盘式制动器文献综述
- 格式:doc
- 大小:32.00 KB
- 文档页数:4
车用盘式电磁制动器的仿真分析叶春晖(黑龙江工程学院)摘要:本文利用Matlab软件中的Simulink模块对所设计的车用盘式电磁制动器建立了数学仿真模型,并进行仿真分析,为这种技术的设计和实现提供了理论依据。
关键词:电磁制动器;建模与仿真;Abstract:this paper use of Matlab software to design the Simulink module of automotive disc electromagnetic brakes establishes the mathematical simulation model and simulation analysis for this technology, provides the design and implementation of the theoretical basis. Keywords: electromagnetic brakes;Modeling and simulation;当今很多汽车公司在概念车的设计中都采用了线控技术,线传操控技术的核心是智能机电传动装置,这些装置将原先操控车辆的机械手段改由线传电子控制。
一切的命令都通过电子信号进行传递,最终转变为机械动作。
另一方面,车辆的反馈信息也通过电子信号反映给驾驶者,使得其可以对车辆状况了如指掌。
线控将是未来汽车的核心内容,这将要求汽车的各个组成部分发生革命性的变化,在汽车的制动系统部分就得到了充分的体现,如电磁制动器就是制动系统的一个发展方向。
本文对所设计的车用盘式电磁制动器进行仿真分析。
1电磁制动器的结构汽车电磁制动器是一种新型非接触式制动器,它利用电磁阻力的原理将汽车的动能转化为热能耗散在空气中,使汽车获得减速度。
其制动效能和工作可靠性、持久性都高于其他传统的汽车制动系统,是国际上汽车制动系统的发展方向。
汽车电磁制动器是根据电磁铁原理,利用电磁吸力将电能转化为机械能,然后使制动盘两侧的制动块夹紧制动盘,从而使车轮制动。
盘式制动器介绍范文盘式制动器是一种常用于车辆、机械设备等的制动装置。
它通过对转动的轮胎施加摩擦力来减速或停车。
盘式制动器的主要组成部分包括制动盘、制动皮、制动钳和制动油管等。
它具有结构简单、制动力矩大、散热性能好等特点,在汽车、摩托车等领域广泛应用。
盘式制动器的工作原理是利用制动盘转动时的动能转化为摩擦力,从而实现减速或停车。
当驾驶员踩下刹车踏板时,制动器通过制动油管将刹车信号传递到制动钳。
制动钳内的活塞根据刹车信号移动,使制动盘夹紧在制动皮之间,从而产生摩擦力。
摩擦力使制动盘减速,进而传递到轮胎,实现车辆的减速或停车。
盘式制动器主要由制动盘、制动钳、制动皮和刹车液组成。
制动盘是盘式制动器的核心部件之一,它通常由铸铁或碳纤维复合材料制成。
制动盘有内通风式和外通风式两种形式。
内通风制动盘采用内置的通气道,可以提高制动盘的散热性能,有效防止制动过程中产生的过热现象。
外通风制动盘则具有导风片,可在高速行驶时提高制动盘的散热效果。
制动钳是盘式制动器的另一个重要组成部分,它包括固定钳和流动钳两种形式。
固定钳是最常用的制动钳,它通过一组活塞将制动盘夹紧在制动皮之间。
流动钳则采用活塞和滑动卡钳的组合,实现对制动盘的夹紧。
制动钳的选用需要根据车辆的需求,包括制动力矩、散热性能等进行综合考虑。
制动皮是盘式制动器的摩擦片,它通常由石棉、有机纤维复合材料等制成。
制动皮的摩擦系数和热稳定性是制动器性能的重要指标。
制动皮在制动过程中产生的摩擦力可以将制动盘减速并传递到车轮,实现减速或停车的效果。
刹车液是盘式制动器的传力介质,它通过刹车系统的液压传导力来实现制动器的工作。
刹车液通常由无水醇基刹车液或硅基刹车液组成。
无水醇基刹车液具有良好的化学稳定性和高沸点,但吸水性较强。
硅基刹车液则具有良好的耐高温性能和抗吸水性。
选择刹车液需要根据车辆的使用环境和制动性能要求进行综合考虑。
盘式制动器具有一系列优点,首先是制动力矩大。
盘式制动器的制动效果与制动盘直径成正比,因此可以通过改变制动盘的尺寸来提高制动力矩。
关于盘式制动器的分析摘要:盘式制动器散热快、重量轻、构造简单、调整方便。
特别是高负载时耐高温性能好,制动效果稳定,能显著减少制动距离,为车辆提供可靠的安全保障。
同时,能显著减少制动噪声,有效解决制动引起噪声污染。
关键词:盘式制动器一、盘式制动器优点与鼓式制动器相比,盘式制动器具有以下突出优点:(l)热稳定性好盘式制动器无自增力作用,因而与有自增力的鼓式制动器相比,制动器效能受摩擦系数的影响较小,即制动效能稳定。
鼓式制动器受热膨胀后,工作半径增大,使其只能与制动蹄中部接触,从而降低了制动效能。
而盘式制动器中制动盘的轴向热膨胀极小,径向热膨胀根本与性能无关,故不会因此而降低制动效能。
(2)水稳定性好盘式制动器中摩擦块对制动盘的单位压力较高,易于将水挤出。
在车轮涉水后,制动效能变化较小,且由于离心力的作用及衬块对制动盘的摩擦作用,出水后只需一二次制动,性能即可恢复。
而鼓式制动器则需多次甚至10余次制动,性能方能恢复。
(3)反应灵敏盘式制动器刹车片与制动盘之间的间隙相对与鼓式制动器来说要小;此外,鼓式制动器制动行程要比盘式制动器的长,制动鼓热膨胀也会引起制动踏板行程损失,使得制动反应时间变长,而制动盘不存在此现象,故反应较之鼓式制动器更加灵敏。
(4)散热性好盘式制动器的制动盘采用的是通风盘结构,再加上盘式制动器相对开放的结构,散热性能良好。
(5)在输出制动力矩相同的情况下,尺寸和质量较小。
(6)制动盘沿厚度方向的热膨胀量极小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大。
(7)容易实现间隙自动调整,其他保养修理作业也较简便。
除了以上制动性能的优势外,盘式制动器在使用中还有噪音低,符合环保要求;振动小,改善了乘坐舒适性等优点。
由于具备稳定可靠的制动性能,盘式制动器大大改善了汽车高速制动时的方向稳定性,因此取代传统的鼓式制动器已成为现代制动器发展的必然趋势。
其中液压盘式制动器(以下简称HDB)体积较小,提供的制动力矩也相对较小,一般用于轿车等轻型车辆上,尤其是轿车,盘式制动器几乎已经成为现代轿车的标准配置之一。
目录摘要 (III)ABSTRACT (IV)1 绪论 (1)2 制动与制动器 (3)2.1制动与制动器概述 (3)2.2制动器的结构分类 (3)2.3浮动钳盘式制动器 (5)2.4浮动钳盘式制动器优缺点分析 (6)3 制动器的设计流程 (7)3.1制动器设计的一般流程 (7)3.2制动器的主要性能参数的计算方法 (7)3.2.1制动器设计的一般原则 (8)3.2.2前后轮制动器的制动力矩的确定计算 (10)3.2.3摩擦衬片(衬块)的磨损特性的计算 (13)3.2.4 应急制动和驻车制动的计算 (16)4 中级轿车盘式制动器的改进设计 (21)4.1中级轿车盘式制动器各组件的分析设计 (21)4.1.1制动盘 (21)4.1.2制动钳与制动钳支架 (22)4.1.3摩擦制动块 (22)4.2中级轿车盘式制动器主参数选择及制动力矩的计算 (22)4.2.1制动轮缸直径D的确定 (22)4.2.2 盘式制动器制动力矩的计算 (23)5 盘式制动器主要部件图形的绘制 (25)5.1 AUTO CAD (25)5.1.1 AUTO CAD (2004版)功能介绍 (25)5.1.2 设计图纸 (26)5.2 PRO/E (28)5.2.1简介 (28)2.2.2 PRO/E 5.0的工作界面 (29)5.2.3建模过程 (29)5.2.4设计图纸 (30)结论 (32)参考文献 (33)致谢.................................... 错误!未定义书签。
第一章摘要中型轿车盘式制动器的设计摘要本文首先对制动器在汽车上所起的作用和制动器的结构分类做了介绍,并分析比较了鼓式制动器和盘式制动器的优缺点,随后提出了制动器设计的一般方法步骤,本文所设计的盘式制动器,是针对中型轿车的,由中型轿车的车身结构的各种参数,计算了在各种情况下制动车辆所需要的制动力大小,从而对制动器主参数和主要性能参数进行了设计计算,然后对制动轮缸的直径所能产生的最大制动力进行了校核,检验是否能满足制动要求,并且对制动器主要部件的结构和材料提出了一些简单的改进方法,最后画出了盘式制动器主要零部件的AutoCAD零件图和Pro/E三维建模。
