第四章指数函数与对数函数章测试题
- 格式:doc
- 大小:456.96 KB
- 文档页数:6
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数典型例题单选题1、函数y=|lg(x+1)|的图像是()A.B.C.D.答案:A分析:由函数y=lgx的图象与x轴的交点是(1,0)结合函数的平移变换得函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),即可求解.由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),显然四个选项只有A选项满足.故选:A.2、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足L=5+lgV.已知某同学视力的五分记录法的数据为10≈1.259)4.9,则其视力的小数记录法的数据为()(√10A .1.5B .1.2C .0.8D .0.6答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解.由L =5+lgV ,当L =4.9时,lgV =−0.1,则V =10−0.1=10−110=√1010≈11.259≈0.8. 故选:C. 3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916)答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0与y =12x +m 的图像,然后通过数形结合求出答案. 函数f (x )={−2x, x <0,−x 2+2x,x ≥0 的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0, 若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916.故m ∈(0,916). 故选:D .4、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e )D .(0,√e ) 答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解.f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a), y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x=0处取到(虚取),此时a=√e,故当a<√e时y=e−x−12和y=ln(x+a)的图像存在交点,故选:B.5、已知函数f(x)=11+2x,则对任意实数x,有()A.f(−x)+f(x)=0B.f(−x)−f(x)=0C.f(−x)+f(x)=1D.f(−x)−f(x)=13答案:C分析:直接代入计算,注意通分不要计算错误.f(−x)+f(x)=11+2−x +11+2x=2x1+2x+11+2x=1,故A错误,C正确;f(−x)−f(x)=11+2−x −11+2x=2x1+2x−11+2x=2x−12x+1=1−22x+1,不是常数,故BD错误;故选:C.6、已知对数式log(a+1)24−a(a∈Z)有意义,则a的取值范围为()A.(−1,4)B.(−1,0)∪(0,4)C.{1,2,3}D.{0,1,2,3}答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可.由题意可知:{a +1>0a +1≠124−a>0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0. ∵a ∈Z ,∴a 的取值范围为{1,2,3}.故选:C.7、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间.{10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120 ,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.8、设2a =5b =m ,且1a +1b =2,则m =( )A .√10B .10C .20D .100答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m 2,1b =log m 5,进而结合对数的运算公式,即可求解.由2a =5b =m ,可得a =log 2m ,b =log 5m ,由换底公式得1a =log m 2,1b =log m 5,所以1a +1b =log m 2+log m 5=log m 10=2,又因为m >0,可得m =√10.故选:A.9、化简√a3b2√ab23(a 14b12)4⋅√ba3(a>0,b>0)的结果是()A.ba B.abC.a2bD.b2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可. √a3b2√ab23(a 14b12)4⋅√ba3=a32b⋅a16b13(a14b12)4⋅a−13⋅b13=a32+16−1+13b1+13−2−13=ab−1=ab故选:B10、方程log2x=log4(2x+3)的解为()A.−1B.1C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.填空题11、函数f(x)=1x+1+lnx的定义域是____________.答案:(0,+∞)分析:根据分母不为零、真数大于零列不等式组,解得结果.由题意得{x>0x+1≠0,∴x>0所以答案是:(0,+∞)小提示:本题考查函数定义域,考查基本分析求解能力,属基础题.]的值域为______.12、函数f(x)=4x−2x+1+3在(−∞,12答案:[2,3)分析:令2x=t,结合二次函数的性质即可得出答案.解:f(x)=(2x)2−2×2x+3=(2x−1)2+2,设2x=t,]时,0<t≤√2,所以2≤(t−1)2+2<3,当x∈(−∞,12]的值域为[2,3).所以f(x)在(−∞,12所以答案是:[2,3).13、若a>0且a≠1,则函数f(x)=a x−4+3的图像恒过的定点的坐标为______.答案:(4,4)分析:任意指数函数一定过定点(0,1),根据该性质求解.令x−4=0,得x=4,所以f(4)=a0+3=4,所以函数f(x)=a x−4+3的图像恒过定点(4,4).所以答案是:(4,4)14、设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底数),则x2、y2的算术平均值的最小值为__________.答案:1分析:利用指数的运算性质可得出x+y=2,再利用基本不等式可求得结果.由已知条件可得e x⋅e y=e x+y=e2,所以,x+y=2,因为x>0,y>0,由基本不等式可得x2+y2≥2xy,≥1,即2(x2+y2)≥x2+y2+2xy=(x+y)2=4,所以,x2+y22当且仅当x=y=1时,等号成立.因此,x 2、y 2的算术平均值的最小值为1.所以答案是:1.15、计算:2√3×√126×√323=___________. 答案:6分析:根据根式指数幂的互化,以及指数幂的运算性质,准确运算,即可求解.根据根式指数幂的互化,以及指数幂的运算性质,可得2√3×√126×√323=2⋅312⋅(22⋅3)16⋅(32)13=21+13−13⋅312+16+13=2×3=6. 所以答案是:6解答题16、某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为r 0mg /m 3,首次改良工艺后所排放的废气中含有的污染物数量为r 1mg /m 3,第n 次改良工艺后所排放的废气中含有的污染物数量为r n mg /m 3,则可建立函数模型r n =r 0−(r 0−r 1)⋅50.5n+P (P ∈R ,n ∈N ∗),其中n 是指改良工艺的次数.已知r 0=2,r 1=1.94(参考数据:lg2≈0.3).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过0.08mg /m 3,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?答案:(1)r n =2−0.06⋅50.5n−0.5(n ∈N ∗);(2)6.分析:(1)将r 0=2,r 1=1.94代入函数模型解解得答案;(2)结合题意,解出指数不等式即可.(1)根据题意,1.94=2−(2−1.94)⋅50.5+P ⇒P =−0.5,所以该函数模型的解析式为r n =2−0.06⋅50.5n−0.5(n ∈N ∗).(2)由(1),令r n =2−0.06⋅50.5n−0.5≤0.08⇒50.5n−0.5≥32⇒(0.5n −0.5)lg5≥5lg2⇒n ≥10lg2lg5+1, 则n ≥10×0.30.7+1,10×0.30.7+1≈5.3,而n ∈N ∗,则n ≥6.综上:至少进行6次改良工艺才能使该企业所排放的废气中含有的污染物数量达标.17、若函数y =3x 2−5x +a 的两个零点分别为x 1,x 2,且有−2<x 1<0,1<x 2<3,试求出a 的取值范围. 答案:−12<a <0.分析:根据题意,利用二次函数的性质和根的分布,列出不等式组,即可求出实数a 的取值范围.令f (x )=3x 2−5x +a ,则{f(−2)>0f(0)<0f(1)<0f(3)>0得a 的取值范围是−12<a <0. 故实数a 的取值范围为−12<a <0.小提示:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.18、数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a >0,且a ≠1,M >0,那么log a M n =nlog a M (n ∈R );(2)请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值; (3)因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注lg2019≈3.305)答案:(1)见解析(2)1712 (3)20192020的位数为6677解析:(1)根据指数与对数的转换证明即可.(2)根据对数的运算性质将真数均转换成指数幂的形式再化简即可.(3)分析lg20192020的值的范围再判断位数即可.(1)方法一:设x=log a M所以M=a x所以M n=(a x)n=a nx所以log a M n=nx=nlog a M,得证. 