(集成电路应用设计实验报告)集成电路应用设计实验报告
- 格式:pdf
- 大小:165.46 KB
- 文档页数:5
武汉大学电工电子实验教学示范中心集成电路设计实验实验报告电子信息学院学院电子信息工程专业2014 年 6 月 5 日图1三. 实验设备与软件平台微型计算机,Synopsys Hspice。
二、实验操作部分1.实验数据、表格及数据处理(综合结果概要、仿真波形图、时序分析结果、signalTAPII 结果等)2.实验操作过程(可用图表示)3.结论四. 实验内容1. 设计一个由NMOS 和PMOS 管组成的CMOS 反相器电路,对所设计CMOS 反相器进行瞬态仿真;2. 设计一个CMOS 线型放大器电路,对所设计CMOS 线型放大器进行仿真。
五. 实验步骤1.CMOS 反相器仿真实验(1)在Windows平台下找到Hspice软件所在目录,C:\ - synopsys - Hspice2005.03,在Hspice2005.03文件夹中新建文本文档,编辑CMOS 反相器仿真程序并保存为test1.sp文件。
(2)启动hspice_mt,点击菜单File - Simulate运行仿真,保存输入输出文件。
图2 图3使用文本编辑器查看test1.lis 和test1.st0文件并分析这两个文件,查看仿真结果。
(3)启动AvanWaves W-2005.03,在AvanWaves 程序主窗口中,点击菜单Design->Open-> 选择test1.sp文件->OK->出现"Results Browser"窗口。
在"Results Browser"窗口中,选择“Transient: Invertertran circuit”,在“Types”中选择“Voltages”,在“Curves”中双击“v(in”和“v(out”,则AvanWaves 程序主窗口中出现相应电压波形,点击“Close”关闭"Results Browser"窗口。
《集成电路与CAD》课程实验第 4 次实验报告实验名称:数字集成电路设计实验目的:1,掌握模拟集成电路的基本设计流程2,掌握CADEDNCE基本使用3,学习物理层版图的设计基础实验原理:1,布图规划:在物理实施过程中,从数据输入到时钟树综合之前,大体可以分为:布图规划、电源规划和布局。
布局又称为标准单元放置,包括对I/O单元的排序放置、模块(block)放置和标准单元的规划。
标准单元通常占50%以上芯片面积。
布图规划开始时,要准备好各种基本设计数据和相应的物理库、时序库文件,并输入到布图规划的工具环境中来,为其后的布局和布线做好准备。
2,电源规划电源规划是给整个芯片的供电设计出一个均匀的网络。
电源网络设置、数字与模拟混合供电、单电源与多电源供电电源网络设置。
其中电源环线(power ring)和电源条线(power stripe)的设置为主要工作。
3,布局I/O单元和模块的布放都属于布局的范畴,由于它们已经在布图规划时完成,因此布局的剩余任务主要是对标准单元的布局。
实验内容与结果分析:1,前端设计16位计数器module count(out,clk,rst); //源程序input clk,rst; //指定输入output[3:0] out; //指定输出reg[3:0] out; //out为4位reg型initial out=4'd0; //初始,输出为0always @(posedge clk or negedge rst) //always块beginif(!rst) out=4'd0; //如果rst信号为0输出为0 else //否则开始下面beginout=out+4'd1; //out=out+1if(out==4'd16) out=4'd0; 如果输出为16,归0endendendmodule2,后端设计(1)设计输入:导入前端设计文件(2)布线窗口设定:整体规划版图,如IO口位置,关键路径(3)电源环设定,如下图,设定电源环位置,宽度,长度(3)放置标准单元:将器件放置在版图上(4)多次布线优化(5)时钟树综合,上色最后结果如下:三,实验分析。