汽车盘式制动器设计摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。
在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。
关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率Automobile disc brake designAbstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile.Key words: Disc brake,Braking forcedistribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency目录第1章绪论 (5)1.1 制动器的作用 (5)1.2 制动器的种类 (5)1.3 制动器的组成 (6)1.4 制动器的新发展 (7)1.5 对制动器的要求 (7)1.6 工作任务及要求 (9)1.7 制动器研究方案 (10)第2章制动器机构形式的选择 (11)2.1 方案选择的依据 (11)2.2 制动器的种类 (11)2.3 盘式制动器的结构型式及选择 (12)2.4 盘式制动器与鼓式制动器优缺点比较 (15)2.5 雅阁六代车型制动器结构的最终方案 (16)第3章制动器主要参数及其选择 (17)3.1 雅阁六代基本参数确定 (17)3.1.1 轮滚动半径er (17)3.2.2 空、满载时的轴荷分配 (17)3.2.3 空、满载时的质心高度 (18)3.2 制动力与制动力分配系数 (18)3.2 同步附着系数计算 (22)3.3 制动器最大制动力矩 (25)3.4 利用附着系数和制动效率 (27)3.4.1 利用附着系数 (27)3.4.2 制动效率Ef 、Er (28)3.5 制动器制动性能核算 (29)第4章制动器主要零件的设计计算与校核 (31)4.1 制动盘主要参数确定 (31)4.1.1 制动盘直径D (31)4.1.2 制动盘厚度h (31)4.2 摩擦衬块主要参数的确定 (31)4.2.1 摩擦衬块半径和外半径 (31)4.2.2 摩擦衬块有效半径 (32)4.2.3 摩擦衬块的面积和磨损特性计算 (34)4.2.4 摩擦衬块参数设计校核 (36)4.3 驻车制动计算与校核 (37)4.4 液压制动驱动机构的设计计算 (38)4.4.1 制动轮缸直径d与工作容积V (38)4.4.2 制动主缸直径与工作容积 (40)4.4.3 制动踏板力 (40)S (41)4.4.4 踏板工作行程P第5章制动器主要零件的结构设计 (42)5.1 制动盘 (42)5.1.1 制动盘材料及要求 (42)5.1.2 制动盘分类及比较 (42)5.2 制动钳 (43)5.3 制动块 (44)5.4 摩擦材料 (44)5.5 盘式制动器工作间隙的调整 (46)总结 (47)致谢 (48)参考文献 (49)第1章绪论1.1 制动器的作用汽车制动系是用于使行驶中的汽车减速或停车,使下坡行驶的汽车的车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。
摘要汽车制动系统是汽车最重要的主动安全系统,制动器则是制动系统的执行机构,其性能好坏直接影响汽车的安全。
盘式制动器作为鼓式制动器的替代产品,具有热稳定性好、反应灵敏等优势,但是盘式制动器本身也存在一些问题,并且鼓式制动器存在的一些问题,虽然盘式制动器有一定程度改善,但并未得到完全解决,如热衰退、制动噪声等。
本文开篇阐明了盘式制动器发展与现状,然后是设计的背景,性质及任务。
通过对轿车盘式制动器的深入学习和设计实践,主要是对轿车盘式制动器的零部件结构选型及设计计算,更好地学习并掌握盘式制动器的结构原理与设计计算的相关知识和方法。
介绍了盘式制动器的各种类型,性能等,分析了盘式制动器和摩擦衬片的特性。
关键词:盘式制动器; 设计;性能分析AbstractAutomobile brake system is the most important initiative safety system, brake is the enforcer of brake system, whose performance affects the vehicle’s safety directly. As the substitution of drum brake, disc brake has advantages of fine thermal stability, delicate feedback, and so on. But it also has some defects, and though the problems of drum brake have been improved, they are not resolved completely, such as thermal fade and brake noise.This paper illustrated disc brake’s development at beginning, then the design’s background, quality and mission. Through the disc brake in-depth study and design practice, mainly for car’s disc brake structure selection and design ca lculation, can better study and master the disc brake structure and working principle and the related knowledge and methods. Introduce the brake disc’s kind and performance. Analyze the disc brake and rub linings’ behavior.Key words: disc brake; design; Performance Analysis目录摘要 iAbstract ii目录 iii第一章绪论1.1 设计的背景及意义1.2 盘式制动器的发展现状1.3 设计的性质和任务1.4论文内容概述第二章盘式制动器的概述2.1 制动器性能简介2.2 盘式制动器的类型2.2.1 浮动盘式制动器2.2.2 固定钳盘式制动器2.3 盘式制动器的优点第三章盘式制动器设计3.1制动系统的设计要求3.2 盘式制动器主要参数的确定 1 3.3盘式制动器的设计计算3.4衬片磨损特性的计算3.5制动器主要零件的结构设计第四章总结参考文献致谢。
工学院毕业设计〔论文综述〕题目:普通轿车前轮盘式制动器的设计专业:车辆工程班级:07车辆〔4〕班*名:***学号:**********指导教师:***日期:2010年12月盘式制动器的现状与发展趋势车辆工程07级(4)班学号:1608070421:徐玉林指导教师:李同杰摘要:现今盘式制动器在汽车上的应用越来越普遍,其优越性也越来越明显。
本文主要介绍了盘式制动器的发展历程和现状以及其发展趋势,并对国外先进的制动器制造和应用技术进行大体的介绍,同时针对我国汽车工业的发展提出了建议和展望。
关键词:现状发展趋势Pro/E 盘式制动器一、盘式制动器介绍盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。
它由液压控制,点击放大图片主要零部件有制动盘、分泵、制动钳、油管等。
制动盘用合金钢制造并固定在车轮上,随车轮转动。
盘式制动器由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。