方法二:设x=nlog a M所以xn=log a M所以a xn=M所以a x=M n所以x=log a M n所以nlog a M=log a M n方法三:因为a log a M n=M na nlog a M=(a log a M)n=M n 所以a log a M n=a nlog a M所以log a M n=nlog a M得证.(2)方法一:lg3 lg4(lg8lg9+lg16lg27)=lg3lg22(lg23lg32+lg24lg33) =lg32lg2(3lg22lg3+4lg23lg3)=lg32lg2⋅17lg26lg3=1712.方法二:lg3 lg4(lg8lg9+lg16lg27)=log43(log98+log2716) =log223(log3223+log3324)=12log23(32log32+43log32)=12log23⋅176log32=1712.(3)方法一:设10k<20192020<10k+1,k∈N∗所以k<lg20192020<k+1所以k<2020lg2019<k+1所以k<2020×3.305<k+1所以6675.1<k<6676.1因为k∈N∗所以k=6676所以20192020的位数为6677方法二:设20192020=N所以2020lg2019=lgN所以2020×3.305=lgN所以lgN=6676.1所以N=106676.1=100.1×106676因为1<100.1<10,所以N有6677位数,即20192020的位数为6677小提示:本题主要考查了对数的运算以及利用对数的运算求解数字位数的问题,需要取对数分析对数值进行分析,属于中档题.19、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x2+x−2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果.(2)由题意两次利用完全平方公式,计算求得结果.(1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x−12=√6,∴x+1x+2=6,x+1x=4,∴x2+x﹣2+2=16,∴x2+x﹣2=14.。
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
第四章 指数函数与对数函数4.1实数指数幂1.选择题(1)下列根式无意义的是( ) A.32 B.0 C.41- D.35-(2)0π= ( )A. πB. 1C. 3.14D. 0 (3)42-= ( )A. 8B. -8C. -16D. 16(4)下列运算中,正确的是( )A. 3332552=•B. 3332552=÷ C. 3)3(2552= D. 0335252=•-(5)=-31)64(( )A. -4B. 4C. -8D. 8(6)=÷•84222( )A. 432B. 852 C.2 D. 2(7)下列各函数中,不是幂函数的是( ) A. 12+-=x x y B.x y 1=C. x y =D. 3-=x y(8)函数2-=x y 的图像经过点( )A. ()1,1--B. ()0,0C. ()2,1-D. ⎪⎭⎫⎝⎛41,2(9)函数3x y =的图像是 ( )A. 关于x 轴对称B. 关于y 轴对称C. 关于原点轴对称D. 不具有对称性 2.填空题(1)=25 ,=-327 ,=50 ,=-2)3( ; (2)18的4次算术根可以表示为 ,其中根指数是 ,被开方数是 ; (3)=04 ,=-24,=214 ,=-214;(4)设a >0,216531a a a ÷•= ; (5)设a >0,b >0,=•-62132)(b a ;(6)()2121233•⎥⎦⎤⎢⎣⎡--= ;(7)幂函数在第一象限的图像经过点 ;(8)函数21x y =的定义域是 ,且在定义域内为 函数(填单调性);(9)函数4x y =的定义域是 ,该函数为 函数(填奇偶性)3.将下列各分数指数幂写成根式的形式: (1)32a (2)353-4. 将下列各根式写成分数指数幂的形式:(1)33 (2)541a5.化简计算下列各式:(1)()()()2123213--÷•ab ab b a ; (2)21313121ba baba(3)213165--÷•a a a (4)41652134132⎪⎪⎭⎫ ⎝⎛••⎪⎪⎭⎫ ⎝⎛•-a a a a6.计算下列各式的值:(1)40597218)37(⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛⨯ (2)()31021125.02394-+++⎪⎭⎫ ⎝⎛(3) 0213430012.025.0381⨯+⨯-- (4)()()021312197271027.0--⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛---7.球下列各函数的定义域:(1)23x y = (2)3-=x y (3)21-=x y8. 已知幂函数的图像经过点⎪⎭⎫ ⎝⎛41,8,求f (27)的值4.2指数函数1.选择题:(1)下列函数中,为指数函数的是( )A. x y =B. 2-=x yC. xy π= D. ()x y 3-=(2)下列各函数中,在()+∞∞-,内为减函数的是( ) A. ()xy 2=B. xy 4= C. xy -=3D. x y 10=(3)函数xy 25.0=的图像经过点( )A. (0,1)B. (1,0)C. (1,1)D. (0.25,1)(4)下列各函数模型中,为指数增长型的是( )A. xy 09.17.0⨯= B. x y 95.0100⨯= C. x y 35.05.0⨯= D.xy ⎪⎭⎫ ⎝⎛⨯=322 (5) 一辆价值30万的汽车,按每年20%的折旧率折旧,设x 年后汽车价值y 万元,则y与x 的函数解析式为 ( )A. x y 2.030⨯=B. x y 8.030⨯=C. x y 2.130⨯=D. xy 3.020⨯=(6) 某城市现有人口100万,根据最近20年的统计资料,这个城市人口的年自然增长率为1.2%,按这个增长率计算10年后这个城市的人口预计有( )万。
A、3.232<3.222D、0.232<0.2222020届中职数学第四章单元检测《指数函数与对数函数》(满分100分,时间:90分钟)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.81的四次方根是()A、3B、4C、±3D、±42.已知10lg3=()A.-3B.lg3C.3D.103.函数y=2x的图像是()y yyyo x o xo xo xA B C D4.下列各式中正确的是()11B、0.22-1<0.23-1C、2.1-1>2.2-1115.函数f(x)=a x-2+1(a>0,a≠1)的图像恒过定点()A.(0,1)B.(0,2)C.(2,1)D.(2,2)6.下列函数在区间(0,+∞)上是减函数的是()A、y=x12B、y=x13C、y=x-2D、y=x27.设函数f(x)=log x(a>0且a≠1),f(4)=2,则f(8)=()a11A.2B.2C.3D.38.若幂函数y=x a的图像过点P(1,64),则a等于()4A.y=x314.(8)-3+814=_________________A、-3B、3C、-4D、169.下列是幂函数且定义域为R的函数是()1 B.y=2x2 C.y=x-2 D.y=(-1)x310.2⋅38464=()A、4B、2158C、272D、8二、填空题(共8小题,每题4分,共32分)11.lg25+lg40=______12.log2256-(sin1)0=______13.(a3)2÷(-a)2=____________132715.函数y=lg(-x2+5x+6)的定义域是________________16.设53x-3<1,则x的取值范围为__________________17.用不等号连接:(1)log5log6,(2)0.530.632218.若4x=3,log4=y,则x+y=;43三、解答题(共38分)19.解不等式(3-x)<1(6分)0.320.解不等式log(2-x)>1(8分)1222.函数 f ( x ) = x n ,且它的图像经过点 (3, ) ,求 f(4)的值。
第四章指数函数、对数函数与及幂函数单元测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.a 2等于( )A .|a |B .-aC .a 2D .a答案 A解析 由根式的性质,得a 2=|a |.A .6aB .-aC .-9aD .9a答案 C3.函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞)C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞)D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 答案 C解析 要使函数f (x )有意义,需使(log 2x )2-1>0,即(log 2x )2>1,∴log 2x >1或log 2x <-1.解得x >2或0<x <12.故所求函数的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞),选C.4.已知=13,则x =( ) A.12 B.22C .2 D. 2 答案 D5.已知函数y =g (x )的图像与函数y =3x 的图像关于直线y =x 对称,则g (2)的值为( )A .9 B. 3 C. 2 D .log 32答案 D解析 依题意可得,g (x )=log 3x ,∴g (2)=log 32.6.下列函数中,在(-∞,0)上是增函数的是( )A .y =lg xB .y =3xC .y =x -1D .y =-(x +1)2答案 B解析 函数y =lg x 在(-∞,0)上无意义,函数y =x -1在(-∞,0)上是减函数,函数y =-(x +1)2在(-∞,0)上先增后减,函数y =3x 在R 上是增函数,在(-∞,0)上也是增函数.7.已知函数f (x )=2x -12x +1,若f (a )=b ,则f (-a )=( ) A .b B .-b C.1b D .-1b答案 B解析 因为函数f (x )=2x -12x +1为奇函数,所以f (-a )=-f (a )=-b ,故选B.8.已知函数y =-2x 3+2,则该函数在区间[0,2]上的平均变化率为( )A .8B .-8C .16D .-16答案 B解析 由题意可知x 1=0,x 2=2,所以y 1=-2×0+2=2,y 2=-2×23+2=-14,所以Δx =x 2-x 1=2,Δy =y 2-y 1=-14-2=-16.所以该函数在区间[0,2]上的平均变化率为Δy Δx =-162=-8,故选B. 9.