西安邮电大学集成电路版图设计实验报告学号:XXX姓名:XX班级:微电子XX日期:20XX目录实验一、反相器电路的版图验证1)反相器电路2)反相器电路前仿真3)反相器电路版图说明4)反相器电路版图DRC验证5)反相器电路版图LVS验证6)反相器电路版图提取寄生参数7)反相器电路版图后仿真8)小结实验二、电阻负载共源放大器版图验证9)电阻负载共源放大器电路10)电阻负载共源放大器电路前仿真11)电阻负载共源放大器电路版图说明12)电阻负载共源放大器电路版图DRC验证13)电阻负载共源放大器电路版图LVS验证14)电阻负载共源放大器电路版图提取寄生参数15)电阻负载共源放大器电路版图后仿真16)小结实验一、反相器电路的版图验证1、反相器电路反相器电路由一个PMOS、NPOS管,输入输出端、地、电源端和SUB 端构成,其中VDD接PMOS管源端和衬底,地接NMOS管的漏端,输入端接两MOS管栅极,输出端接两MOS管漏端,SUB端单独引出,搭建好的反相器电路如图1所示。
图1 反相器原理图2、反相器电路前仿真通过工具栏的Design-Create Cellview-From Cellview将反相器电路转化为symbol,和schemetic保存在相同的cell中。
然后重新创建一个cell,插入之前创建好的反相器symbol,插入电感、电容、信号源、地等搭建一个前仿真电路,此处最好在输入输出网络上打上text,以便显示波形时方便观察,如图2所示。
图2 前仿真电路图反相器的输入端设置为方波信号,设置合适的高低电平、脉冲周期、上升时间、下降时间,将频率设置为参数变量F,选择瞬态分析,设置变量值为100KHZ,仿真时间为20u,然后进行仿真,如果仿真结果很密集而不清晰可以右键框选图形放大,如图3所示。
图3 前仿真结果3、反相器电路版图说明打开之前搭建好的反相器电路,通过Tools-Design Synthesis-Laout XL新建一个同cell目录下的Laout文件,在原理图上选中两个MOS管后在Laout中选择Create-Pick From Schematic从原理图中调入两个器件的版图模型。
实验一用LM7805制作5~15V可调稳压电源一.实验目的1.了解LM7805的引脚功能2.掌握万能板的焊接技巧3.掌握可调稳压电源的工作原理4.掌握稳压电源的调节方法二.实验内容电路的工作原理电路原理图LM7805是固定式三端稳压集成电路,其标称输出电压为+5V。
但稍加变通,用它可以制作一个5~15V的可调稳压电源。
图中,电阻R1与电位器RP组成分压器,分压点接在三端稳压集成块7805的地端GND2脚上,调节电位器RP因改变集成块地端电位,故能改变电路的输出电压大小。
当电位器滑动端旋到最低点,相当于2脚低端接地,输出电压等于集成块的标称输出电压5V。
滑动点上移,输出电压增大,最大可使输出电压达15V,输出电压V0与电阻的分压关系可表示为V0=V(1+RP/R1)式中:V为7805的标称输出电压,即5V。
当RP取最大值时,V0=5×(1+1000/510)=15V。
电路焊接图2.元器件清单3.实验步骤1.熟悉电路的工作原理2.清点元器件3.检查元器件好坏4.元器件的布局5.焊接元器件和导线6.相互检查是否有焊接错误7.通电测试8.测试电源的参数并记录4.实物图三.实验小结在这次试验中,与以往所不同的是,我们焊接的电路板不再是印制电路板,而是万能板。
需要自己布置、排版元器件,而且需要自己布线,无疑增大了焊接难度。
在焊接之前,将元器件合理布局可以省下很多功夫,相邻的元器件可以利用引脚连接起来而不需要用导线。
焊接时按照从正极出发的顺序连接元器件,避免漏掉。
焊接完之后,仔细数电路的网络数,看看有没有漏焊或者错焊的引脚,确认焊接无错误之后再通电检测,检测时电位器不能大力扭动,以免损坏。
测量可调稳压电源数据时应该从大量程开始,以免烧坏表头,测量电阻时,将外部电源插头拔下。
这次试验总的来说是非常成功的,不仅巩固提高了我的焊接技术,还使我知道了稳压电源的工作原理,另外,我还养成了稳中求快的习惯。
在以后的试验中,我相信我们能够做到更好!实验报告科目:通用集成电路应用与实例分析班级:测量10301第五组指导老师:李琼。
大学物理实验,集成电路温度传感器的特性测量及应用实验报告标题:大学物理实验:集成电路温度传感器的特性测量及应用实验报告一、实验目的本实验旨在通过大学物理实验的方法,研究和理解集成电路温度传感器的特性和应用。
我们会对温度传感器进行基本特性的测量,如灵敏度、线性度、迟滞等,并探讨其在现实生活中的应用。
二、实验原理集成电路温度传感器是一种将温度变化转化为电信号的装置。
其基本原理是热电效应,即不同材料之间的温度差异会导致电荷的转移。
这种电荷的转移可以用来测量温度。
一般来说,温度传感器都具有较好的线性,使得输出的电信号与温度变化成正比。
三、实验步骤与数据记录1.准备器材:本实验需要用到数字万用表、恒温水槽、冰水混合物、热水、温度传感器、数据记录本等。
2.连接传感器:将温度传感器正确地连接到数字万用表上。