制动盘用合金钢制造并固定在车轮上,随车轮转动。
分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好似用钳子钳住旋转中的盘子,迫使它停下来一样。
盘式制动器散热快、重量轻、构造简单、调整方便。
特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。
很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。
盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。
[1]结构型式主要有点盘式和全盘式。
点盘式:由于摩擦面仅占制动盘的一小部分,故称点盘式。
有固定卡钳式和浮动卡钳式两种。
为了不使制动轴受到径向力和弯矩,点盘式制动缸应成对布置。
制动转矩较大时,可采用多对制动缸。
必要时可在中间开通风沟,以降低摩擦副温升,还应采取隔热散热措施,以防止液压油温高变质。
主 要 符 号 表z 齿轮齿数α 齿轮压力角β 中点螺旋角或名义螺旋角1γ、2γ分别为双曲面齿轮主、从动齿轮的节锥角 01γ、02γ 分别为主、从动齿轮的面锥角 1R γ、2R γ 分别为主、从动齿轮的根锥角 ϕ轮胎与路面的附着系数 T η汽车传动系效率 LB η轮边减速器的传递效率 j σ接触应力 W σ弯曲应力 τ扭转应力 s τ 剪切应力目录中文摘要................................................Ⅰ英文摘要................................................Ⅱ主要符号表..............................................Ⅲ1 绪论..................................................11.1综述...........................................................1 1.1.1汽车工业本身对国民经济的贡献及对相关工业的带动度.............1 1.1.2“富国富民”,增加国家财政收入的需要...........................1 1.1.3汽车行业是重要的出口创汇产业.................................1 1.1.4发展汽车工业有利于促进技术进步...............................1 1.1.5发展汽车工业可创造更多的就业机会.............................2 1.1.6发展汽车工业可创造更多的就业机会.............................2 1.2汽车制动系统概述...............................................21.3设计的意义.....................................................22 制动器设计方案论证和选择...............................5 2.1制动器设计要求.................................................5 2.2制动器设计的一般原则...........................................5 2.3制动器方案分析.................................................6 2.4制动器驱动结构的选择...........................................7 2.5制动管路的选择.................................................7 2.6式制动器与盘式制动器的比较分析.................................82.7制动器间隙自动调整装置........................................123 制动器的主要参数及其选择..............................13 3.1制动力与制动力分配系数........................................13 3.2有固定比值的前、后制动器制动力与同步附着系数...................13 3.3制动器的制动力矩..............................................153.4用附着系数与制动效率..........................................154 制动器的设计计算......................................18 4.1始数据及主要技术参数..........................................18 4.2前轮滑动钳盘式结构的确定......................................18 4.2.1盘式制动器主要参数的确定....................................18 4.3制动力矩以及盘的压力..........................................18 4.4制动器轮钢直径的计算..........................................18 4.5紧急制动时踏板力的计算........................................18 4.6制动踏板行程的计算............................................181 绪论1 绪论1.1综述1.1.1汽车工业本身对国民经济的贡献及对相关工业的带动度汽车产品是一个产业关联度高、波及效果广、对相关产业带动力大的产品,汽车工业波及到原材料、能源、建筑、商业、金融、交通、运输等34个行业。
前言 (2)1 制动系概述 (3)1.1 制动系的功能 (3)1.2车轮制动时的工作原理 (3)1.3 制动系的要求 (4)1.4 车轮制动器类型 (4)置等组成。
(4)③鼓式制动器的带式制动器只用作中央制动器。
(5)1.5 盘式制动器 (5)加速通风散热提高制动效率。
(5)1.5.2盘式制动器的主要类型 (6)( 1 ) 固定钳式盘式制动器 (6)( 2 ) 浮动钳式盘式制动器 (7)( 3 ) 全盘式制动器 (7)1.5.3盘式制动器的优缺点 (8)( 1 )盘式制动器的优点 (8)2 基于Pro/E设计方法 (11)3 制动器参数化设计计算 (14)3.2 主要零部件的结构设计 (15)3.2.1制动盘 (15)图3.2 制动盘尺寸 (17)(2)参数输入 (17)3.2.2制动块 (18)(1)尺寸设计 (18)(2)参数输入 (19)结论 (27)致谢 (28)参考文献 (28)前言国内汽车市场迅速发展,随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。
因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。
另外,随着汽车市场竞争的加剧,如何缩短产品开发周期,提高设计效率,降低成本,提高产品的市场竞争力,已经成为企业成功的关键。
制动器是车辆的关键部件之一, 其性能的好坏直接影响整车性能的优劣, 因此, 制动器的设计在整车设计中显得相当重要。
本文详细地阐述了各类制动器的结构、工作原理、优缺点和发展前景,探讨了一种结构简单的盘式制动器。
对制动器的主要零件如制动盘、制动钳、制动块、摩擦衬片、活塞等进行了结构设计和计算,从而设计出一种比较精确的制动器。
根据设计与计算用Pro/E绘制出了该制动器的制动盘、制动钳、活塞、摩擦衬块等零件图和装配图。
本课题主要完成基于Pro/E三维造型技术进行盘式制动器参数化设计。