已知函数f (x )=2x -2,则函数y =|f (x )|的图像可能是( )答案 B解析 y =|f (x )|≥0,排除C ;取x =12,则y =⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫12=|2-2|=2-2<1,排除D ;取x =-12,y =⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫-12=⎪⎪⎪⎪⎪⎪⎪⎪12-2=2-22>1,排除A ,故选B. 10.三个数a =70.3,b =0.37,c =ln 0.3的大小顺序是( )A .a >b >cB .a >c >bC .b >a >cD .c >a >b答案 A解析 ∵a =70.3>1,0<b =0.37<1,c =ln 0.3<0,∴a >b >c .11.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为( )A .-4B .4C .-6D .6答案 A解析 由题意,得f (0)=0,即1+m =0,所以m =-1.所以f (-log 35)=-f (log 35)==-4.12.已知a ,b 是方程log (3x )3+log 27(3x )=-43的两个根,则a +b =( )A.1027B.481C.1081D.2881答案 C解析 log (3x )3+log 27(3x )=-43,即1log 3(3x )+log 3(3x )3=-43,令t =log 3(3x ),则1t +t 3=-43,即t 2+4t +3=0,所以t =-1或t =-3,所以log 3(3x )=-1或log 3(3x )=-3,即x =19或x =181,所以a +b =1081,选C. 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.函数f (x )=-a 2x -1+2(a >0且a ≠1)恒过定点的坐标是________.答案 ⎝ ⎛⎭⎪⎫12,1 解析 令2x -1=0,解得x =12,又f ⎝ ⎛⎭⎪⎫12=-a 0+2=1,∴f (x )恒过定点⎝ ⎛⎭⎪⎫12,1. 14.已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >0,3x ,x ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫14的值是________.答案 19解析 因为f ⎝ ⎛⎭⎪⎫14=log 214=-2,而f (-2)=3-2=19,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫14=f (-2)=19. 15.关于x 的方程lg x 2-lg (x +2)=0的解集是________. 答案 {-1,2}解析 由⎩⎪⎨⎪⎧ x 2>0,x +2>0,x 2=x +2,得x =2或x =-1. 16.关于x 的方程⎝ ⎛⎭⎪⎫29x =2m -3有负根,则实数m 的取值范围是________.答案 m >2解析 方程有负根,即当x <0时,⎝ ⎛⎭⎪⎫29x =2m -3有解,∵当x <0时,⎝ ⎛⎭⎪⎫29x >1,∴2m -3>1.∴m >2. 三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设f (x )为奇函数,且当x >0时,f (x )=log 12x . (1)求当x <0时,f (x )的解析式;(2)解不等式f (x )≤2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ),又因为f (x )为奇函数,所以f (x )=-f (-x )=-log 12(-x ). (2)由题意及 (1),知原不等式等价于⎩⎪⎨⎪⎧ x >0,log 12 x ≤2或⎩⎪⎨⎪⎧x <0,-log 12 (-x )≤2, 解得x ≥14或-4≤x <0.18.(本小题满分12分)众所周知,大包装商品的成本要比小包装商品的成本高.某种品牌的饼干,其100克装的售价为1.6元,200克装的售价为3元,假定该商品的售价由三部分组成:生产成本、包装成本、利润.生产成本与饼干质量成正比,包装成本与饼干质量的算术平方根(估计值)成正比,利润率为20%,试计算该种饼干1000克装的合理售价(精确到0.1元).解 设饼干的质量为x 克,则其售价y (元)与x (克)之间的函数关系式为y =(ax +b x )(1+20%).由已知有1.6=(a ·100+b 100)×1.2,即43=100a +10b ,① 3=(a ·200+b 200)×1.2,即2.5=200a +102b .②联立①②解方程组,得⎩⎪⎨⎪⎧ b ≈0.0285,a ≈0.0105,∴y =(0.0105×x +0.0285x )×1.2.当x =1000时,y ≈13.7,∴该种饼干1000克装的合理售价约为13.7元.19.(本小题满分12分)已知函数f (x )=1-2a x -a 2x (a >0,且a ≠1).(1)当a =3时,求函数f (x )的值域;(2)当a >1,x ∈[-2,1]时,f (x )的最小值为-7,求a 的值. 解 (1)当a =3时,函数f (x )=1-2·3x -32x ,令t =3x (t >0),则g (t )=-t 2-2t +1=-(t +1)2+2,因为t >0,所以-(t +1)2+2<1,即f (x )<1,故所求函数的值域为(-∞,1).(2)由(1)可得f (x )=-(a x +1)2+2,因为a >1,所以函数y=a x 为单调递增函数且y >0,所以函数f (x )为单调递减函数,由f (x )的最小值为-7,得f (1)=-7,所以-(a 1+1)2+2=-7且a >1,解得a =2,故所求a 的值为2.20.(本小题满分12分)已知函数f (x )=-x +log 21-x 1+x. (1)求f ⎝ ⎛⎭⎪⎫12020+f ⎝ ⎛⎭⎪⎫-12020的值; (2)当x ∈(-a ,a ](其中a ∈(0,1))时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.解 (1)因为函数f (x )的定义域是(-1,1),f (-x )=x +log 21+x 1-x =-(-x )+log 2⎝ ⎛⎭⎪⎪⎫1-x 1+x -1=-⎝ ⎛⎭⎪⎪⎫-x +log 21-x 1+x =-f (x ),即f (x )+f (-x )=0,所以f ⎝ ⎛⎭⎪⎫12020+f ⎝ ⎛⎭⎪⎫-12020=0. (2)令t =1-x 1+x =-1+21+x, 则t =-1+21+x在(-1,1)上单调递减. 又y =log 2t 在(0,+∞)上单调递增,所以f (x )=-x +log 21-x 1+x在(-1,1)上单调递减. 所以当x ∈(-a ,a ](其中a ∈(0,1))时,函数f (x )存在最小值,f (x )min =f (a )=-a +log 21-a 1+a.21.(本小题满分12分)设f (x )=lg 1+2x +4x a 3,且当x ∈(-∞,1]时,f (x )有意义,求实数a 的取值范围.解 欲使x ∈(-∞,1]时,f (x )有意义,需1+2x +4x a >0恒成立,即a >-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x . 令u (x )=-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x . ∵u (x )=-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x 在(-∞,1]上是增函数, ∴当x =1时,u (x )max =-34. 于是可知,当a >-34时,满足题意, 即实数a 的取值范围为⎝ ⎛⎭⎪⎫-34,+∞. 22.(本小题满分12分)已知常数a (a >1)及变量x ,y 之间存在关系式log a x +3log x a -log x y =3.(1)若x =a t (t ≠0),用a ,t 表示y ;(2)若已知(1)中的t 在区间[1,+∞)内变化时,y 有最小值8,则这时a 的值是多少?x 的值是多少?解 (1)用换底公式可将原方程化为log a x +3log a x -log a y log a x=3,若x =a t (t ≠0),则t =log a x ≠0,故有t +3t -log a y t=3, 整理,得log a y =t 2-3t +3,∴y =at 2-3t +3(t ≠0).。
高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
高一数学(必修一)《第四章 指数函数与对数函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.某超市宣传在“双十一”期间对顾客购物实行一定的优惠,超市规定:①如一次性购物不超过200元不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去该超市购物分别付款176元和441元,如果他只去一次购买同样的商品,则应付款( )A .608元B .591.1元C .582.6元D .456.8元2.德国天文学家,数学家开普勒(J. Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为( )A .4329dB .30323dC .60150dD .90670d3.函数()f x = )A .()1,0-B .(),1-∞-和()0,1C .()0,1D .(),1-∞-和()0,∞+4.将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90100a <<B .90110a <<C .100110a <<D .80100a <<5.某市工业生产总值2018年和2019年连续两年持续增加,其中2018年的年增长率为p ,2019年的年增长率为q ,则该市这两年工业生产总值的年平均增长率为( )A .2p q +;B .()()1112p q ++-;C ;D 1.6.某污水处理厂为使处理后的污水达到排放标准,需要加入某种药剂,加入该药剂后,药剂的浓度C (单位:3mg/m )随时间t (单位:h )的变化关系可近似的用函数()()()210010419t C t t t t +=>++刻画.由此可以判断,若使被处理的污水中该药剂的浓度达到最大值,需经过( )A .3hB .4hC .5hD .6h7.某同学参加研究性学习活动,得到如下实验数据:以下函数中最符合变量y 与x 的对应关系的是( )A .129y x =+B .245y x x =-+C .112410x y =⨯- D .3log 1y x =+ 8.