独立是事 互斥是事 件间的概 件间本身 率属性 的关系
两事件相互独立 P ( AB ) P ( A) P ( B ) 两事件互斥
AB
二者之间没 有必然联系
定义2: 设A,B,C是三个事件,若满足: P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C), P(ABC)=P(A)P(B)P(C) 则称A,B,C为相互独立的事件. 定义3:对n个事件A1,A2,…,An,如果对所有可 能的组合1≤i<j<k<…≤n成立着 P(AiAj)=P(Ai)P(Aj) P(AiAjAk)=P(Ai)P(Aj)P(Ak) P(A1A2…An)=P(A1)P(A2)…P(An), 则称这n个事件A1,A2,…,An相互独立.
概率的统计定义直观地描述了事件发生的 可能性大小,反映了概率的本质内容,但 也有不足,即无法根据此定义计算某事件 的概率。
2.2、古典概型
若随机试验满足以下特征:
(1)试验的可能结果只有有限个;
(2)各个结果的出现是等可能的. 则称此试验为古典概型.
古典概型中事件概率的计算公式
设随机试验E为古典概型,其样本空间Ω及 事件A分别为: Ω={ω1,ω2,…,ωn} A={ωi1,ωi2,…,ωik} 则随机事件 A 的概率为:
Ai — 第i次试验中A发生, 则
k P( X k ) Cn p k q nk , k 0,1,2,, n
称随机变量X服从参数为n,p的二项分布,记为
P( A n A1A 2 A n1 )
2.4 全概率公式和贝叶斯公式:
1. 样本空间的划分 定义 : 若B1, B2 , , Bn一组事件满足:
(i) Bi B j , i j, i, j 1, 2, ...,n,