通过引入基于Pro/E特征的参数化造型思想,建立制动器典型的零部件模板库,模型设计计算完成后,通过参数化驱动从而得到所需的制动器模型。
汽车盘式制动器研究报告随着汽车行业的不断发展,汽车制动系统的安全性和可靠性越来越受到关注。
盘式制动器作为一种常见的汽车制动系统,其性能和质量对汽车的安全性和驾驶体验有着重要的影响。
本文将对汽车盘式制动器进行研究和分析。
盘式制动器是一种通过摩擦力来减速和停止车辆的制动系统。
它由制动盘、制动钳、制动片和制动液等组成。
制动盘是一个圆形的金属盘,安装在车轮上。
制动钳是一个U形的金属夹子,安装在制动盘的两侧。
制动片是一种摩擦材料,安装在制动钳内部。
制动液是一种液体,通过制动踏板的压力来推动制动钳,使制动片与制动盘摩擦,从而减速和停止车辆。
盘式制动器具有以下优点:1. 散热性能好。
制动盘的散热性能比制动鼓好,可以更快地将制动时产生的热量散发出去,避免制动失效。
2. 制动力矩大。
盘式制动器的制动力矩比鼓式制动器大,可以更快地减速和停止车辆。
3. 维护方便。
盘式制动器的维护比鼓式制动器方便,更换制动片和制动盘也比较容易。
但是,盘式制动器也存在一些缺点:1. 价格较高。
盘式制动器的制造成本比鼓式制动器高,因此价格也较高。
2. 重量较大。
盘式制动器的重量比鼓式制动器大,会增加车辆的整体重量。
3. 对制动盘的要求高。
盘式制动器对制动盘的要求比鼓式制动器高,制动盘的平整度和表面质量都需要达到一定的标准。
盘式制动器是一种性能优良的汽车制动系统,但也存在一些缺点。
在选择汽车制动系统时,需要根据自己的需求和预算来进行选择。
同时,在使用过程中也需要注意制动盘和制动片的磨损情况,及时更换,以保证汽车的安全性和可靠性。
毕业设计文献综述2011届制动器概述学生姓名周益学号0407070140系别工程与技术系专业班级机自0701指导教师冯方完成日期 2011年 2 月21日1.制动器简介制动器就是刹车。
是使机械中的运动件停止或减速的机械零件。
俗称刹车、闸。
制动器主要由制动架、制动件和操纵装置等组成。
有些制动器还装有制动件间隙的自动调整装置。
为了减小制动力矩和结构尺寸,制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。
有些制动器已标准化和系列化,并由专业工厂制造以供选用。
制动器分为行车制动器(脚刹),驻车制动器(手刹)。
在行车过程中,一般都采用行车制动(脚刹),便于在先进的过程中减速停车,不单是使汽车保持不动。
若行车制动失灵时才采用驻车制动。
当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。
停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。
使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。
制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。
制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。
摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。
摩擦材料分金属和非金属两类。
前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。
2.制动器的分类制动器可以分为摩擦式和非摩擦式两大类。
1.摩擦式制动器。
靠制动件与运动件之间的摩擦力制动。
按制动件的结构形式又可分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器等;按制动件所处工作状态还可分为常闭式制动器(常处于紧闸状态,需施加外力方可解除制动)和常开式制动器(常处于松闸状态,需施加外力方可制动);按操纵方式也可分为人力、液压、气压和电磁力操纵的制动器。
制动器的结构型式。
系(部)汽车工程系专业汽车检测与维修班级2008级汽车检测与维修二班指导教师王洪林姓名:陈业飞学号:080207089汽车盘式制动器的检测与维修【摘要】汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。
汽车上使用最多的制动器就是盘式制动器,盘式制动器各部件在如此高温的状况下磨损非常严重,为了保证制动器的工作性能就需要定期的对盘式制动器进行检测,如果发现问题就需要及时进行维修与更换。
本文通过对盘式制动器结构的了解,提出了对各项部件维护前的准备和注意事项,然后利用举升机或千斤顶将车举起,用专用工具进行拆卸和检测,对制动器摩擦衬片的厚度是否合格,制动卡钳是否大修,以及对制动盘的精整和更换进行了系统的描述,确保了盘式制动器的正常工作性能。
【关键词】盘式制动器检测维修【目录】第一章绪论 (1)第二章盘式制动器概述 (2)第三章盘式制动器的检测与维修 (3)3.1 维修时的注意事项和诊断参数 (3)3.2 盘式制动器维修前的准备 (4)3.3 盘式制动器的故障检测和维修方法 (4)3.4 典型车型案例分析 (7)第四章结论 (9)参考文献............................................................................... 错误!未定义书签。
致谢. (11)第一章绪论汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。
随着汽车的行驶速度和路面情况复杂程度的提高,更加需要高性能.长寿命的制动系统。
制动器按其耗散汽车能量的方式区分,有摩擦式、电池式、惯性式、挡板式等。
电池式制动器滞后作用小,易于连接且接头可靠,但价格高,主要用在部分重型车及汽车列车上;惯性式制动其主要用于小型挂车,其特点是牵引车和挂车之间不许任何管路连接。
目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。
制动系统文献综述1本科毕业设计文献综述学生:学号:专业:班级:指导教师:机械与材料工程学院二o一二年十二月文献综述前言际生产。
做为交通工具,汽车具备广为的普遍性和高度的灵活性。
汽车就是关键的交通工具之一,分担着十分广为的运输任务,而且其运输地位列各种交通工具之首。
汽车就是数量最多,最广泛的交通工具。
在城市乡村随处可见。
在现代社会中,没哪种交通工具可以与汽车拉艾的促进作用相媲美。
随着社会经济的不断发展,汽车在过去几十年中已快速发展沦为最主要最受到亲睐的交通工具,在全社会运输量所占到比重越来越小,已占有主导地位。
美国,德国,法国,英国等国家汽车在客运总量中比重已达至90%左右。
汽车的重要性不言而喻。
汽车制动系统作为汽车的非常重要的一个主动安全系统,其性能的优劣对汽车驾驶的舒适性和安全性起着举足轻重的作用。
随着汽车速度的提高,工况的愈加复杂,以及人们对安全的更高的追求,高性能,长寿命,更稳定可靠地制动器系统将成为汽车设计师们现在和未来研究的重点本篇毕业设计(论文)题目就是《桑塔纳液压制动器设计》。
本题目源于实正文1、刹车系统的共同组成与分类1.1刹车系统的共同组成传统的制动系统主要由供能装置、控制装置、传动装置和制动器四个基本部分后共同组成。
汽车刹车系统常用的部件包含:刹车锣、刹车蹄片、制动盘、刹车钳、摩擦衬块、钢索、液压泵、真空助力器、电子掌控单元等等1.2制动系统按照功能可分为行车制动系统、驻车制动系统、第二制动系统和辅助制动系统等2、刹车系统的发展趋势车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终就是汽车设计生产和采用部门的关键任务。
当车辆刹车时,由于车辆受与高速行驶方向相反的外力,所以才导致汽车的速度逐渐减小至0,对这一过程中车辆受力情况的分析有利于刹车系统的分析和设计,因此刹车过程受力情况分析就是车辆试验和设计的基础,由于这一过程较为繁杂,因此通常在实际中就可以创建精简模型分析,通在常人们主要从三个方面来对制动过程进行分析和评价:1)制动效能:即制动距离与制动减速度;2)制动效能的恒定性:即抗热衰退性;3)制动时汽车的方向稳定性;目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路轻易行使实验中车轮扭矩难于测量,因此,多数有关传动系则!刹车系则的试验均通过间接测量去方式去测量。