某种植物生命力旺盛,生长蔓延的速度越来越快,经研究,该一定量的植物在一定环境中经过1个月,其覆盖面积为6平方米,经过3个月,其覆盖面积为13.5平方米,该植物覆盖面积y (单位:平方米)与经过时间x (x ∈N )(单位:月)的关系有三种函数模型x y pa =(0p >,1a >)、log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)可供选择,则下列说法正确的是( )A .应选x y pa =(0p >,1a >)B .应选log a y m x =(0m >,1a >)C .应选y nx α=(0n >,01α<<)D .三种函数模型都可以9.已知函数()21,1,8, 1.x x f x x x ⎧-≤=⎨>⎩若()8f x =,则x =( ) A .3-或1 B .3- C .1 D .310.函数e 1()sin 2e 1x x f x x +=⋅-的部分图象大致为( ) A . B .C .D .二、填空题11.2021年8月30日第九届未来信息通信技术国际研讨会在北京开幕.研讨会聚焦于5G 的持续创新和演进、信息通信的未来技术前瞻与发展、信息通信技术与其他前沿科技的融合创新.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫作信噪比.若不改变信道带宽W ,而将信噪比S N从11提升至499,则最大信息传递速率C 大约会提升到原来的______倍(结果保留1位小数).(参考数据:2log 3 1.58≈和2log 5 2.32≈)12.已测得(,)x y 的两组值为(1,2)和(2,5),现有两个拟合模型,甲21y x =+,乙31y x =-.若又测得(,)x y 的一组对应值为(3,10.2),则选用________作为拟合模型较好.13.半径为1的半圆中,作如图所示的等腰梯形ABCD ,设梯形的上底2BC x =,则梯形ABCD 的最长周长为_________.三、解答题14.如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?15.以贯彻“节能减排,绿色生态”为目的,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (百元)与月处理量x (吨)之间的函数关系可近似地表示为212800200y x x =-+. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(提示:平均处理成本为y x) (2)该单位每月处理成本y 的最小值和最大值分别是多少百元? 16.如图,以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系O xyz -,点P 在线段AB 上,点Q 在线段DC 上.(1)当2PB AP =,且点P 关于y 轴的对称点为M 时,求PM ;(2)当点P 是面对角线AB 的中点,点Q 在面对角线DC 上运动时,探究PQ 的最小值.17.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t ,100150)X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100X ∈,110),则取105X =,且105X =的概率等于需求量落入[100,110)的频率),求T 的分布列.18.为发展空间互联网,抢占6G 技术制高点,某企业计划加大对空间卫星网络研发的投入.据了解,该企业研发部原有100人,年人均投入()0a a >万元,现把研发部人员分成两类:技术人员和研发人员,其中技术人员有x 名(*x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加4x %,技术人员的年人均投入调整为275x a m ⎛⎫- ⎪⎝⎭万元. (1)要使调整后研发人员的年总投入不低于调整前的100人的年总投入,则调整后的技术人员最多有多少人?(2)是否存在实数m 同时满足两个条件:①技术人员的年人均投入始终不减少;②调整后研发人员的年总投入始终不低于调整后技术人员的年总投入?若存在,求出m 的值;若不存在,请说明理由.19.某公司今年年初用81万元收购了一个项目,若该公司从第1年到第x (N x +∈且1x >)年花在该项目的其他费用(不包括收购费用)为()20x x +万元,该项目每年运行的总收入为50万元.(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以56万元的价格卖出;②当年平均盈利最大时,以92万元的价格卖出.假如要在这两种方案中选择一种,你会选择哪一种?请说明理由.20.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ekt P P -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,求正整数n 的最小值.21.某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x (0200x <,N x ∈)台,若年产量不足70台,则每台设备的额外成本为11402y x =+万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为2264002080101y x x =+-万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)写出年利润W (万元)关于年产量x (台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?22.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)a y b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.四、多选题23.函数()()22x x af x a R =+∈的图象可能为( )A .B .C .D .五、双空题24.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt (其中k 为常数;t 表示时间,单位:小时;y 表示病毒个数),则k=____,经过5小时,1个病毒能繁殖为____个.25.已知长为4,宽为3的矩形,若长增加x ,宽减少2x ,则面积最大,此时x =__________,面积S =__________.参考答案与解析1.【答案】B【分析】根据题意求出付款441元时的实际标价,再求出一次性购买实际标价金额商品应付款即可.【详解】由题意得购物付款441元,实际标价为10441=4909元 如果一次购买标价176+490=666元的商品应付款5000.9+1660.85=591.1元.故选:B.2.【答案】B【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r =''2r r '= 结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r土星的公转时间为T ',距离太阳的平均距离为r '由题意知2r r '= 10753T d '= 所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭所以1075310753 2.82830409.484T d '==≈⨯=故选:B.3.【答案】B【分析】分别讨论0x ≥和0x <,利用二次函数的性质即可求单调递减区间.【详解】当0x ≥时()f x 210x -+≥解得11x -≤≤,又21y x =-+为开口向下的抛物线,对称轴为0x =,此时在区间()0,1单调递减当0x <时()f x == ()21y x =+为开口向上的抛物线,对称轴为1x =-,此时在(),1-∞-单调递减综上所述:函数()f x =(),1-∞-和()0,1.故选:B.4.【答案】A【分析】首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据0y >,求x 的取值范围,即可得到a 的取值范围.【详解】设每个涨价x 元,涨价后的利润与原利润之差为y 元则290,(10)(40020)1040020200a x y x x x x =+=+⋅--⨯=-+.要使商家利润有所增加,则必须使0y >,即2100x x -<,得010,9090100x x <<∴<+<,所以a 的取值为90100a <<.故选:A5.【答案】D【分析】设出平均增长率,并根据题意列出方程,进行求解【详解】设该市2018、2019这两年工业生产总值的年平均增长率为x ,则由题意得:()()()2111x p q +=++解得11x =,21x =因为20x <不合题意,舍去 故选D .6.【答案】A【分析】利用基本不等式求最值可得.【详解】依题意,0t >,所以11t +>所以()()()()()()221001100110010010164191012116121t t C t t t t t t t ++===≤==++++++++++ 当且仅当1611t t +=+,即t =3时等号成立,故由此可判断,若使被处理的污水中该药剂的浓度达到最大值,需经过3h .故选:A .7.【答案】D 【分析】结合表格所给数据以及函数的增长快慢确定正确选项.【详解】根据表格所给数据可知,函数的增长速度越来越慢A 选项,函数129y x =+增长速度不变,不符合题意. BC 选项,当3x ≥时,函数245y x x =-+、112410x y =⨯-增长越来越快,不符合题意. D 选项,当3x ≥时,函数3log 1y x =+的增长速度越来越慢,符合题意.故选:D8.【答案】A【解析】根据指数函数和幂函数的增长速度结合题意即可得结果.【详解】该植物生长蔓延的速度越来越快,而x y pa =(0p >,1a >)的增长速度越来越快 log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)的增长速度越来越慢故应选择x y pa =(0p >,1a >).故选:A.9.【答案】B【分析】根据分段函数的解析式,分段求解即可.【详解】根据题意得x ≤1x2−1=8或188x x >⎧⎨=⎩ 解得3,x =-故选:B10.【答案】B【分析】结合图象,先判断奇偶性,然后根据x 趋近0时判断排除得选项.【详解】解:()e 1sin 2e 1x x f x x +=⋅-的定义域为()(),00,∞-+∞()()()e 1e 1sin 2sin 2e 1e 1x x x xf x x x f x --++-=⋅-=⋅=⎡⎤⎣⎦-- ()f x ∴是偶函数,排除A ,C . 