断裂与损伤力学试题
- 格式:docx
- 大小:23.71 KB
- 文档页数:1
第八章 断裂力学习题及解习题1、已知I 型裂纹问题的应力函数为()()()z Z y z Z z I I I Im Re +=ϕ,其中()()z Z z Z I I ,分别为复变函数()z Z I 的二次积分和一次积分,试求出对应的应力分量。
解:令()()()y x iv y x u z Z I ,,+=,那么()udy v dx i v dy udx dz z Z CCC++-=⎰⎰⎰按C-R 条件有yux v y v x u ∂∂-=∂∂∂∂=∂∂,。
那么有如下关系式 y Zx Z Z ∂∂=∂∂='Im Re Re , xZy Z Z ∂∂=∂∂-='Im Re Im , 由应力函数可得应力()⎪⎪⎭⎫ ⎝⎛+∂∂+∂∂∂∂=+∂∂=∂∂=I I I I I 222I 2xx Z y Z y y Z y Z y Z y y σIm Im Re Im Re ϕ ()'Im Re Re Re Im Re Im I I I I I I I xx Z y Z Z yZ y Z Z y Z y -=+∂∂=++-∂∂=σ ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂=+∂∂=∂∂=x Z y xZ x Z y Z x x σI I I I 222I 2yyIm Re Im Re ϕ得 ()'Im Re Im Re I I I I yy Z y Z Z y Z x+=+∂∂=σ ()⎪⎪⎭⎫ ⎝⎛-∂∂-∂∂-∂∂=⎥⎦⎤⎢⎣⎡+∂∂-∂∂=∂∂∂-=I I I I I I 2xyZ y Z y y Z x Z y Z y x y x Im Im Re Im Re ϕτ ()'Re Re Im Re Im I I I I I xy Z y xZ y Z Z y Z x -=∂∂-=--∂∂=τ 习题2、如图8-1所示无限大板中含有一长度为2a 的中心贯穿裂纹,设I 型裂纹问题的应力函数为()()()z Z y z Z z I I I Im Re +=ϕ(双向拉伸),或为()()())(2Im Re 22y x A z Z y z Z z I I I --+=ϕ(单向拉伸)。
一、简答题(本大题共5小题,每小题6分,总计30分)1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法.2、假定:(1)裂纹初始扩展沿着周向正应力为最大的方向;(2)当这个方向上的周向正应力的最大值()max达到临界时,裂纹开始扩展•S3、应变能密度:W S,其中S为应变能密度因子,表示裂纹尖端附近应力场r密度切的强弱程度。
4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。
5、表观启裂韧度,条件启裂韧度,启裂韧度。
二、推导题(本大题10分)D-B模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。
积分路径:塑性区边界。
AB 上:平行于x1,有dx2 0 , ds dx1 , T22007断裂力学考试试题B卷答案BD上:平行于捲,有dx20 , ds dx1 , T2u iJ (Wdx2 T L ds)s V s V S(V A三、计算题(本大题共1、利用叠加原理:微段K]ABT2 V D)3小题,每小题集中力qdx U2dx1%BDT2U£dx1X120分,dK]总计60分)a 2q . a0 (2 2.(a x ) dx 10分sin cos — a cos sin a2b 2b 2b 2b— cos — a sin a 2b 2b2b(_ 2 2)cos — 2b a 2 cos a si n a2b2b 2b 2ba)2la sin 1(豎)a cosK i2qJ — 0 赢T d 当整个表面受均布载荷时,6 a .2、边界条件是周期的:a.zy0, xy 0c.所有裂纹前端又Z 应为2b 的周期函数si2z皿2冷 采用新坐标: z aZ % a)J (sin 七严2陶)20 时,sin —— ——,cos —2b 2b 2bK i 2qsin 1(a a ) q a10分令 x acos 一 a 2 x 2 a cosb.在所有裂纹内部应力为零.y0,x a, a 2b x a2b 在区间内单个裂纹时Zz z 2 a 210分d(sin -2b[吃(加sin ( a)2ba sin2b .2 a . a」 --------- cos——sin 】2b 2b0时,2 2帥莎(a)] (s^a)22b cos asin a 2b2b2bK I1吧0 F_Zsin2b1 a . a ——cos——sin —2b2b 2b2b ta n—a2ba tan—2b 10分注意行为规范3、当复杂应力状态下的形状改变能密度等于单向拉伸屈服时的形状改变能密度,材料屈服,即:2 2 2 2(1 2 ) ( 2 3) ( 3 1 ) 2 s对于I型裂纹的应力公式:(X2y)2xy1Kl cos-[1 sin-]2 2 r 2 2遵考场10分纪程•律0(平面应力,薄板或厚板表面)K I22scos2[1 3sin2—]2 2--平面应力下,I型裂纹前端屈服区域的边界方10分r、简答题1.断裂力学中, (80 分)按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。