3.设定恒温水槽温度:首先设定恒温水槽的温度,分别为0℃、25℃、50℃、75℃、100℃。
4.测量并记录数据:在每个设定的温度下,用数字万用表记录下温度传感器的输出电压,共进行五次测量求平均值。
实验数据如下表:根据实验数据,我们发现温度传感器输出电压与温度之间存在明显的线性关系。
通过线性拟合,我们可以得到输出电压与温度之间的数学关系。
灵敏度是衡量传感器对温度变化响应能力的一个重要指标。
我们可以通过求出斜率来计算灵敏度。
计算结果表明,我们的温度传感器在25℃时的灵敏度为25mV/℃。
迟滞是反映传感器在正向和反向温度变化时响应差异的另一个重要指标。
在本实验中,我们对恒温水槽进行了五次先加热再冷却的操作,以测量迟滞。
我们发现,在±10℃的范围内,传感器的迟滞小于±1mV。
根据实验结果,我们可以得出以下结论:该集成电路温度传感器具有良好的线性、高灵敏度和低迟滞。
这些特性使得它非常适合用于各种需要精确测量温度的场合,如医疗、工业生产、科研等。
五、实验应用与感想通过本次实验,我们深入理解了集成电路温度传感器的特性和工作原理,并学会了如何使用物理实验方法对其进行研究。
集成电路CAD实验报告姓名:席悦学号:2120503018 班级:微电子31班一、实验目的:通过设计一个简单的缓冲器的原理图到最终的版图,对Cadence的Composer,Analog Design Environment,Virtuoso,Assura等各大功能模块逐一了解,使学生掌握模拟集成电路设计的总体流程,为日后的学习、工作打下坚实的基础。
二、实验项目:1.缓冲器的设计:在配置好Cadence之后,进入Cadence的CIW界面。
为设计一个完整的缓冲器,首先需要设计一个反相器。
利用Cadence的电路编辑工具Composer-Schematic绘制如下图所示的inverter电路:之后利用此inverter Schematic 构建如下图所示的inverter Symbol:我们知道,一个Buffer是由两个Inverter组成,利用前边构建Inverter Schematic的方法,画出缓冲器Buffer的电路原理图:其中的反相器直接调用之前做好的Inverter的Symbol。
同样的,利用此缓冲器的原理图生成相应的缓冲器Symbol图:之后构建仿真电路,对所设计的Buffer电路进行电路仿真(ADE)。
仿真电路图如下:在仿真过程中,我们分别采用tt,ss,ff工艺角进行仿真,得到了如下的波形图和仿真数据:①tt工艺角:其相应数据参数为:Marker, /I5/V1, /OUT, /INM0: Y, 900mV, 900mV, 900mVx[0], 111.36ps, 778.31ps, 50psx[1], 5.1063ns ,5.9952ns, 5.05ns②ss工艺角:其相应数据参数为:Marker, /I5/V1, /OUT, /INM0: Y, 900mV, 900mV, 900mVx[0], 121.55ps, 927.99ps, 50psx[1], 5.1155ns, 6.1676ns, 5.05ns③ff工艺角:其相应数据参数为:Marker, /I5/V1, /OUT, /INM0: Y, 900mV, 900mV, 900mVx[0], 103.43ps, 653.72ps, 50psx[1], 5.0984ns, 5.8613ns, 5.05ns④分析总结:通过对不同工艺角的仿真,可以清晰的看到ss的上升延迟和下降延迟时间最长,而ff的上升延迟和下降延迟最短,而tt工艺角是上升延迟和下降延迟的典型值。
实验五集成逻辑门电路的功能测试与应用1.实验目的(1)掌握TTL集成与非门的逻辑功能和主要参数的测试方法;(2)掌握TTL器件的使用规则;(3)熟悉数字电路实验箱的结构,基本功能和使用方法;2.实验设备与器件1)5V直流电源,2)逻辑电平开关,3)0-1指示器,4)直流数字电压表,5)直流毫安表,6)直流微安表,7)74LS20×2,8)WS30—1k、10k电位器各一,9)200Ω电阻器(0.5 )一个。
3.实验原理门电路是组成数字电路的最基本的单元,包括与非门、与门、或门、或非门、与或非门、异或门、集成电极开路与非门和三态门等。
最常用的集成门电路有TTL和CMOS两大类。
TTL为晶体管—晶体管逻辑的简称,广泛的应用于中小规模电路,功耗较大。
本实验采用4输入双与非门74LS20,即在一块芯片内含有两个互相独立的与非门,每个与非门有四个输入端。
其逻辑表达式为Y=ABCD,逻辑符号及引脚排列如图5-1(a)、(b)所示。