又0x >且无限接近0时,101x x e e +>-且sin 20x >,∴此时()0f x >,排除D故选:B .11.【答案】2.5【分析】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,根据题意求出21C C ,再利用指数、对数的运算性质化简计算即可【详解】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,则由题意可知()122log 111log 12C W W =+= ()222log 1499log 500C W W =+= 所以()()232322222222122222log 25log 500log 2log 523log 523 2.328.96 2.5log 12log 2log 32log 32 1.58 3.58log 23C W C W ⨯+++⨯====≈=≈+++⨯所以最大信息传递速率C 会提升到原来的2.5倍.故答案为:2.512.【答案】甲【分析】将3x =分别代入甲乙两个拟合模型计算,即可判断.【详解】对于甲:3x =时23110y =+=,对于乙:3x =时8y =因此用甲作为拟合模型较好.故答案为:甲13.【答案】5【分析】计算得出AB CD ==ABCD 的周长为y,可得出22y x =++()0,1t,可得出224y t =-++,利用二次函数的相关知识可求得y 的最大值.【详解】过点B 、C 分别作BE AD ⊥、CF AD ⊥垂足分别为E 、F则//BE CF ,//BC EF 且90BEF ∠=,所以,四边形BCFE 为矩形所以2EF BC x ==AB CD =,BAE CDF ∠=∠和90AEB DFC ∠=∠= 所以,Rt ABE Rt DCF ≅所以12AD EF AE DF x -===-,则OF OD DF x =-= CF =AB CD ∴===设梯形ABCD 的周长为y ,则2222y x x =++=++其中01x <<令()0,1t =,则21x t =-所以()2222212425y t t t ⎛=+-+=-++=-+ ⎝⎭所以,当t =y 取最大值,即max 5y =. 故答案为:5.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.14.【答案】(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.【分析】(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得(502)S x x =-,根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-由题意得(502)300x x -=解得1215,10x x ==50225x -≤12.5x ∴≥15x ∴=所以,AB 的长为15米时,矩形花园的面积为300平方米;(2)由题意得()()22502250212.5312.5,12.525S x x x x x x =-=-+=--+≤<12.5x ∴=时, S 取得最大值,此时312.5S =所以,当 x 为12.5米时, S 有最大值,最大值是312.5平方米.15.【答案】(1)400吨 (2)最小值800百元,最大值1400百元【分析】(1)求出平均处理成本的函数解析式,利用基本不等式求出最值;(2)利用二次函数单调性求解最值.(1)由题意可知,二氧化碳的每吨平均处理成本为18002200y x x x =+-,显然[]400,600x ∈由基本不等式得:1800222200y x x x =+-≥= 当且仅当1800200x x =,即400x =时,等号成立 故每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)212800200y x x =-+ 对称轴220012200x -=-=⨯ 函数212800200y x x =-+在[400,600]单调递增 当400x =时,则2min 14002400800800200y =⨯-⨯+= 当600x =时,则2max 160026008001400200y =⨯-⨯+= 答:该单位每月处理成本y 的最小值800百元,最大值1400百元.16.【答案】【分析】(1)根据空间直角坐标系写出各顶点的坐标,再由2PB AP =求得121,,33OP ⎛⎫= ⎪⎝⎭,得到P 与M 的坐标,再利用两点距离公式求解即可;(2)由中点坐标公式求得111,,22P ⎛⎫ ⎪⎝⎭,再根据题意设点(,1,)Q a a ,最后利用两点间的距离公式与一元二次函数配方法求PQ 的最小值.(1)所以()22211222131133333PM ⎛⎫⎛⎫=++-++= ⎪ ⎪⎝⎭⎝⎭. (2)因为点P 是面对角线AB 的中点,所以111,,22P ⎛⎫ ⎪⎝⎭,而点Q 在面对角线DC 上运动,故设点(,1,)Q a a[0,1]a ∈则(PQ a ===[0,1]a ∈所以当34a =时,PQ 取得最小值33,1,44Q ⎛⎫ ⎪⎝⎭. 17.【答案】(1)80039000,[100,130)65000,[130,150]X X T X -∈⎧=⎨∈⎩(2)0.7(3)59400 【分析】(1)由题意先分段写出,当[100x ∈,130)和[130x ∈,150)时的利润值,利用分段函数写出即可;(2)由(1)知,利润T 不少于57000元,当且仅当120150x ,再由直方图知需求量[120X ∈,150]的频率为0.7,由此估计得出结论;(3)先求出利润与X 的关系,再利用直方图中的频率计算利润分布列,最后利用公式求其数学期望.(1)解:由题意得,当[100X ∈,130)时500300(130)80039000T X X X =--=-当[130X ∈,150]时50013065000T =⨯=80039000,[100,130)65000,[130,150]X X T X -∈⎧∴=⎨∈⎩(2)解:由(1)知,利润T 不少于57000元,当且仅当120150X .由直方图知需求量[120X ∈,150]的频率为0.7所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7;(3)解:由题意及(1)可得:所以T 的分布列为:18.【答案】(1)最多有75人 (2)存在 7m =【分析】(1)根据题目要求列出方程求解即可得到结果(2)根据题目要求①先求解出m 关于x 的取值范围,再根据x 的取值范围求得m 的取值范围,之后根据题目要求②列出不等式利用基本不等式求解出m 的取值范围,综上取交集即可 (1)依题意可得调整后研发人员有()100x -人,年人均投入为()14%x a +万元则()()10014%100x x a a -+≥,解得075x ≤≤.又4575x ≤≤,*x ∈N 所以调整后的奇数人员最多有75人.(2)假设存在实数m 满足条件.由条件①,得225x a m a ⎛⎫-≥ ⎪⎝⎭,得2125x m ≥+. 又4575x ≤≤,*x ∈N 所以当75x =时,2125x +取得最大值7,所以7m ≥. 由条件②,得()()210014%25x x x a a m x ⎛⎫-+≥- ⎪⎝⎭,不等式两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭,整理得100325x m x ≤++因为10033725x x ++≥=,当且仅当10025x x =,即50x =时等号成立,所以7m ≤. 综上,得7m =.故存在实数m 为7满足条件.19.【答案】(1)第4年 (2)选择方案②,理由见解析【分析】(1)设项目运行到第x 年的盈利为y 万元,可求得y 关于x 的函数关系式,解不等式0y >可得x 的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.(1)解:设项目运行到第x 年的盈利为y 万元则()25020813081=-+-=-+-y x x x x x由0y >,得230810x x -+<,解得327x <<所以该项目运行到第4年开始盈利.(2)解:方案①()22308115144=-+-=--+y x x x当15x =时,y 有最大值144.即项目运行到第15年,盈利最大,且此时公司的总盈利为14456200+=万元方案②818130303012y x x x x x ⎛⎫=-+-=-+≤- ⎪⎝⎭ 当且仅当81x x=,即9x =时,等号成立. 即项目运行到第9年,年平均盈利最大,且此时公司的总盈利为12992200⨯+=万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②.20.【答案】10【分析】由题可得()400180%e k P P --=,求得ln 54k =,再由000.5%e kt P P -≥可求解. 【详解】由题意,前4个小时消除了80%的污染物因为0e kt P P -=⋅,所以()400180%ek P P --= 所以40.2e k -=,即4ln0.2ln5k -==-,所以ln 54k =则由000.5%e kt P P -≥,得ln 5ln 0.0054t ≥- 所以4ln 20013.2ln 5t ≥≈ 故正整数n 的最小值为14410-=.21.【答案】(1)2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩;(2)当年产量为80台时,年利润最大,最大值为1320万元.【分析】(1)根据题意,分段表示出函数模型,即可求解;(2)根据题意,结合一元二次函数以及均值不等式,即可求解.(1)当070x <<,*N x ∈时 211100406006060022W x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭; 当70200x ≤≤,*N x ∈时26400208064001001016001480W x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. ∴.2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩; (2)①当070x <<,*N x ∈时 221160600(60)120022W x x x =-+-=--+ ∴当60x =时,y 取得最大值,最大值为1200万元.②当70200x ≤≤,*N x ∈时6400148014801320W x x ⎛⎫=-+≤- ⎪⎝⎭ 当且仅当6400x x =,即80x =时,y 取得最大值1320∵13201200>∴当年产量为80台时,年利润最大,最大值为1320万元.22.