文献综述题目汽车盘式制动器设计学院机械工程学院专业机电技术教育学生吕其法学号1664******指导教师张春燕安徽科技学院2016.3.151.盘式制动器的概述制动器,俗称闸,又叫刹车。
它可以使汽车在需要的情况下,保持稳定的车速(如下坡路)。
在遇到紧急情况时,其也可以使汽车迅速减速甚至是停车,从而确保了行车的安全。
并且还可以防止车子后溜,平稳的停在原地。
其结构笼统地讲,主要包括制架、制动件等操纵装置。
盘式制动器,其主要部件包括制动盘、摩擦块、导向销、制动钳体等。
在盘式制动器中,将端面作为摩擦副进而来完成旋转工作的工作圆盘,称之为制动盘。
在它的固定支架摩擦幅面上,一般由其金属底板及二至四块摩擦片所组成的制动块,摩擦片的体积一般很小。
装在横跨制动盘两侧的夹紧钳形支架中的制动块与加紧装置,构成了制动钳。
诸如此类由制动盘、制动钳所组成的制动器也称为钳盘式制动器。
在小型轿车、豪华客车、货车等车型上,盘式制动器已经得到了极其广泛的应用。
2.国内汽车盘式制动器的应用情况伴随着我国汽车工业的飞速发展,在国外先进技术的渗入和影响下,盘式制动器在我国的汽车工业上所应用的比重在逐年提高。
由于盘式制动器的应用,大大提高了整车的性能、提高了舒适性、满足了人们对汽车要求的标准。
在轿车、轻卡、微型车及SUV等方面:目前,采用混合制动的车子的比重越来越大。
因为人们观念正在逐步转变,经济性、实用性开始主导着人类的思想。
混合制动的车子,前轮一般采用盘式制动的形式,而后轮往往采用鼓式的。
制动时,在惯性的影响下,车子前轮所承受的负荷很大,往往会占到整车全部负荷的70%至80%。
故,前轮制动力远远大于后轮。
所以出于成本上的考虑,生产厂家为了降低成本,一般采用混合匹配的方式。
目前的大部分轿车、皮卡及SUV等采用的是前盘后鼓式混合制动器。
相关部门统计,在2004年,我国共生产混合制动的车子约为110万辆。
但随着人们对汽车要求的提高以及道路交通状况的改观,尤其在国家强制性的法规出台后,无论前轮还是后轮都采用盘式制动器终将成为主流。
关于盘式制动器的参考文献
以下是关于盘式制动器的一些参考文献,供你参考:
1. "Automotive Brake Systems" by James D. Halderman 这
本书是关于汽车制动系统的综合指南,其中包括盘式制动器的原理、设计和性能分析等内容。
2. "Brake Design and Safety" by Rudolf Limpert 这本书详细介绍了制动系统的设计和安全性能,包括盘式制动器的设计原理、材料选择和制动力分析等方面。
3. "Brake Handbook" by Fred Puhn 这本手册提供了关于制动系统的全面介绍,包括盘式制动器的原理、设计、维护和故障排除
等方面的内容。
4. "Vehicle Brake Systems: A Textbook for Technicians" by Tom Denton 这本教材专门为汽车技术人员编写,涵盖了制动系
统的各个方面,包括盘式制动器的工作原理、构造和维护等内容。
5. "Brake Technology Handbook" by Bert Breuer and
Karlheinz H. Bill 这本手册提供了关于制动技术的详细信息,包括盘式制动器的设计、材料和制动系统的性能评估等方面的内容。
这些参考文献涵盖了盘式制动器的原理、设计、性能和维护等方面的知识,可以帮助你更全面地了解盘式制动器的工作原理和应用。
请根据你的具体需求选择适合的文献进行深入研究。
机械工程学院毕业设计(外文翻译)附件外国文献HYDRAULIC BRAKE BASICSAir brakes get more attention, but hydraulic brakes are installed on more vehicles. Understanding how they work is the first step to safe, cost-effective diagnosis and repair.Ever wonder why there can't be just one kind of brake? It's because airand h ydraulic brakes each have operating characteristics that make one or the other ideal for certain applications.In heavy-duty combination vehicles, air is the clear choice because of the large volume of liquid that would be needed to CATIA all the wheel cylinders. Plus, dealing with glad hand and hoses filled with hydraulic fluid would be messy.But for light and medium-duty straight-truck applications, hydraulic brakes offer advantages including:•Brake feel — that is, as the pedal is pressed farther down, effort increases;•High line pressures, which permit the use of lighter, more compact braking components;•Less initial expense, due to smaller and fewer components;•Cleanliness — hydraulic brakes are closed systems;•Ease of locating leaks, since fluid is visible.There are many more permutations of hydraulic brake systems than found in air systems, but all have basic similarities.THE HYDRAULIC SYSTEMAll hydraulic brake systems contain a fluid reservoir, a master cylinder, whichproduces hydraulic pressure, hydraulic lines and hoses to carry pressurized fluid to the brakes, and one or more wheel cylinder(s) on each wheel.The wheel cylinders expand under fluid pressure, and force the brake shoes against the insides of the drums. If disc brakes are used, calipers, with integral cylinders, clamp down on the rotors when pressure is applied.Because a vehicle must be able to stop much more quickly than it can accelerate, a tremendous amount of braking force is needed. Therefore, the retarding horsepower generated by the brakes must be