[注意]:TTL电路对电源电压要求较严,电源电压V CC只允许在+5V土10%的范围内工作,超过5.5V将损坏器件;低于4.5V器件的逻辑功能将不正常。
(a)逻辑符号(b)引脚排列图5-1 74LS20逻辑符号及引脚排列(1)与非门的逻辑功能与非门的逻辑功能是:当输入端中有一个或一个以上是低电平时,输出端为高电平;只有当输入端全部为高电平时,输出端才是低电平(即有“0”得“1”,全“1”得“0”。
)(2)TTL与非门的主要参数描述与非门的输入电压Ui、输出电压Uo关系可以用电压传输特性Uo=f(Ui)表示,如图5-2(a)。
从电压传输特性曲线上可以读出门电路的一些重要参数,如输出高电平U OH,输出低电平U OL,开门电平U ON,关门电平U OFF等参数。
实际的门电路U OH和U OL并不是恒定值,由于产品的分散性,每个门之间都有差异。
在TTL电路中,常常规定高电平的标准值为3V,低电平的标准值为0.2V。
555定时器应用实验报告555定时器应用实验报告引言:555定时器是一种经典的集成电路,具有广泛的应用。
本实验旨在通过实际操作,探索555定时器的基本原理和应用。
一、实验目的本实验的目的是通过555定时器的应用实验,了解555定时器的基本工作原理、特性和应用场景。
二、实验器材1. 555定时器芯片2. 电源3. 电阻、电容、电感等元件4. 示波器5. 连线电缆等三、实验步骤1. 搭建基本的555定时器电路,包括电源、555芯片、电阻、电容等元件。
2. 连接示波器,观察输入和输出信号的波形。
3. 调节电阻和电容的数值,观察波形的变化。
4. 尝试不同的输入信号,如方波、正弦波等,观察输出信号的响应。
5. 探索不同的应用场景,如脉冲发生器、频率分频器等,观察555定时器的工作情况。
四、实验结果与分析在实验过程中,我们观察到了以下现象和结果:1. 通过调节电阻和电容的数值,可以改变555定时器的输出频率和占空比。
2. 输入信号的不同波形对输出信号的响应也有影响,方波信号能够得到更稳定的输出。
3. 在不同的应用场景中,555定时器表现出了良好的性能,如在脉冲发生器中能够产生稳定的脉冲信号,在频率分频器中能够实现精确的频率分频。
通过对实验结果的分析,我们可以得出以下结论:1. 555定时器是一种非常实用的集成电路,具有广泛的应用前景。
2. 通过调节电阻和电容的数值,可以实现对555定时器的频率和占空比的精确控制。
3. 在不同的应用场景中,555定时器表现出了良好的稳定性和可靠性。
五、实验总结通过本次实验,我们深入了解了555定时器的基本原理和应用。
通过实际操作,我们掌握了555定时器的调节方法和应用技巧。
同时,我们也发现了555定时器在不同应用场景中的优势和局限性。
通过对实验结果的分析和总结,我们对555定时器有了更深入的理解。
总之,555定时器作为一种经典的集成电路,在电子领域有着广泛的应用。
通过实验,我们对555定时器的工作原理和应用场景有了更深入的了解。
ne555实验报告NE555实验报告引言:NE555是一款经典的集成电路,被广泛应用于定时器、脉冲发生器、频率分频器等电子电路中。
本实验旨在通过实际操作NE555电路,深入了解其工作原理和特性。
一、实验目的本实验的主要目的有以下几点:1. 掌握NE555的引脚功能及工作原理;2. 理解NE555作为定时器的基本应用;3. 学会使用NE555构建简单的脉冲发生器。
二、实验原理NE555是一款8脚的集成电路,主要由比较器、RS触发器、RS锁存器和输出级组成。
通过对电路的引脚连接和外部元件的选择,可以实现不同的功能。
三、实验器材1. NE555芯片;2. 电阻、电容、二极管等元件;3. 电源、示波器、万用表等实验设备。
四、实验步骤1. 搭建基本的NE555定时器电路。
将NE555芯片插入实验板上,根据原理图连接电阻、电容和电源等元件。
2. 调节电源电压。
根据NE555的工作电压范围,选择适当的电源电压,并通过万用表测量电压值。
3. 测试NE555的工作频率。
将示波器连接到NE555的输出引脚上,调节电阻和电容的值,观察示波器上的波形变化,并记录下不同参数下的频率值。
4. 构建脉冲发生器。
在基本的NE555定时器电路的基础上,添加电阻、电容和二极管等元件,实现脉冲发生器的功能。
通过示波器观察输出的脉冲波形,并记录下不同参数下的频率、占空比等数值。
五、实验结果与分析通过实验,我们得到了NE555在不同参数下的工作频率和脉冲波形。
根据实验数据,我们可以分析NE555的特性和性能。
首先,NE555的工作频率与电阻和电容的值有关。