中原工学院2009〜2010 学年第1 学期材科专业材料的力学性能课程期末试卷题号-一- -二二三四五六七八九十总分一、填空(每空1分,共10分)1、屈服强度是金属材料重要的力学性能指标,它受各种内外因素的影响,内在因素包括金属本性及晶格类型,_______________________ ,__________________ ,2、根据摩擦面损伤和破坏的形式,磨损大致可分4类:粘着磨损、___________________________ 及接触疲劳。
3、断裂韧度受各种内外因素的影响,外在因素主要包括 ______________________4、硬度实验方法包括布氏硬度、_____________ 、_____________ 、 _____________等方法。
二、判断题:(在正确的前面划“”,错误的前面划“X” ;每题1分,共10 分) ()1、过载持久值表征疲劳断裂时的应力循环周次,属于采用能量方法表示的力学性能指标,与应变比能、断裂韧度相同。
()2、冲击韧度、静力韧度、断裂韧度,都是衡量材料韧性大小的力学性能指标。
而且,它们采用相同的计量单位。
()3、只要存在金属材料、应力和腐蚀介质,一定会发生应力腐蚀断裂。
()4、疲劳裂纹萌生后便马上开始扩展,扩展分为介稳扩展和失稳扩展两个阶段,而且,介稳扩展的速率较快。
()5、氢脆断裂的微观断裂机理一般为沿晶断裂,断裂表面有泥状花样的腐蚀()6、各种断裂判据,都是裂纹失稳扩展的断裂判据,因此,都是非常安全的。
()7、缺口强化与形变强化不一样,不是强化材料的重要手段,但对于那些不能进行热处理强化的材料,可以作为强化的手段。
()&比例极限与蠕变极限相似,都属于长度类力学性能指标,都与拉伸紧密相关,是表示拉伸的力学性能指标。
()9、磨损曲线与蠕变曲线相似,都分为三个阶段,斜率表示速率,因此它们的纵横坐标是相同。
()10、同一金属材料用不同的硬度测定方法所测得的硬度值是相同的。
断裂力学习题一、问答题1、什么是裂纹?2、试述线弹性断裂力学的平面问题的解题思路。
3、断裂力学的任务是什么?4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法:5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。
6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力σ及断裂强度极限σb,,说明K1与K1C的区别与联系?7、在什么条件下应力强度因子K的计算可以用叠加原理8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小?9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。
10、K准则可以解决哪些问题?11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同?12、确定K的常用方法有哪些?13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力?14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么?15、什么是格里菲斯裂纹?试述格氏理论。
16、奥罗万是如何对格里菲斯理论进行修正的?17、裂纹对材料强度有何影响?18、裂纹按其力学特征可分为哪几类?试分别述其受力特征19、什么叫塑性功率?20什么是G准则?21、线弹性断裂力学的适用范围。
22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用?23、什么是Airry应力函数?什么是韦斯特加德(Westergaard)应力函数?写出Westergaard应力函数的形式,并证明其满足双调和方程。
24、裂纹按其几何特征可分为哪几类?25、判断下图所示几种力情况下,裂纹扩展的类型26、D-B 模型的适用条件是什么?27、什么叫裂纹的亚临界扩展?什么叫门槛值?28、什么叫腐蚀?什么叫应力腐蚀?什么叫腐蚀临界应力强度因子K ⅠSCC ?29、什么叫应力疲劳?什么叫应变腐蚀?两者的裂纹扩展速率表达式是否相同?为什么?30、什么叫腐蚀疲劳?31、试述金属材料疲劳破坏的特点 32、现有的防脆断设计方法可分为哪几种?33、什么是疲劳裂纹门槛值,哪些因素影响其值的大小?它有什么实用价值? 34、应力腐蚀裂纹扩展的特征?第二类椭圆积分Φ0的值受扭薄壁圆筒二、计算题:1、有一材料211/102m N E ⨯=,表面能密度m N /8=γ,外加拉应力27/107m N ⨯=σ。