several times that of the engine.In order to develop the forces required to hold the brake linings against the drums or discs, and to achieve controlled deceleration, it is necessary to multiply the original force applied atthe brake pedal.When a hydraulic system is used, the only mechanical leverage is in the foot pedal linkage. However, varying the diameter of the wheel cylinders or caliper diameters, in relation to the master cylinder bore diameter, provides an additional increase in ratio.In a hydraulic system, the pressure delivered by the various wheel cylinders is directly affected by the areas of their pistons. For example, if one wheel-cylinder piston has an area of 2 square inches, and another piston has an area of 1 square inch, and the system pressure is 400 psi,the 2-square-inch piston will push against the brake shoes with a force of 800 pounds. The1-square-inch piston will exert a force of 400 pounds. The ratio between the areas of the master cylinder and the wheel cylinders determine the multiplication of force at the wheel cylinder pistons.Keep in mind that the larger a wheel cylinder's diameter, the more fluid must be supplied by the master cylinder to fill it. This translates into a longer master-cylinder stroke.If the master cylinder bore diameter is increased and the applying force remains the same, less pressure will be developed in the system, but a larger wheel-cylinder piston can be used to achieve the desired pressure at the wheel cylinder. Obviously, a replacement master cylinder, wheel cylinder or caliper must be of the same design and bore as the original unit.Hydraulic brake systems are split systems, comprising two discreet braking circuits. One master-cylinder piston and reservoir is used to actuate the brakes on one axle, with a separate piston and reservoir actuating the brakes on the other axle(s). Although rare, some light-duty brake systems are split diagonally rather than axle by axle.The reason for the split system is that if a leak develops in one hydraulic circuit, the other will stop the vehicle. Of course, the vehicle shouldn't be driven any farther than necessary to havethe brake system repaired.When one of the hydraulic circuits fails, a pressure -differential switch senses unequal pressure between the two circuits. The switch contains a piston located by a centering spring and electrical contacts at each end. Fluid pressure from one hydraulic circuit is supplied to one end of the pressure-differential switch, and pressure from the other circuit is supplied to the other end. As pressure falls in one circuit, the other circuit's normal pressure forces the piston to the inoperative side, closing the contacts and illuminating a dashboard warning light.POWER ASSISTPower assist units, or boosters, reduce operator effort at the brake pedal. Vacuum boosters, popular on light-duty vehicles, make use of an engine vacuum on one side of a diaphragm, and atmospheric pressure on the other side. A valve allows the vacuum to act on the diaphragm in proportion to brake pedal travel. This assists the pedal effort, and allows increased pressure onthe brake fluid, without an undue increase in pedal effort.Other types of boosters use hydraulic pressure — either from the vehicle's power steering pump or from a separate electric pump, or both — to assist pedal effort. As the brake pedal is depressed, a valve increases hydraulic pressure in a boost chamber to apply increased pressure to the master cylinder