当电阻值较大或电容值较小时,工作频率较低;反之,工作频率较高。
这是因为NE555的内部电路通过电阻和电容的充放电过程来实现定时功能。
其次,NE555作为脉冲发生器时,其输出波形的频率和占空比也与电阻和电容的值密切相关。
通过调节电阻和电容的数值,可以实现不同频率和占空比的脉冲波形。
六、实验总结本实验通过实际操作NE555电路,深入了解了其工作原理和特性。
实验一数字电路实验基础一、实验目的⑴掌握实验设备的使用和操作⑵掌握数字电路实验的一般程序⑶了解数字集成电路的基本知识二、预习要求复习数字集成电路相关知识及与非门、或非门相关知识三、实验器材⑴直流稳压电源、数字逻辑电路实验箱、万用表⑵74LS00、74LS02、74LS48四、实验内容和步骤1、实验数字集成电路的分类及特点目前,常用的中、小规模数字集成电路主要有两类。
一类是双极型的,另一类是单极型的。
各类当中又有许多不同的产品系列。
⑴双极型双极型数字集成电路以TTL电路为主,品种丰富,一般以74(民用)和54(军用)为前缀,是数字集成电路的参考标准。
其中包含的系列主要有:▪标准系列——主要产品,速度和功耗处于中等水平▪LS系列——主要产品,功耗比标准系列低▪S系列——高速型TTL、功耗大、品种少▪ALS系列——快速、低功耗、品种少▪AS系列——S系列的改进型⑵单极型单极型数字集成电路以CMOS电路为主,主要有4000/4500系列、40H系列、HC系列和HCT系列。
其显著的特点之一是静态功耗非常低,其它方面的表现也相当突出,但速度不如TTL集成电路快。
TTL产品和CMOS产品的应用都很广泛,具体产品的性能指标可以查阅TTL、CMOS集成电路各自的产品数据手册。
在本实验课程中,我们主要选用TTL数字集成电路来进行实验。
2、TTL集成电路使用注意事项⑴外形及引脚TTL集成电路的外形封装与引脚分配多种多样,如附录中所示的芯片封装形式为双列直插式(DIP)。
芯片外形封装上有一处豁口标志,在辨认引脚分配时,芯片正面(有芯片型号的一面)面对自己,将此豁口标志朝向左手侧,则芯片下方左起的第一个引脚为芯片的1号引脚,其余引脚按序号沿芯片逆时针分布。
⑵电源每片集成电路芯片均需要供电方能正常使用其逻辑功能,供电电源为+5V单电源。
电源正端(+5V)接芯片的VCC引脚,电源负端(0V)接芯片的GND引脚,两者不允许接反,否则会损坏集成电路芯片。
集成电路版图培训实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)淮海工学院电子工程学院实习报告书实习名称:专业实习实习地点:苏州集成电路设计中心实习时间:—专业名称:电子科学与技术班级:电科121*名:**学号:1 引言大学生专业实习是大学学习阶段在完成一定的课程后所要进行的非常重要的一个实践环节,实习是每一个合格的大学生必须拥有的一段,它使我们在实践中增强专业意识和实践意识。
这次专业实习学校安排我们到苏州国际科技园进行为期五天的实习,在实习期间,我们得到了实习公司的大力支持,更有相关培训老师的的悉心培训指导,通过实习使我们对自己未来工作方向有了更清晰认识,为我们以后进一步走向社会打下坚实的基础。
2 实习目的专业实习是电子科学与技术专业安排在校外进行的实践性教学环节,也是在专业基础课、专业课等基本学完之后的又一次实践性教学。
其目的让学生了解实际的集成电路芯片的设计、版图绘制和检测等过程。
把学过的理论知识与实际有机结合起来,为后续专业课的学习以及以后走向工作岗位打下一定的基础。
3 实习目标(1)熟悉集成电路版图设计、集成电路测试技术、半导体器件识别等。
(2)熟悉集成电子产品制造技术,了解集成电子产品生产装配工艺和过程,生产安全操作规范。
熟悉集成电子产品检测,集成电子产品的调试。
(3)通过行业报告、参观展厅、参观封装厂等了解集成电路行业。
CMOS电路设计。
学会行业软件使用:Linux基本操作及实践练习、EDA工具培训与练习、物理版图设计的基础概念。
(4)学习现场工作人员的优秀品质和敬业精神,培养正确的劳动观念和独立工作能力。
4 实习内容(1)集成电路行业报告、实训课(测试、版图、行业软件使用)、参观展厅、参观工厂(芯片封装厂)。
(2)基础理论:集成电路行业介绍、CMOS电路设计、半导体物理。
工具使用:Linux基本操作及实践练习、EDA工具培训与练习、物理版图设计的基础概念。
集成计数器的应用实验报告一、实验目的本实验旨在探究集成计数器的原理和应用,通过搭建电路和实验操作,加深对集成计数器的认识。
