巴拿赫空间及其推广,它们在许多重要的应用。
大多数巴拿赫空间是无穷维空间, 可看成通常向量空间的无穷维推广, 即有|||| sup ||n x x = 。
巴拿赫空间(Banach space) 是一种赋有"长度"的线性空间, 是泛函分析的基本研究对象之一。
数学各个分支的发展为巴拿赫空间理论的完善提供了丰富且生动的素材。
从外尔斯特拉斯,K. (T. W. )以来,人们就己十分关心闭区间[a ,b] 上的连续函数以及它们的一致收敛性。
甚至在19 世纪末,G .阿斯科利就得到[ a ,b ]上一族连续函数之列紧性的判断准则, 后十分成功地应用于常微分方程和复变函数论中。
(二)线性算子出现在各个数学领域中具有线性性质的运算(例如线性代数中的线性变换,微分方程论、积分方程论中大量出现的微分、积分运算、积分变换等)的抽象概括。
它是线性泛函分析研究的重要对象。
关于线性算子的理论不仅在数学的许多分支中有很好的应用, 同时也是盘子物理的数学基础之。
中国物理学界习惯上把算子称为算符。
设X, Y 是两个实数域或复数域上的线性空间,T是X 到Y的映射。
T的定义域和值域分别记为D(T),R(T)。
如果对任何数α ,β和 x1,x2∈D(T),满足αx1+βx2∈ D (T ) ,并且T(αx1+βx2)= αTx1+βTx2,则称T是以D (T ) 为定义域的X 到Y的线性算子。
特别当D(T) = X, Y是实数域或复数域时,则称T 是X 上的线性泛函。
设T1, T2是x 到y 的线性算子,它们的定义域分别是D(T1) ,D(T2)。
对任一数α ,规定α T1表示以D (T1) 为定义域,而对任何x∈D (T1),有αT1X=α(T1X)的算子。
规定T1+T2表示以D (T1)∩D(T2) 为定义域,而对任何X∈D (T1)∩D(T2) ,有(T1+T2)x= T1x+ T2x的算子。
易知。
αT1(称T1的α倍),T1+T2(称T1与T2的和)仍是线性算子。
又设T3为定义域的Y 到z 的线性算子,规定T3? T1(也记做T3T1),表示以{}131|(),()D x T x D T x D T=∈∈为定义域而对任何x ∈ D ,有(T3? T1)x= T3?(T1x)的算子。
(三)泛函分析的主要定理包括1. 一致有界定理,该定理描述族在界算子的性质。
2. 谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学数学描述中起核心作用。
3. 罕-巴拿赫定理(Hahn-Banach Theorem) 研究了如何保范地将某算子从某子空间延拓到整个空间。
另一个相关结果则是描述对偶空间非平凡性的。
4. 开映射定理和闭图像定理。
(四) 泛函分析与选择公理泛函分析所研究的空间大都是无穷维的。
而欲证明无穷维向量空间存在一组基,就必须使用佐恩引理。
此外,泛函分析的重要定理大都构建在罕-巴拿赫定理的基础上,而该定理本身正是选择公理弱于布伦素理想定理的一个形式a (五)泛函分析的特点和内容分析学是研究实数与复数及其函数关系的数学分支。
它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。
而泛函分析正是分析学发展的高级形态。
泛函分析的特点在于它不但把古典分析中的基本概念和方法一般化了,而且还把这些概念和方法几何化了。
比如,将不同类型的函数看作"函数空间"中的点或矢量,最终得到了"抽象空间" 的概念。
它同时包含了以前讨论过的几何对象与不同的函数空间。
泛函分析是研究现代物理学的一个有力工具。
n 维空间可以用来描述具有n 自由度力学系统的运动,因而描述无穷自由度力学系统的数学工具应运而生。
正如研究有穷自由度系统要求有限维空间的几何学和微积分学作为工具一样,研究无穷自由度系统则需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。
因此,泛函分析也可称为无穷维空间的几何学和微积分学。
古典分析中的基本方法,也就是极限方法,仍可以运用到泛函分析这门学科中。
泛函分析是分析数学中最"年轻" 的分支,它是古典分析观点的推广,它综合运用函数论、几何和代数观点来研究无穷维向盘空间上的函数、算子、和极限理论。
它于20 世纪40 到50 年代臻于完善。
半个多世纪来,泛函分析一方丽从其他学科提供素材中提取自己的研究对象和研究手段,并形成了诸如算子谱论、巴拿赫代数论、拓扑线性空间论、广义函数论等许多重要分支: 另一方而,它强有力地推动着其他分析学科的发展,在微分方程、概率论、函数论、连续介质力学、孟子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,既是建立群上调和分析论的基本工具,也是研究无穷自由度物理系统的重要而自然的工具之一。
今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。
三、泛函分析在数值分析中的应用事实上,泛函分析是整个现代数学的基础性学科,其理论成果与研究方法广泛应用于数学以及物理学等基础自然科学之中。
鉴于论题及需要所限,本文仅对泛函分析在数值分析中的部分应用做出简要说明,而作为个工学硕士研究生而言,对数值分析的应用则主要集中在六个方丽求解非线性方程或方程组、求解线性方程组、插值与逼近、数值积分与微分、矩阵本征求解与求解常微分方程或方程组,故,本文仅对泛函分析在数值分析以上领域中的应用做出探讨。
涉及以上六个领域的数值求解问题,大体可以分为两类:其一为寻优性问题,即不知解而求之: 其二为逼近性问题,即不知解而近之。
研究第一类问题的核心在于保证寻优过程的收敛性与最优解的存在性,而研究第二类问题的核心在于逼近过程的收敛性与运算结果的准确性。
用泛函分析的语言说,第一类问题就是算子不动点的存在性问题,第二类问题就是线性算子列的收敛性与一致有界性的问题。
下面分别加以论述。
关于用泛函分析理论解析第一类问题的任务可由巴拿赫压缩映射原理来完成。
此定理指出,完备度量空间上压缩映射必存在唯一的不动点。
所谓压缩映射,就是指使象集中任意两点间的距离必小于其所对应的原象之间的距离的映射,而一切巴拿赫空间必是完备的度量空间。
所以要论证巴拿赫空间中寻优过程的收敛性与最优解的存在性,只需要证明该寻优过程所对应的映射是巴拿赫空间上面的压缩映射即可。
该定理可用于证明线性或非线性方程或方程组,微分方程及积分方程等问题解的唯一性。
关于用泛函分析理论解析第二类问题的任务可由共鸣定理来完成。
共鸣定理指出,巴拿赫空间上的有界线性算子列必在算于范数的意义下致有界。
因此,要论证巴拿赫空间中逼近过程的收敛性与运算结果的准确性,只需要证明该逼近过程所对应的算子列是有界线性算子列即可。
该定理可用于说明Fourier 级数的发散问题,Lagrange 插值公式的发散性问题与机械求积公式的收敛性问题等等。
四、小结上文简要说明了数学学科的概况,泛函分析的基本内容及其在数值分析中的应用。
事实上,泛函分析科学体系的建立得益于20 世纪初关于巴拿赫空间的三大基本定理,即Hahn-Banach 定理,共鸣定理和开映射、逆算子及闭图像定理。