断裂力学考试试题 A 卷答案一、简答题(本大题共5小题,每小题6分,总计30分)1、按裂纹的几何类型分:穿透裂纹,表面裂纹,深埋裂纹; 按裂纹的受力和断裂特征分类:张开型(I 型),滑开型(II 型),撕开型(III )。
2、并列裂纹的作用使K Ⅰ下降,工程上偏安全考虑:(1)并列裂纹作为单个裂纹考虑;(2)对于密集的缺陷群,假定它们在空间规则排列,并可把空间裂纹简化成平面裂纹。
3、(1)做切线OA(2)做割线OPS ,斜率比切线斜率小5% (3)确定P θ若在5P 前,曲线各点小于5P ,则5P P θ= 若在5P 前,曲线各点小于5P ,则max P P θ=(4)计算max 1.1P P θ≤满足,则有效,否则加大试件 (5)计算I K ,利用前面给出公式。
(6)计算22.5()[,,()]SK a B W a θσ≤-,每项都满足一定要求满足IC K K θ=否则加大试件(厚度为原厚度1.5倍的试件)4、(1)回路积分定义:围绕裂纹尖端周围区域的应力、应变和位移所围成的围线积分。
(2)形变功率定义:外加载荷通过施力点位移对试件所作的形变功率给出。
5、平均应力,超载,加载频率,温度,腐蚀介质,随机载荷等。
P二、推导题(本大题共2小题,每小题20分,总计40分)1、假设裂纹闭合3(1sin sin)222yθθθσ=+当0θ=,r x=时,yσ=.又31)sin sin]22v kθθ=+-当r a x=∆-,θπ=时.2)v k=+应力0yσ→,位移0v→. 10分在闭合时,应力在a∆那段所做的功为ayB vdxσ∆⎰.2 001412)4a ayB kG vdx k dx KB a a Gσ∆∆+⇒==+=∆∆⎰⎰ⅠⅠ平面应力情况:23,1Kk GEμμ-=⇒=+ⅠⅠ平面应变情况:22134k G K Eμμ-=-⇒=ⅠⅠ 2K G E ⇒='ⅠⅠ21E EE E μ'=⎧⎪⎨'=⎪-⎩平面应力平面应变10分2、D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。
材料损伤与断裂力学分析材料损伤与断裂力学分析是材料科学领域中重要的研究方向之一。
它涉及到材料的破坏行为、损伤形态以及断裂机理等内容。
通过对材料的力学性能和微观结构进行分析,可以揭示材料在受力过程中的损伤演化和断裂行为,为材料的设计、制备和应用提供科学依据。
在材料损伤与断裂力学分析中,首先需要了解材料的力学性能。
材料的力学性能包括强度、韧性、硬度等指标。
强度是材料抵抗外力破坏的能力,通常用屈服强度和抗拉强度来表示。
韧性是材料抵抗断裂的能力,它反映了材料在受力过程中的变形能力。
硬度则是材料抵抗划伤和压痕的能力,它与材料的晶体结构和成分有关。
在材料受力过程中,损伤是不可避免的。
损伤是指材料内部出现的缺陷、裂纹和断裂等现象。
损伤的形成和演化过程是材料断裂的先兆,也是研究材料性能和寿命的关键。
损伤可以分为微观损伤和宏观损伤两个层次。
微观损伤包括晶体滑移、位错形成和扩展等,宏观损伤则是指材料的裂纹扩展和断裂。
对于材料的损伤和断裂行为,断裂力学提供了一种有效的分析方法。
断裂力学是研究材料在受力过程中裂纹扩展和断裂行为的学科。
它通过建立力学模型和数学方程来描述材料的断裂行为,并提供了预测和控制材料断裂的理论基础。
断裂力学可以分为线性弹性断裂力学和非线性断裂力学两个方向。
线性弹性断裂力学适用于强度较高、刚度较大的材料,而非线性断裂力学则适用于韧性较好、变形能力较大的材料。
在材料损伤与断裂力学分析中,还需要考虑材料的微观结构和力学行为。
材料的微观结构包括晶体结构、晶界和位错等。
晶体结构决定了材料的力学性能,晶界则是材料的强度和韧性的关键因素。
位错是材料中的缺陷和损伤的主要来源,它们的形成和移动对材料的力学行为有着重要影响。
通过对材料的微观结构进行分析,可以揭示材料的损伤演化和断裂机理。
总之,材料损伤与断裂力学分析是研究材料破坏行为的重要方法。
通过对材料的力学性能、微观结构和力学行为进行分析,可以揭示材料在受力过程中的损伤演化和断裂行为。
断裂力学复习题1.裂纹按几何特征可分为三类,分别是(穿透裂纹)、(表面裂纹)和(深埋裂纹)。
按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。
2.应力强度因子是与(外载性质)、(裂纹)及(裂纹弹性体几何形状)等因素有关的一个量。
材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。
3.确定应力强度因子的方法有:(解析法),(数值法),(实测法)。
4.受二向均匀拉应力作用的“无限大”平板,具有长度为2a 的中心贯穿裂纹,求应力强度因子ⅠK 的表达式。