二、实验器材1. 集成计数器CD40172. 555定时器3. 电位器4. 电容5. 电阻6. LED灯7. 杜邦线等三、实验原理集成计数器是一种数字电路,能够将输入信号转换成数字输出信号。
其中CD4017是一种常见的十进制分频/计数器,它具有10个输出端口Q0-Q9,可以将输入信号分频并输出到不同的端口上。
当输入脉冲触发时,CD4017会将输出信号从Q0开始顺序递增,直到达到Q9后再次从Q0开始循环。
本实验中还使用了555定时器作为输入脉冲源。
555定时器是一种多功能集成电路,可以用作稳压源、振荡器、脉冲发生器等。
在本实验中,我们将其设置为单稳态触发模式,在按下按钮后会产生一个短暂的高电平脉冲信号,触发CD4017进行计数。
四、实验步骤1. 按照电路图连接电路,注意正确接线。
2. 将555定时器的引脚连接到电位器、电容和按钮上。
3. 将CD4017的引脚连接到LED灯和杜邦线上。
4. 接通电源,按下按钮触发计数器,观察LED灯的变化。
五、实验结果在实验中,我们成功搭建了集成计数器的应用电路,并通过按下按钮触发计数器进行计数。
LED灯在不同的输出端口上依次亮起,完成了分频/计数的功能。
六、实验分析1. 集成计数器具有分频/计数功能,在数字电路中有广泛应用。
2. 555定时器可以用作输入脉冲源,在数字电路中也有广泛应用。
3. 本实验中使用了LED灯作为输出信号显示,但在实际应用中可能需要更加复杂的输出方式。
七、实验总结通过本次实验,我们深入了解了集成计数器的原理和应用,并成功搭建了一个简单的集成计数器应用电路。
同时也学习了如何使用555定时器作为输入脉冲源。
这些知识和技能将对我们今后的学习和工作产生积极影响。
集成电路集中上机实验报告——反相器、与非门设计学院:专业:姓名:学号:一、实验目的(一)全面了解Schematic设计环境,并学会运用(二)掌握与非门、或非门、反相器等电路原理图输入方法(三)掌握逻辑符号创建方法二、实验原理启动Schematic Editor后,在命令解释窗口CIW中,打开任意库与单元中的Schematic视图,浏览Schematic Editing窗口,具体介绍如下:图2.1 Schematic Editing窗口菜单栏中可选菜单有Tool、Design、Window、Edit、Add、Check、Sheet、Options等项。
图标栏内的所有命令都可以在菜单栏实现,图标栏提供使用频率较高的一些菜单为快捷方式,旨在提高设计效率。
在设计过程中,除了可以使用图标快捷方式外,还有盲键(Bindkey)快捷方式。
Cadence系统安装过程中已经设置了通用的盲键,但用户可以根据自己的需要自行设置,在CIW窗口中,选择Options→Bindkeys,可以对所有设置的盲键自定义。
Cadence系统支持3D鼠标,左、中、右分别定义为LMB、MMB、RMB。
LMB用于点击和选择之用,MMB用于辅助编辑,RMB与LMB配合使用,在调查元件属性,局域放大,元件旋转等方面都有应用,在具体实验过程中有详细说明。
在所有元件的添加中,必须定义元件的属性。
最后,为了后续设计中执行仿真,每个元件必须具有物理模型(Model),在lab3中将有实例说明。
三、电路原理图设计的一般流程(一)创建库与视图(二)添加元件:在Schematic Editing窗口中,选择Add→Instance。
(三)添加Pins :在左侧Tool bar图标栏中选择pin icon图标,出现Add form,在Pin names栏中输入。
(四)添加Sources和Ground:选择Add→Instance,在Library column中选择analogLib,再选择vdd并添加到schematic中。
模拟CMOS集成电路设计实验报告Synopsis电路仿真实验学院:电子工程学院班级:学号:姓名:指导教师:尹露目录实验一:共源极放大器性能分析 (4)一、实验目的 (4)二、实验内容 (4)三、实验步骤 (4)1. 启动软件 (4)2. 电路原理图绘制 (5)3. 电路仿真 (5)四、实验电路图 (6)五、频率特性曲线 (6)六、实验结果分析与结论 (8)1. 实验器件参数 (8)2. 实验条件 (8)3. 仿真结论 (9)实验二:各类共源极放大器特性分析 (10)一、实验目的 (10)二、实验内容 (10)三、实验步骤 (10)四、电路元件参数对放大电路的影响 (11)1. 实验电路图 (11)2. 测量输出电阻电路图 (12)3. 仿真结果 (13)4. 结果分析 (14)五、用二极管连接作为负载对放大电路的影响 (15)1. 实验电路图 (15)2. 测量输出电阻电路图 (16)3. 