pistons.Some systems use both vacuum and hydraulic assist. In other systems, air pressure from an onboard compressor is used to generate hydraulic system pressure.VALVINGValves commonly found in hydraulic brake systems include: Proportioning, orpressure-balance valves. These restrict a percentage of hydraulic pressure to the rear brakes when system pressure reaches a preset high value. This improves front/rear brake balance duringhigh-speed braking, when some of a vehicle's rear weight is transferred forward, and helps prevent rear-wheel lockup. Some proportioning valves are height-sensing. That is, they adjustrear-brake pressure in response to vehicle load. As a vehicle's load increases (decreasing height) more hydraulic pressure to the rear brake s is allowed;Metering valves. These hold off pressure to front disc brakes to allow rear drum brake shoes to overcome return-spring pressure and make contact with the rear drums. This prevents locking the front brakes on slippery surfaces under light braking applications. These valves do not come into play during hard braking.PARKINGThe parking function varies greatly among hydraulic brake systems. Many light-duty vehicles with rear drum brakes use a passenger-car type lever-and-cable setup. A ratcheted lever or foot pedal pulls a cable, which, in turn, pulls a lever assembly at each rear wheel end. The lever forces the brake shoes apart, and they are mechanically held against the drums until the ratchet is released.Other parking systems include spring chambers, like those used onair-brake systems. These are spring-engaged, but are disengaged by hydraulic pressure instead of air.ANTILOCKOn many hydraulically braked light-duty trucks, brakes are used on the rear wheels to preserve braking stability when these vehicles are lightly loaded. Front and rear-wheel is usually an option, except for vehicles over 10,000 pounds GVWR, which are required to have steer and drive-axleIn current hydraulic systems, a dump valve releases pressurized hydraulic fluid into an accumulator in the event of an impending wheel lockup.An electronic control box receives speed signal(s) from sensors in the transmission and/or at the wheels. When the brakes are applied, the control box senses the decrease in rear wheel speed, and activates the dump valve(s) if the rate of deceleration exceeds a predetermined limit.The control box energizes the dump valve with a series of rapid pulses to bleed-offwheel hydraulic pressure. Continuing in mode, the dump valve is pulsed to keep the wheels rotating, while maintaining controlled deceleration.At the end of such a stop, the valve and any fluid in the accumulator is returned to the master cylinder. Normal brake operation resumes.FOUNDATION BRAKESFoundation brakes in hydraulic systems can be either drum or disc. In many applications, discs are used on the front axle and drums on the rear.Drum brakes are said to be self-energizing. That's because when the brake shoes expand and contact a rotating drum, the leading, or forward, brake shoe is pushed against the trailing shoe by the force of the moving drum. This results in higher lining-to-drum pressure than would be produced by the wheel cylinder alone.As brake linings wear, the shoes periodically must be moved closer to the drums to ensure proper contact during braking. While some older drum brake assemblies are manually adjusted, most are automatic. These use a star wheel or ratchet assembly, which senses when the wheel