【解】将x 坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为:① 当y = 0,x → ∞时,σσσ==y x ;② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→y σ。
可以验证,完全满足该问题的全部边界条件的解析函数为22Ⅰ )(a z z z Z -=σ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有z =ζ+a 或ζ= z -a ,代入(1),可得:)2()()(I a a Z ++=ζζζσζ于是有:aa a a a K πσζζσπζζζσπζζζ=++⋅=++⋅=→→)2()(2lim )2()(2lim 00Ⅰ5.对图示“无限大”平板Ⅱ型裂纹问题,求应力强度因子ⅡK 的表达式。
【解】将x 坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为:① 当y = 0,x → ∞时,ττσσ===xy y x ,0;② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→xy τ。
可以验证,完全满足该问题的全部边界条件的解析函数为22Ⅱ )(a z z z Z -=τ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有z =ζ+a 或ζ= z -a ,代入(1),可得: )2()()(Ⅱa a Z ++=ζζζτζ 于是有:a a a a a K πτζζτπζζζτπζζζ=++⋅=++⋅=→→)2()(2lim )2()(2lim 00Ⅱ6.对图示“无限大”平板Ⅲ型裂纹问题,求应力强度因子ⅢK 的表达式。
断裂力学基础目 录第一章 绪论第二章 线弹性断裂力学 第三章 弹塑性断裂力学 第四章 疲劳裂纹扩展第五章 复合型裂纹的脆性断裂理论 附 录 弹性力学基础第一章 绪 论ssss2a2bss2a?一、引例][s s ≤⎪⎭⎫ ⎝⎛+=b a 21maxs s Inglis(1913)用分子论观点计算出绝大部分固体材料的强度103MPa ,而实际断裂强度100MPa ?——材料缺陷第一章 绪论第一章 绪论 二、工程中的断裂事故1.1860~1870英国铁路事故死200人/年;2.1938年3月14日比利时费廉尔大桥断成三节,1947~1950比利时又有14座大桥脆性破坏; 3.美国二次大战期间2500艘自由轮,700艘严重破坏,其中145艘断成两段,10艘在平静海面发生。
同时期大量的战机事故——广泛采用焊接工艺和高强度材料; 4.1954年1月10日英国大型喷气民航客机彗星号坠落,同时期共三架坠落;二、工程中的断裂事故5.1958美国北极星号导弹固体燃料发动机壳体爆炸; 6.1969年11月美国F3左翼脱落; 7.1972年我国歼5坠毁;8.近年来桥梁、房屋、锅炉和压力容器、汽车等第一章 绪论二、工程中的断裂事故 第一章 绪论 二、工程中的断裂事故9.2007年11月2日美国F15 空中解体;第一章 绪论三、断裂力学发展简史1.1913年,C. E. Inglis(英格列斯)将裂纹(缺陷)简化为椭圆形切口,用线弹性方法研究了含椭圆孔无限大板受均匀拉伸问题——按应力集中观点解释了材料实际强度远低于理论强度是由于固体材料存在缺陷的缘故。
2.1921 年,A. A. Griffith(格里非斯)用弹性体能量平衡的观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能量准则,成为线弹性断裂力学的核心之一—能量释放率准则。
第一章 绪论 三、断裂力学发展简史3.1955~1957年,G. R. Irwin(欧文)通过对裂尖附近应力场的研究,提出了新的断裂参量—应力强度因子,并建立断裂判据,成为线弹性断裂力学的另一核心—应力强度因子断裂准则。
断裂力学期末考试试题含答案一、简答题(80分)1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型,请画出这些类型裂纹的受力示意图。
(15分)2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论,(15分)3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点,(15)4. 简述脆性断裂的K准则及其含义,(15)5. 请简述疲劳破坏过程的四个阶段,(10)6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小,(5分)7. 对于两种材料,材料1的屈服极限和强度极限都比较高,材料,,sb 2的和相对较低,那么材料1的断裂韧度是否一定比材料2的高,,,sb 试简要说明断裂力学与材料力学设计思想的差别, (5分)二、推导题(10分)请叙述最大应力准则的基本思想,并推导出I-II型混合型裂纹问题中开裂角的表达式,三、证明题(10分),,,JwdyTuxds,,,,,(/)定义J积分如下,,围绕裂纹尖端的回路, ,,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中是w, 板的应变能密度,为作用在路程边界上的力,u是路程边界上的位移T ds矢量,是路程曲线的弧元素。