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元(3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. (1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠ ()log 0,0,1b y a x a b b =≠>≠和(0)a y b a x =+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元.(3)令()()()1701010210f x g x x x x ==-+--(10,)x ∞∈+因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增 ∴当10x =+()g x取得最小值,且最小值为(10g +=∴k ≥23.【答案】ABD【解析】根据函数解析式的形式,以及图象的特征,合理给a 赋值,判断选项.【详解】当0a =时()2x f x =,图象A 满足; 满足;图象C 过点()0,1,此时0a =,故C 不成立.故选:ABD【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.24.【答案】2ln2 1024【详解】当t=0.5时,y=2,∴2=12e k ,∴k=2ln 2,∴y=e 2t ln 2 当t=5时,y=e 10ln 2=210=1 024.25.【答案】1 1212【详解】S =(4+x) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x)+12=-12 (x -1)2+252. 当x =1时,S max =252,故填1和252.。
第四章指数函数与对数函数【压轴题专项训练】一、单选题1.下列关系式中,根式与分数指数幂的互化正确的是()A =(-x )12(x >0)B =y 13(y <0)C .x12-y 23(x >0,y >0)D .x 13- (x ≠0)【答案】C 【分析】根据根式和分数指数幂的转化关系判断选项.【详解】对于A x 12,故A 错误;对于B ,当y <00,y 13<0,故B 错误;对于C ,x12-y 23(x >0,y >0),故C 正确;对于D ,x 13- (x ≠0),故D 错误.故选:C2.已知433a =,234b =,1325c =,则()A .b a c <<B .c b a<<C .b c a<<D .a b c<<【答案】C 【分析】将式子转化为以13为指数的幂的形式,再根据幂函数的性质判断可得;【详解】解:()41143333381a ===,()21123334416b ===,1325c =,又因为幂函数13y x =在()0,x ∈+∞为单调增函数,所以a c b >>.故选:C 【点睛】本题幂函数的性质及指数幂的运算,属于中档题.3.下列各函数中,是指数函数的是()A .(3)xy =-B .3xy =-C .13x y -=D .13xy ⎛⎫= ⎪⎝⎭【答案】D【分析】利用指数函数的定义,形如:()0,1xy a a a =>≠即可求解.【详解】解:根据指数函数的定义知,()0,1xy a a a =>≠,A 选项底数错误,B 选项系数错误,C 选项指数错误;D 正确.故选:D 【点睛】本题考查了指数函数的定义,需掌握住指数函数的定义,即可求解.4.函数211()2x f x -⎛⎫= ⎪⎝⎭的单调递增区间为()A .(],0-∞B .[)0,+∞C .()1,-+∞D .(),1-∞-【答案】A 【分析】根据复合函数的单调性”同增异减”计算可得;【详解】解:令21t x =-,则12ty ⎛⎫= ⎪⎝⎭,因为12ty ⎛⎫= ⎪⎝⎭为单调递减函数,且函数21t x =-在(],0-∞上递减,所以函数211()2x f x -⎛⎫= ⎪⎝⎭的单调递增区间为(],0-∞.故选:A 【点睛】本题考查指数型复合函数的单调性,属于基础题.5.若2log a b c =则()A .2b a c =B .2c a b =C .2c b a =D .2a c b=【答案】B 【分析】利用对数式化指数式的方法求解即可.【详解】根据对数的定义,()22log ca b c a b =⇔=,即2c a b =故选:B.【点睛】关键点点睛:该题考查的是有关指数式与对数式的互化问题,正确解题的关键是指对式的互化公式.6.已知x ,y ,z 都是大于1的正数,0m >,log 24x m =,log 40y m =,log 12xyz m =,则log z m 的值为()A .160B .60C .2003D .320【答案】B 【分析】根据换底公式将log 24x m =,log 40y m =,log 12xyz m =,化为1log 24m x =,1log 40m y =,1log 12m xyz =,再根据同底数的对数的加减法运算即可得解.【详解】解:因为log 24x m =,log 40y m =,log 12xyz m =,所以1log 24m x =,1log 40m y =,1log 12m xyz =,即1log log log 12m m m x y z ++=,∴11111log log log 1212244060m m m x y z =--=--=,∴log 60z m =.故选:B .7.函数()f x )A .[)1,+∞B .2,3⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .2,13⎛⎤ ⎥⎝⎦【答案】D 【分析】根据对数的真数大于零,以及偶次根式下被开方数大于等于零,即可列出不等式组解出.【详解】由题可得,()13320log 320x x ->⎧⎪⎨-≥⎪⎩,解得213x <≤.所以函数()f x 的定义域是2,13⎛⎤⎥⎝⎦.故选:D .【点睛】本题主要考查函数定义域的求法以及对数函数的性质应用,属于容易题.8.已知235log log log 1x y z ==>,则2x,3y ,5z 的大小排序为()A .235x y z<<B .325y x z <<C .523z x y <<D .532z y x<<【答案】D 【分析】方法一:首先设235log log log 1x y z k ===>,利用指对互化,表示2x,3y ,5z ,再利用对数函数的图象判断大小;方法二:由条件可知2351log 1log 1log 0x y z -=-=-<,再利用对称运算,以及对数函数的图象和性质,比较大小.【详解】方法一:设235log log log 1x y z k ===>.则122k x-=,133ky -=,155k z -=,又10k -<,所以111235k k k --->>,可得532z y x<<.方法二:由235log log log 1x y z ==>.得2351log 1log 1log 0x y z -=-=-<,即235235log log log 0x y z==<,可得532z y x<<.故选:D 【点睛】关键点点睛:本题考查由条件等式,比较大小,本题的关键是熟悉指对数运算公式,变形,以及指数和对数函数的图象.9.下面对函数121()log ,()2xf x xg x ⎛⎫== ⎪⎝⎭与()12h x x -=在区间()0,∞+上的衰减情况说法正确的是()A .()f x 衰减速度越来越慢,()g x 衰减速度越来越快,()h x 衰减速度越来越慢B .()f x 衰减速度越来越快,()g x 衰减速度越来越慢,()h x 衰减速度越来越快C .()f x 衰减速度越来越慢,()g x 衰减速度越来越慢,()h x 衰减速度越来越慢D .()f x 衰减速度越来越快,()g x 衰减速度越来越快,()h x 衰减速度越来越快【答案】C 【分析】在平面直角坐标系中画出它们的图象后可得正确的选项.【详解】画出三个函数的图像如下图,由图像可知选C.因为三个函数都是下凸函数.故选:C.【点睛】当图像是一条直线的减函数时,是匀减速函数.当图像为上凸的增函数时减小速度是越来越快的.当图像为下凸的减函数时(如本题)减小速度是越来越慢的.10.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围()A .()1,0-B .[]1,0-C .(0,1)D .[]0,1【答案】C 【分析】函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点,作出图象,即可求出实数m 的取值范围.【详解】因为函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点.作出函数()y f x =图象,由图可知,实数m 的取值范围是(0,1).二、多选题11.已知函数(),()22x x x xf xg x ππππ---+==,则(),()f x g x 满足A .()()()()f x g x g x f x -+-=-B .()()x f x g x π--=C .(2)2()()f x f x g x =D .22[()][()]1f x g x -=【答案】AC 【分析】把函数式直接代入检验.【详解】A 正确,()()2x x f x f x ππ---==-,()()2x xg x g x ππ-+-==,所以()()()()f x g x g x f x -+-=-;B 不正确,()()2222x x x x xx f x g x ππππππ-----+--=-==-;C 正确,()()()22222222x x x x x xf x f xg x ππππππ-----+==⋅⋅=;D 不正确,()()22222222x x x x x x x x f x g x ππππππππ----⎛⎫⎛⎫⎛⎫-+-+-=-=+⎡⎤ ⎪ ⎪ ⎪⎣⎦⎝⎭⎤⎣⎦⎝⎝⎡⎭⎭2212222x x x x x xππππππ---⎛⎫-+--=⋅=- ⎪⎝⎭.故选AC .【点睛】本题考查指数函数的概念,考查幂的运算.属于基础题型.12.已知{}2,0,1,2,3a ∈-,则函数()()22e xf x a b =-+为减函数的实数a 的值可以是()A .0B .1C .2D .3【答案】AB由题意可得220a -<,结合已知条件即可求解.【详解】由函数()()22e xf x a b =-+为减函数,得220a -<,即a <<又{}2,0,1,2,3a ∈-,所以只有0a =,1a =满足题意.故选:AB.13.(多选)已知23a=,3log 2b =,则()A .2a b +>B .1ab =C .82339b b -+=D .()911log 122a b a++=【答案】ABD 【分析】先求出2log 3a =,即可求出ab =1,再基本不等式判断A ,D 项先将原式化简即可;直接计算可判断C .