仿真结果 (17)4. 结果分析 (18)六、电流源作为负载对放大电路的影响 (18)1. 实验电路图 (19)2. 输出电阻电路图 (20)3. 仿真结果 (20)4. 结果分析 (21)七、共源极作为负载对放大电路的影响 (21)1. 实验电路图 (22)2. 输出电阻电路图 (22)3. 仿真结果 (23)4. 结果分析 (24)实验三:差分放大器设计 (25)一、实验目的 (25)二、实验准备 (25)三、差分放大器的设计方法 (25)四、电路的设计要点 (25)五、实验内容 (26)六、实验步骤 (26)七、实验原理图 (26)八、实验电路图 (27)九、实验结果 (28)1. 幅频特性曲线 (28)2. 不同MOS管宽长比和电阻对应放大倍数 (29)3. 结果分析 (30)十、遇到的问题与解决方法 (31)十一、实验总结与感受 (31)实验一:共源极放大器性能分析一、实验目的1.掌握synopsys软件启动和电路原理图(schematic)设计输入方法;2.掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真;3.输入共源级放大器电路并对其进行DC、AC分析,绘制曲线;4.深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响。
EDA技术及应用实验报告摘要:EDA(Electronic Design Automation),即电子设计自动化,是一种用于半导体芯片设计的计算机辅助设计工具。
本实验通过对EDA技术的学习和应用,了解了EDA在电路设计中的重要性和实际应用。
1.引言电子设计自动化(EDA)是为了提高电子电路设计的效率和质量而发展的一种计算机辅助设计工具。
本实验通过学习EDA技术的相关知识和应用实例,深入了解EDA在电路设计中的应用及其优势。
2.EDA技术的基本原理EDA技术是通过计算机辅助分析、合成和验证电路的工具。
它包括电路仿真、布局布线、逻辑综合等多个方面。
其中,电路仿真是通过计算机模拟电路的工作原理和特性;布局布线是将电路逻辑设计映射为实际的物理设计;逻辑综合是将逻辑电路转换为门级或者布尔级电路。
3.EDA技术在电路设计中的应用3.1电路仿真电路仿真是一个重要的EDA技术应用,通过仿真可以验证电路的运行情况,提前发现并解决潜在的问题,从而降低设计风险和成本。
3.2布局布线布局布线是指将逻辑电路映射为物理电路的过程。
通过EDA工具的自动布局布线功能,可以将逻辑电路转换为最优的电路布线,减少电路面积和功耗,并提高电路的稳定性和性能。
3.3逻辑综合逻辑综合是将高级语言描述的逻辑电路转换为可实现的门级或布尔级电路。
通过EDA工具的逻辑综合功能,可以快速生成电路的逻辑结构,避免手工设计过程中的错误和繁琐性。
4.实验设计及结果本实验选取了一款集成电路芯片设计作为实验对象,使用EDA工具进行电路仿真、布局布线和逻辑综合三个方面的实验。
4.1电路仿真实验在电路仿真实验中,我们首先通过EDA工具搭建了待仿真的电路原理图,然后设置仿真条件和参数,运行仿真,并得到了仿真结果。
仿真结果显示,电路工作正常,符合预期。
4.2布局布线实验在布局布线实验中,我们将电路的逻辑设计转换为物理设计,通过EDA工具的自动布局布线功能进行布局布线。
电路实验报告(8篇)电路实验报告(8篇)电路实验报告1一、实验题目利用类实现阶梯型电阻电路计算二、实验目的利用类改造试验三种构造的计算程序,实现类的封装。
通过这种改造理解类实现数据和功能封装的作用,掌握类的设计与编程。
三、实验原理程序要求用户输入的电势差和电阻总数,并且验证数据的有效性:电势差必须大于0,电阻总数必须大于0小于等于100的偶数。
再要求用户输入每个电阻的电阻值,并且验证电阻值的有效性:必须大于零。
此功能是由类CLadderNetwork的InputParameter ()函数实现的。
且该函数对输入的数据进行临界判断,若所输入数据不满足要求,要重新输入,直到满足要求为止。
本实验构造了两个类,一个CResistance类,封装了电阻的属性和操作,和一个CLadderNetwork类,封装了阶梯型电阻电路的属性和操作。
用户输入的电势差、电阻总数、电阻值,并赋给CladderNetwork的数据,此功能是由类CLadderNetwork的InputParameter 函数实现的。
输出用户输入的电势差、电阻总数、电阻值,以便检查,,此功能是由类CLadderNetwork的PrintEveryPart()函数实现的。