证明J积分值与选择的积分路程无关,并说明J积分的特点。
四、简答题(80分)1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型,请画出这些类型裂纹的受力示意图。
(15分)答:按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I型)、滑开型(II型)和撕开型(III型),如图所示y y yx o o o z x xI型,张开型 II型,滑开型三型,撕开型2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论,(15分)答:对完全脆性材料,应变能释放率等于形成新表面所需要吸收的能量率。
对于金属等有一定塑性的材料,裂纹扩展中,裂尖附近发生塑性变形,裂纹扩展释放出来的应变能,不仅用于形成新表面所吸收的表面能,更主要的是克服裂纹扩展所吸收的塑性变形能,即塑性功。
原创小刘-LZP08-07原文一、“彗星号”大型客机失事惨剧促发金属断裂行为研究史的开端1954年1月10日,一架英国海外航空公司(BOAC)的一架“彗星”1型客机(航班编号781号)从意大利罗马起飞,飞往目的地是英国伦敦。
飞机起飞后26分钟,机身在空中解体,坠入地中海,机上所有乘客和机组人员全部遇难。
这次事故震惊了全世界,英国成立了专门的调查组调查事故。
该型客机停飞两个月。
就在英国海外航空公司总裁保证该机型不会再出事并复飞后不久,另一架“彗星”型客机也发生了同样的空中解体事故,坠毁在意大利那不勒斯附近海中。
在此一年的时间里,共有3架“彗星”型客机在空中先后解体坠毁。
此惨剧令当时英国为之骄傲的“彗星号”大型客机寿终正寝,也促发了科学家研究低应力断裂的“裂纹力学”,此即断裂力学诞生的由来。
“彗星号”大型民航客机对事故的调查发现,“彗星”客机采用的是方形舷窗。
经多次起降后,在方形舷窗拐角(直角)处会出现金属疲劳导致的裂纹(裂隙)。
正是这个小小的裂纹引起了灾难事故。
后来,所有客机舷窗均采用圆形或设计有很大的圆角,以减小应力集中,提高金属疲劳强度;延缓疲劳裂纹的发生,此系后话。
进一步研究证明,裂纹的存在,引起飞机结构发生低应力破坏,通行的设计准则遇到极大挑战。
这个研究孕育了断裂力学的诞生,并促进了其快速发展。
到1957年,美国科学家欧文(G.R.Irwin)提出应力强度因子的概念,从此线弹性断裂力学基本建立起来。
断裂力学诞生并用于结构设计后,源于裂纹引发的灾难事故大大减少,可见断裂力学是破解结构低应力破坏的金钥匙。
再看一组图片所有的工程结构都是由工程材料制造而成;所有的断裂事故,均源于材料的微、细、宏观的损伤和断裂。
材料与结构的损伤断裂引发的事故实在太多。
二、材料的力学性能参数:强度、塑性、韧性、脆性、弹性从应力应变曲线上也可看出脆性或韧性材料材料的力学性能指的是材料在给定的外界条件下所表现的行为,完全由材料的微观组织结构决定。
1.断裂与损伤力学的发展过程以与要解决的问题。
2.材料疲劳损伤机理以与断裂力学基本分析方法。
3.新材料复合材料的损伤以与断裂破坏基础理论。
1、断裂与损伤力学的发展过程以与要解决的问题1.1 断裂力学的发展简史与要解决的问题断裂力学理论最早是在1920年提出。
当时Griffith为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,其内容是:结构体系内裂纹扩展,体系内总能量降低,降低的能量用于裂纹增加新自由表面的表面能,裂纹扩展的临界条件是裂纹扩展力(即应变能释放率)等于扩展阻力(裂纹扩展,要增加自由表面能而引起的阻力)。
很好地解释了玻璃的低应力脆断现象。
计算了当裂纹存在时,板状构件中δ常数。
应变能的变化进而得出了一个十分重要的结果:=acδ是裂纹扩展的临界应力;a为裂纹半长度。
他成功的解释了玻璃等其中,c脆性材料的开裂现象但是应用于金属材料时却并不成功。
1944年泽纳(Zener)和霍洛蒙(Hollmon)又首先把Griffith理论用于金属材料的脆性断裂。
不久欧文(Irwin)指出,Griffith的能量平衡应该是体系内储存的应变能与表面能、塑性变形所做的功之间的能量平衡,并且还指出,对于延性大的材料,表面能与塑性功相比一般是很小的。
同时把G定义为“能量释放率〞或“裂纹驱动力〞,即裂纹扩展过程中增加单位长度时系统所提供的能量,或裂纹扩展单位面积系统能量的下降率。