cylinder has traveled beyond its normal stroke, and expands the pivot point at the other end ofthe brake shoes.In addition to being one of the friction elements, the brake drum or rotor also acts as a heat sink. It must rapidly absorb heat during braking, and hold it until it can be dissipated into the air. The heavier a drum or rotor is, the more heat it can hold.This is important, since the hotter the brake linings get, the more susceptible they are to heat fade. Heat fade is induced by repeated hard stops and results in reduced lining-to-drum/rotor friction and increased vehicle stopping distance. As a rule, high-quality linings will display less heat fade than inferior ones. Also, are far more resistant to heat fade than drum brakes.Another type of fade that brakes are susceptible to is water fade. Drum brakes, with their large surface areas, apply fewer pounds per square inch of force between lining and drum during a stop than disc brakes. This, added to the drum's water-retaining shape, promotes hydroplaning between shoe and drum under wet conditions. The result is greatly increased stopping distance.Disc brakes, with their smaller friction surfaces and high clamping forces, do a good job of wiping water from rotors, and display little reduction in stopping capability when wet.中文翻译液压制动基础空气制动系统得到更多的关注,但更多的车辆上安装液压制动器。
文献综述
题目汽车盘式制动器设计学院机械工程学院
专业机电技术教育
学生吕其法
学号1664******
指导教师张春燕
安徽科技学院
2016.3.15
1.盘式制动器的概述
制动器,俗称闸,又叫刹车。
它可以使汽车在需要的情况下,保持稳定的车速(如下坡路)。
在遇到紧急情况时,其也可以使汽车迅速减速甚至是停车,从而确保了行车的安全。
并且还可以防止车子后溜,平稳的停在原地。
其结构笼统地讲,主要包括制架、制动件等操纵装置。
盘式制动器,其主要部件包括制动盘、摩擦块、导向销、制动钳体等。
在盘式制动器中,将端面作为摩擦副进而来完成旋转工作的工作圆盘,称之为制动盘。
在它的固定支架摩擦幅面上,一般由其金属底板及二至四块摩擦片所组成的制动块,摩擦片的体积一般很小。
装在横跨制动盘两侧的夹紧钳形支架中的制动块与加紧装置,构成了制动钳。
诸如此类由制动盘、制动钳所组成的制动器也称为钳盘式制动器。
在小型轿车、豪华客车、货车等车型上,盘式制动器已经得到了极其广泛的应用。
2.国内汽车盘式制动器的应用情况
伴随着我国汽车工业的飞速发展,在国外先进技术的渗入和影响下,盘式制动器在我国的汽车工业上所应用的比重在逐年提高。
由于盘式制动器的应用,大大提高了整车的性能、提高了舒适性、满足了人们对汽车要求的标准。
在轿车、轻卡、微型车及SUV等方面:目前,采用混合制动的车子的比重越来越大。
因为人们观念正在逐步转变,经济性、实用性开始主导着人类的思想。
混合制动的车子,前轮一般采用盘式制动的形式,而后轮往往采用鼓式的。
制动时,在惯性的影响下,车子前轮所承受的负荷很大,往往会占到整车全部负荷的70%至80%。
故,前轮制动力远远大于后轮。
所以出于成本上的考虑,生产厂家为了降低成本,一般采用混合匹配的方式。
目前的大部分轿车、皮卡及SUV等采用的是前盘后鼓式混合制动器。
相关部门统计,在2004年,我国共生产混合制动的车子约为110万辆。
但随着人们对汽车要求的提高以及道路交通状况的改观,尤其在国家强制性的法规出台后,无论前轮还是后轮都采用盘式制动器终将成为主流。
大型客车在制动器方面的应用:气压盘式制动器、电磁制动器以及液压制动器产品可靠性总体良好,技术先进性明显。
我国于1997年在大客车及载重车上首推了AB 防抱死系统和盘式制动器。
但由于大多数都是进口的,所以价格相对来说比较昂贵,
所以出于经济性的考虑,大都用在了高端车上。
但是自2004年7月1日起,在国家交通部有关文件的强制规定下,北京、上海、广州、武汉、长沙、深圳等一二线城市的公交公司,都陆续先后为大客车匹配了气压盘式制动器。
伴随着这股潮流,国产盘式制动器也得到了迅速的发展。
3. 制动器设计的一般原则
汽车的制动性是指汽车在保证方向稳定性的前提下,还能保证在短距离内停车或者能够以较为均匀的速度下较长的坡道。
为达使用要求,在设计制动器的过程中,要考虑的因素有很多,如制动效能的稳定性、制动器的一些尺寸、制动间隙的大小等因素。
并且还要对制动力、制动力分配系数、制动器因数等进行较为详细的计算。
对主要零件诸如制动鼓、制动蹄、摩擦衬块进行结构设计并计算。
4.总结
由于人们对车子的要求越来越高,追求更加快捷、安全与舒适的乘车方式。
传统制动器的种种缺陷,已经不能满足人们的需要。
而盘式制动器刚好能很好的满足人们的需求,其作为新型的制动器,在提高汽车的主动安全性的同时,很好的解决了以前老式制动器无法解决的问题,比如维修频率较高、噪音污染和粉尘污染等,正是这些优越性,使得盘式制动器被越来越多的生产厂家所亲睐。
综上所述,盘式制动器所具有的种种其他制动器所不具备的优势,使得其成为主流已是大势所趋。
参考文献
[1]方泳龙,汽车制动理论与设计[M],北京:国防工业出版社,2005。
[2]濮良贵,纪名刚,机械设计[M],北京:高等教育出版社,2006。
[3]余志生,汽车理论[M],北京:机械工业出版社,2006。
[4]王望予,汽车设计[M],北京:机械工业出版社,2006。
[5]陈家瑞,汽车构造(下)[M],机械工业出版社:2005。
[6] 编辑委员会编著《汽车工程手册》[M],北京:人民交通版社,2001。
[7]刘品,李哲.机械精度设计与检测基础[M],哈尔滨:哈尔滨工业出版社,2005。
[8]尹安东,汽车实验学[M],合肥:合肥工业大学出版社,2011。
[9]王霄锋,汽车底盘设计[M],北京:清华大学出版社,2010。
[10]张国忠,现代设计方法在汽车设计中的应用[M],沈阳:东北大学出版社,2002。
[11]程国华,汽车制动系统发展漫谈[J]:汽车运用,2003。
[12]应之丁,吴萌岭,王文强,张为民,制动缸密封件的设计分析[J]:机车车辆工艺,1999。
[13]朱旬,金海东,轿车制动主缸结构浅析[J]:汽车研究与开发,1999。
[14]何宇平,国内外汽车制动法规评述及制动性能分析[D],北京:清华大学,1991。
[15] 全国文献工作标准化技术委员会,GB/T 12676-1999 中国标准书号[S],北京:中国标准出版社,1999。