【详解】由23a=,得2log 3a =.23log og 31l 2ab =⨯=,故B 正确;由a ,0b >,且a b ¹得2a b +>,故A 正确;33331log log 2log 2log 2215333333222b b --+=+=+=+=,故C 错误;()3339111211log 2log log log 122222a b ab a a a a a a +++++===+=+,故D 正确.故选ABD .14.下列点中,既在指数函数x y a =图象上,也在对数函数log a y x =的图象上的点可以是()A .(1,1)B .(2,2)C .(2,4)D .11,42⎛⎫⎪⎝⎭【答案】BD 【分析】根据题意,结合指数函数与对数函数的图象与性质,逐项判定,即可求解.【详解】对于A 中,若点(1,1)在函数x y a =图象上,解得1a =,此时对数函数log a y x =不成立,不符合题意;对于B 中,若点(2,2)在函数x y a =图象上,解得a =y x =也过点(2,2),所以符合题意;对于C 中,若点(2,4)在函数x y a =图象上,解得2a =,此时对数函数2log y x =不成立,不符合题意;对于D 中,若点11,42⎛⎫ ⎪⎝⎭在函数x y a =图象上,解得116a =,此时对数函数116log y x=也过点11,42⎛⎫⎪⎝⎭,所以符合题意.故选:BD 三、填空题15.已知对数函数()2(1)()1log ,m f x m m x +=--则(27)f =_______.【答案】3【分析】根据对数函数的定义建立不等式,解之求得对数函数的解析式,再代入计算可得答案.【详解】因为()f x 是对数函数,故2111011m m m m ⎧--=⎪+>⎨⎪+≠⎩,解得2m =,所以()3log f x x =,()327log 273f ==.故答案为:3.16.已知下列函数:①y =log 12(-x )(x <0);②y =2log 4(x -1)(x >1);③y =ln x (x >0);④()2log a a y x +=,(x >0,a 是常数).其中为对数函数的是________(只填序号).【答案】③【分析】根据对数函数满足log a y x =,且0a >,1a ≠判定即可【详解】由对数函数的定义知,①②不是对数函数;对于③,ln x 的系数为1,自变量是x ,故③是对数函数;对于④,底数221124a a a ⎛⎫+=+- ⎪⎝⎭,当12a =-时,底数小于0,故④不是对数函数.故答案为:③17.函数若函数()f x =的定义域是[)1,+∞,则a 的取值范围是________.【答案】()1,+∞【分析】结合指数函数性质可得.【详解】∵0x a a -≥,∴x a a ≥,∴当1a >时,1≥x .故函数定义域为[)1,+∞时,1a >.故答案为:(1,)+∞.18.若a =2,b >0,则111211223332212a b a a b a a b b a b---⎛⎫⎛⎫++-++ ⎪⎪⎝⎭⎝⎭的值为________.【答案】【分析】根据指数的运算公式以及立方差公式化简整理代入数据即可求出结果.【详解】原式331311322a b a b --⎛⎫⎛⎫=++- ⎪⎪⎝⎭⎝⎭331311322a b a b --⎛⎫⎛⎫=++- ⎪⎪⎝⎭⎝⎭331122a b a b --=++-322a=3222=⨯=故答案为:四、解答题19.已知11x x --=,其中0x >,求122121x x xx x x x---+-的值.【答案】1【分析】将11x x --=化为21x x =+,利用平方差公式分解因式后,代入21x x =+可得结果.【详解】由11x x --=可知21x x =+,所以1111222221122()()11x xx x x x x xx x x x x x x x --+--=--++--=211x x x x x -=++=1.20.已知a ,b ,c 满足346a b c ==.当a ,b ,c 均为正数,求证:221c a b=+.【答案】证明见解析【分析】设346a b c k ===,转化为对数,再利用换底公式证明.【详解】设346a b c k ===,所以346log ,log ,log a k b k c k ===,其中0k >,所以6222lg 6lg 36log lg lg c k k k ===,3421212lg 3lg 4lg 36log log lg lg lg a b k k k k k+=+=+=,所以221c a b=+.21.求函数22log (321)y x x =--的定义域.【答案】{}|1xx>【分析】根据对数的真数大于零,偶次方根的被开方数非负,分母不为零,得到不等式组,解得即可;【详解】解:由函数22log (321)y x x =--,可知23210210x x x ⎧-->⎨->⎩,解23210x x -->,即()()3110x x +->得1x >或13x <-,解210x ->得12x >;综上可得1x >.所以函数的定义域为:{|1}x x >.22.在一个风雨交加的夜里,从某水库闸门到防洪指挥所的电话线路发生了故障,这是一条长为10km ,大约有200根电线杆的线路,设计一个能迅速查出故障所在的方案,维修线路的工人师傅最多检测几次就能找出故障地点所在区域(精确到100m 范围内)?【答案】至多只要检测7次.【分析】结合二分法即可得到100002n≤100,解不等式即可求出结果.【详解】解:如图,工人师傅首先从中点C检测,用随身带的话机向两端测试,发现AC段正常,可见故障在BC段;再从线段BC的中点D检测,发现BD段正常,可见故障在CD段;再从CD段的中点E检测;……;由此类推,每查一次,可以把待查的线路长度缩减一半,可以算出经过n次检测,所剩线路的长度为100002nm,则有100002n≤100,即2n≥100,又26=64,27=128,故至多只要检测7次就能找到故障地点所在区域.。
高职数学第四章指数函数与对数函数题库一、选择题01-04-01.= ( ) A.52a B.2ab - C.12a b D.32b02-04-01.下列运算正确的是( ) A.342243⋅=2 B.4334(2)=2C.222log 2log x x =D.lg11=03-04-01.若0a >,且,m n 为整数,则下列各式中正确的是( ) A.m m n na a a ÷= B.m n m n a a a =C.()n m m n a a +=D.01n n a a -÷= 04-04-01.=⋅⋅436482( )A.4B.8152C.272 D.805-04-01.求值1.0lg 2log ln 2121-+e 等于( ) A.12- B.12 C.0 D.106-04-01.将25628=写成对数式( )A.2256log 8=B.28log 256=C.8256log 2=D.2562log 8=07-04-01.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A.x y 3.0log = (x >0)B. y=x 2+x (x ∈R) C.y=3x (x ∈R) D.y=x 3(x ∈R)08-04-01.下列函数,在其定义域内,是减函数的是( ) A.12y x = B.2x y = C.3y x = D.x y 3.0log = (x >0)09-04-01.下列各组函数中,表示同一函数的是( )A.2x y x=与y x = B.y x =与yC.y x =与2log 2x y =D.0y x =与1y =09-04-01. 化简10021得( )A.50B.20 C .15 D .1010-04-01. 化简832_得( ) A.41 B. 21 C.2 D .4 11-04-01.化简232-⎪⎪⎭⎫ ⎝⎛y x 的结果是( )A.64y x - B .64-y x C .64--y x D .34y x12-04-01.求式子23-·1643的值,正确的是( ) A.1 B .2 C .4 D .813-04-01.求式子42·48的值,正确的是( )A.1 B .2 C .4 D .814-04-01.求式子573⎪⎭⎫ ⎝⎛·08116⎪⎭⎫ ⎝⎛÷479⎪⎭⎫ ⎝⎛的值,正确的是( ) A. 1281 B .1891 C .2561 D .1703 15-04-01.求式子23-·45·0.255的值,正确的是( ) A.1 B .21 C .41 D .81 16-04-01. 已知指数函数y=a x (a >0,且a ≠1)的图象经过点(2,16),则函数的解析式是( )A.x y 2= B .x y 3= C .x y 4= D .xy 8= 17-04-01. 已知指数函数y=a x(a >0,且a ≠1)的图象经过点(2,16),则函数的值域是( )A.()+∞,1B.()+∞,0 C .[)+∞,0 D .()0,∞-18-04-01.已知指数函数y=a x (a >0,且a ≠1)的图象经过点(2,16),x=3时的函数值是( )A.4 B .8 C .16 D .6419-04-01.下列函数中,是指数函数的是( )A.y=(-3)xB.y=x-⎪⎭⎫ ⎝⎛52 C.y= x 21 D.y=3x 420-04-01.下列式子正确是( ) A.log 2(8—2)=log 28—log 22 B.lg (12—2)=2lg 12lg ; C.9log 27log 33=log 327—log 39. D.()013535≠=-a a a 21-04-01.计算22log 1.25log 0.2+=( )A.2-B.1-C.2D.122-04-01.当1a >时,在同一坐标系中,函数log a y x =与函数1x y a ⎛⎫= ⎪⎝⎭的图象只可能是( )23-04-01.设函数()log a f x x = (0a >且1a ≠),(4)2f =,则(8)f =( )A.2B.12C.3D. 13二、填空题 24-04-01. 将分数指数幂53-b 写成根式的形式是 。
1指数函数与对数函数检测题一、选择题: 1、已知(10)xf x =,则(5)f =( )A 、510 B 、105 C 、lg10 D 、lg 5 2、对于0,1a a >≠,下列说法中,正确的是( )①若MN =则log log a a M N =; ②若log log a a M N =则M N =;③若22log log aa M N =则M N =; ④若MN =则22log log a a M N =。