根据用户输入的电势差、电阻总数、电阻值换算出每个电阻上的电压和电流。
此功能是由类CLadderNetwork的Calculate ()函数实现的。
最后输出每个电阻上的电压和电流,此功能是由类CLadderNetwork 的PrintResult()函数实现的'。
此程序很好的体现了面向对象编程的技术:封装性:类的方法和属性都集成在了对象当中。
继承性:可以继承使用已经封装好的类,也可以直接引用。
多态性:本实验未使用到多态性。
安全性:对重要数据不能直接操作,保证数据的安全性。
以下是各个类的说明:class CResistance //电阻类private:double voltage;double resistance;double current;public:void InitParameter(); //初始化数据void SetResist(double r); //设置resistance的值void SetCur(double cur); //设置current的值void SetVol(double vol); //设置voltage的值void CalculateCurrent(); //由电阻的电压和电阻求电流double GetResist(){return resistance;} //获得resistance的值保证数据的安全性double GetCur(){return current;} //获得current的值double GetVol(){return voltage;} //获得voltage的值class CResistance //电阻类{private:CResistance resists[MAX_NUM]; //电阻数组int num;double srcPotential;public:void InitParameter(); //初始化数据void InputParameter(); //输入数据void Calculate(); //计算void PrintEveryPart(); //显示输入的数据以便检查void PrintResult(); //显示结果四、实验结果程序开始界面:错误输入-1(不能小于0)错误输入0 (不能为0)输入正确数据3输入错误数据-1输入错误数据0输入正确数据4同样给电阻输入数据也必须是正数现在一次输入2,2,1,1得到正确结果。
电路实验报告(9篇)电路试验报告1一、试验仪器及材料1、信号发生器2、示波器二、试验电路三、试验内容及结果分析1、VCC=12v,VM=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输2、VCC=9V,VM=4、5V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输3、VCC=6V,VM=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输出波形最大且不失真。
(以下输入输出值均为有效值)四、试验小结功率放大电路特点:在电源电压确定的状况下,以输出尽可能大的不失真的信号功率和具有尽可能高的转换效率为组成原则,功放管常工作在尽限应用状态。
电路试验报告2一、试验目的1、更好的理解、稳固和把握汽车全车线路组成及工作原理等有关内容。
2、稳固和加强课堂所学学问,培育实践技能和动手力量,提高分析问题和解决问题的力量和技术创新力量。
二、试验设备全车线路试验台4台三、试验设备组成全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中心线路板、节气组件、电源、收放机、保险等。
四、组成原理汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、帮助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子掌握系统。
随着汽车技术的进展,汽车电器设备和电子掌握系统的应用日益增多。
五、试验方法与步骤1、汽车线路的特点:汽车电路具有单线、直流、低压和并联等根本特点。
(1)汽车电路通常采纳单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属局部连接,与车架或车身连接的导线又称为搭铁线。
蓄电池负极搭铁的汽车电路,称为负搭铁。
现代汽车普遍采纳负搭铁。
同一汽车的全部电器搭铁极性是全都的。
对于某些电器设备,为了保证其工作的牢靠性,提高灵敏度,仍旧采纳双线制连接方式。