1949年Orowam E在分析了金属构件的断裂现象后对Griffith的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿的塑性应变功,而且由于塑性应变功比表面能大得多以至于可以不考虑表面能的影响,其提出的公式为=a c δ=2/1)/2(λEU 常数该公式虽然有所进步,但仍未超出经典的Griffith 公式范围,而且同表面能一样,应变功U 是难以测量的,因而该公式仍难以应用在工程中。
习题1:设有两个无限大板A 和B ,均含有贯穿性裂纹,其中A 板裂纹长度为2a ,B 板裂纹长度为a ,两者均受拉应力作用,A 板拉应力为σ,B 板受拉应力为2σ,问他们的裂纹尖端应力强度因子是否相同。
解:A 板:a a Y K πσπσ==IAB 板:a aY K πσπσ222IB ==因此,二者的应力强度因子不相同。
习题2:无限大板A 、B 受力如图所示,已知板A 含贯穿裂纹长度为mm a 8.4021=,板B 含贯穿裂纹长度为mm a 7.522=,外加应力均为250MPa ,材料的断裂韧度21IC 25.63m MPa K ⋅=,问板A 、B 是否发生断裂。
解:①板A 的应力强度因子:21IC 21I 23.6329.630204.0142.3250mMPa K m MPa a K ⋅=>⋅=⨯⨯==πσ因此,A 板断裂。
②板B 的应力强度因子:21IC 21I 23.6366.2300285.0142.3250mMPa K m MPa a K ⋅=<⋅=⨯⨯==πσ因此,B 板不会断裂。
习题3:证明如探伤给出的裂纹当量直径A D 2=时(深埋裂纹,当量面积为2A π),在裂纹面积相等的情况下,把裂纹简化为椭圆裂纹(短轴长轴比21=c a )比简化为圆形裂纹安全。
解:①当量直径为A D 2=,则简化为圆形裂纹时有裂纹半径为A ,对于深埋裂纹有:Φ=Φ=AaK πσπσI当c a =时,则2π=Φ,因此有:A AK πσππσ637.02I ==②当量面积为2A π,且轴比为21==k c a ,则a k a c 2==。
由ka A S 22ππ==,得到:k A a =,Φ=Φ=kA aK πσπσI当21==k c a 时,208.146.1==Φ则:A kA aK πσπσπσ696.0I =Φ=Φ=③由于简化为椭圆形裂纹计算得到的应力强度因子要大于简化为圆形裂纹时的应力强度因子,因此偏于安全。
断裂与损伤力学试题
(2015级力学研究生)
简答题(80分)
1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。
(15分)
2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分)
3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(10)
4. 简述脆性断裂的K 准则及其含义?(10)
5. 请简述能量损伤和几何损伤理论及其应用(20)
6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端
塑性区尺寸在平面应变状态比平面应力状态小?(5分)
7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分)
一、
二、 推导题(10分)
请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式?
三、
四、 证明题(10分)
定义J 积分如下, (/)J wdy T u xds Γ
=-⋅∂∂⎰,围绕裂纹尖端的回路Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元素。
证明J 积分值与选择的积分路程无关,并说明J 积分的特点。
断裂与损伤力学试题
(2015级力学研究生)
简答题(80分)
1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。
(15分)
2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分)
3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(10)
4. 简述脆性断裂的K 准则及其含义?(10)
5. 请简述能量损伤和几何损伤理论及其应用(20)
6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分)
7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分)
一、 推导题(10分)
请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式?
二、 证明题(10分)
定义J 积分如下, (/)J wdy T u xds Γ
=-⋅∂∂⎰,围绕裂纹尖端的回路Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元素。
证明J 积分值与选择的积分路程无关,并说明J 积分的特点。