A 、①②③④B 、①③C 、②④D 、② 3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T是( )A 、∅B 、TC 、SD 、有限集 4、函数22log (1)y x x =+≥的值域为( )A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>6、在(2)log (5)a ba -=-中,实数a 的取值范围是( )A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<7、计算()()22lg 2lg52lg 2lg5++⋅等于( )A 、0B 、1C 、2D 、38、已知3log 2a=,那么33log 82log 6-用a 表示是( )A 、52a -B 、2a -C 、23(1)a a -+ D 、231a a--9、若21025x=,则10x -等于( ) A 、15 B 、15- C 、150D 、162510、若函数2(55)xy a a a =-+⋅是指数函数,则有( )A 、1a =或4a= B 、1a = C 、4a = D 、0a >,且1a ≠11、当1a >时,在同一坐标系中, 函数x y a -=与log xa y =的图象是图中的( )12、已知1x ≠,则与x 3log 1+x 4log 1+x5log 1相等的式子是( )2A 、x60log 1 B 、3451log log log x x x⋅⋅ C 、60log 1x D 、34512log log log x x x⋅⋅13、若函数()log (01)a fx x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ) A、14 D 、1214、下图是指数函数(1)x y a =,(2)x y b =,(3)x y c =x ,(4)xy d =x 的图象,则a 、b 、c 、d 与1的大小关系是( )A 、1a b c d <<<<B 、1b a dc <<<<C 、1a b c d <<<<D 、1a b d c <<<<15、若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是( )A 、1m ≤-B 、10m -≤<C 、1m ≥D 、01m <≤二、填空题: 16、指数式4532-b a 化为根式是 。
指数函数与对数函数测试题一、选择题:1、若0a >,且,m n 为整数,则下列各式中正确的是 ( ). A 、m mnna a a ÷= B 、m n m n a a a ••= C 、()nm m n a a += D 、n n a a -=-答案:选A试题解析: 根据同底数指数幂的计算公式.2、已知(10)x f x =,则(5)f = ( ). A 、510 B 、105 C 、lg10 D 、lg 5 答案:选D试题解析:令10x t =,由(10),x f x =则()lg f t t =,所以(5)lg5f =.3、对于0,1a a >≠,下列说法中,正确的是 ( ). ①若12a <则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则M N =;④若M N =则22log log a a M N =.A 、①②③④B 、①③C 、②④D 、② 答案:B试题解析:①:如果M=N<0,则log ,log a a M N 无意义,错误. ②:正确.③:由22log log a a M N =,有可能M=-N ,错误. ④:正确.4、如果log 5log 50a b >>,那么a 、b 间的关系是 ( ). A 、01a b <<< B 、1a b << C 、 01b a <<< D 、1b a << 答案:选B试题解析:因为log 5log 10b b >=,所以函数log b y x =是增函数,即1b >由lg 5log 5lg log 1log ,1,1lg 5log 5lg a a a b ab a a b a b==>=>∴>>Q . 5、函数22log (1)y x x =+≥的值域为 ( ). A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞试题解析:222log (1)log 10,log 22x x y x ≥=∴=+≥Q ≥.6、设lg ,a x =则3a += ( ). A 、lg3x B 、lg(3)x + C 、3lg x D 、lg1000x 答案:选D试题解析:由lg ,3lg 3lg lg1000lg1000a x a x x x =+=+=+=.7、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ). A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 答案:选C试题解析:202a a ->⇒>,505a a ->⇒<,{2}{5}{52}a a a >⋂<=>>.8、满足394163x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的x 的值是 ( ).A 、3B 、-3C 、32D 、32- 答案:选D试题解析:3232949344,(),16316433x x xx -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭323,2x x ∴-==-.9、已知3log 2a =,那么33log 82log 6-用a 表示是 ( ).A 、52a -B 、2a -C 、23(1)a a -+ D 、 231a a -- 答案:选B试题解析:3333333log 82log 63log 22(log 23)3log 22(log 2log 3)-=-•=-+=32(1)2a a a -+=-.10、若21025x =,则10x -等于 ( ).A 、15B 、15-C 、150 D 、1625答案:选A试题解析:由于221025,(10)25,105x x x =∴==,10x -=11(10)5x -=.11、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是 ( ). A 、减少8% B 、增加8% C 、减少9.5% D 、不增不减试题解析:设某商品四年前为a,则两年后为2(120%)a +,四年后为22(120%)(120%)a +-=22(120%)(120%)0.92a a +-=,与原来价格比较,所以减少8%.12、已知x y a =,01a <<且0x >则 y 的取值范围是 ( ). A 、1y < B 、0y < C 、1y > D 、01y << 答案:选D试题解析:01x y a a =<=,并根据指数函数的定义 y>0,综上得,01y <<. 二、填空题:1. 11222[(]3-•= . 答案:1试题解析:1211120222[(]33331--•=•== 2. 0.2π- 0.3π-(填〈或〉). 答案:〉试题解析:因为π〉1,所以指数越大,幂值越大,由-0.2〉-0.3,所以0.2π-〉0.3π-. 3. lg 2,lg3,a b ==则lg 54= . 答案:3a b +试题解析:lg54lg69lg 2333lg 23lg33a b =•=•••=+=+.4.函数3log y =________.答案:2(,)3+∞试题解析:要使函数log y =0,即32x ->0,所以2(,)3x ∈+∞.5.若2log 1x >,则x 的取值范围是 . 答案:2x >试题解析:21log 2=,所以22log log 2,x >即2x >6.已知12a <a 的取值范围是 . 答案: a >1试题解析:12<x a 是增函数,即a >1.7. ln 2ln 3,x =-则 x = .答案: 23e试题解析:222ln ln e e ==,22ln 2ln 3ln ln 3ln 3e x e ∴=-=-=,23e x ∴=.8.设函数()lg 1f x x =+,则(100)f 的值为 . 答案:3试题解析:(100)lg1001213f =+=+=.9. . 答案: 124214244==.10.函数22x x y -=-是 函数(填“奇”、“偶”). 答案:奇试题解析:函数定义域为R,关于原点对称,()()2222()x x x x f x f x -----=-=-=-,所以函数()22x x f x -=-是奇函数.11.函数32,[0,8]x y x -=∈的值域是 .答案: 1[,32]8试题解析:[0,8],3[3,5]x x ∈-∈-,33531222,2328x x y y ---≤=≤∴≤=≤.12.某市粮食年产量为a 万吨,随着先进技术的不断推广,计划今后每年都比上一年增产8%,大约需经过 年产量翻一番.(保留对数式) 答案: 1.08log 2试题解析:设经过x 年后翻一番,由题意得, 1.08(18%)2,1.082,log 2x x a a x +===.三、解答题:1. 化简: (2a ÷.解:(39319122251052102()()a a a a a aa++÷=•÷•=÷=1376555a a a ÷=试题解析:把根式化为指数幂的形式,再利用实数指数幂的运算法则进行求解.2.已知:1lg 1lg 4lg52x =++,求x .解:1lg 1lg 4lg5lg10lg52x =++=+lg1025lg100=••= 100x ∴=.试题解析:利用同底对数的运算进行求解. 3.解不等式2222log (812)log (1128)x x x x ++>++ 解:要使2222log (812)log (1128)x x x x ++>++,必须使22228121128,8120,11280.x x x x x x x x ⎧++>++⎪++>⎨⎪++>⎩即7x <-∴原不等式的解集为{}7x x <-试题解析:考虑对数中真数大于0,以及对数的性质.4. 已知函数1()(0,1),1x xa f x a a a -=>≠+求函数()f x 的奇偶性. 解:函数1()1x x a f x a -=+的定义域为R ,关于原点对称.111()()111xx x x x x xx a a a a f x f x a a aa ------====-+++, 所以函数()f x 是奇函数.试题解析:首先判断函数的定义域,再利用()()f x f x -=-判断奇偶性.5.若lg lg 4x y +=,求11x y+的最小值。
解:4lg lg 4,lg 4,10,x y xy xy +=∴==0,0x y >>Q ,由均值不等式得211121050x y -+≥=•=,所以11x y +的最小值为150。
试题解析:利用均值不等式求最值.6.某件商品出厂价为1000元,按每年5%折旧,6年后价值为多少元?(精确到1元)解: 1年后价值:1000 (15%)•- 2年后价值:21000(15%)•- 3年后价值:31000(15%)•- …………由此可得x 年后价值y 的函数关系为:1000(15%)x y =•-,即10000.95x y =g ,6年后价值:61000(15%)y =•-= 610000.95• ≈1000 •0.7351≈735元.答:6年后价值为735元.试题解析:分析探讨求出指数函数的关系式.。