16-3相对论动力学概论
- 格式:ppt
- 大小:1.56 MB
- 文档页数:1
1. 电磁场能量守恒定律的推导应用麦克斯韦方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+=⨯∇=⋅∇∂∂-=⨯∇=⋅∇t DJ H B tBE D 0ρ和洛仑兹力公式B v E f ⨯+=ρρ及v Jρ=,结合公式E H H E H E ⋅⨯∇-⋅⨯∇=⨯⋅∇)()()(可给出电磁场对电荷系统所做的功率密度为E v v B v E v f ⋅=⋅⨯+=⋅ρρρ)(EtD HE J⋅∂∂-⨯∇=⋅=)( Et D E H ⋅∂∂-⋅⨯∇=)( []Et D H E H E⋅∂∂-⋅⨯∇+⨯⋅∇-=)()( Et D H t B H E⋅∂∂-⋅∂∂-⨯⋅-∇=)(令H E S⨯=H t B E t D t w ⋅∂∂+⋅∂∂=∂∂对应的积分形式为注释:对于各向同性线性介质,H B E D με==,,由H t B E t D t w⋅∂∂+⋅∂∂=∂∂给出能量密度为)(21B H D E w ⋅+⋅=而H E S⨯=为能流密度矢量,或称为坡印亭(Poynting )矢量。
************************************************练习:将积分形式的麦克斯韦方程组分别应用于介质分界面两侧,试由两个高斯定理导出法向边值关系、两个安培定理导出切向边值关系。
2. 静电势ϕ满足泊松方程的推导对于各向同性线性介质,将E D ε=,ϕ-∇=E代入f D ρ=⋅∇ 得f E E E ρϕεϕεεεε=∇-∇⋅-∇=⋅∇+⋅∇=⋅∇2)(即ερϕεεϕf -=∇⋅∇+∇12对于均匀介质, 有0=∇ε此即为静电势ϕ满足的泊松(poisson )方程,其中f ρ为自由电荷体密度。
注释:当0=∇ε,或E⊥∇ε时,均有0=∇⋅∇ϕε,ϕ仍满足泊松方程。
3. 静电场能量公式的推导在线性介质中,电场总能量为⎰∞⋅=dVD E W 21 对于静电场,利用ρϕ=⋅∇-∇=D E,给出ρϕϕϕϕϕ+⋅-∇=⋅∇-⋅∇-=⋅-∇=⋅)(])([D D D D D E所以⎰⎰⎰⎰⎰∞∞∞∞∞+⋅-=+⋅∇-=⋅dV s d D dV dV D dV D E ρϕϕρϕϕ)( 又=⋅⎰∞s d D ϕ,故注释:(1)电场能量分布于空间电场中。
大学普通物理(第五版)目录(程守洙)第一篇力学第一章质点的运动§1.1质点参考系运动方程§1.2位移速度加速度§1.3圆周运动及其描述§1.4曲线运动方程的矢量形式§1.5运动描述的相对性伽利略坐标变换第二章牛顿运动定律第二章牛顿运动定律§2.1牛顿第一定律和第三定律§2.2常见力和基本力§2.3牛顿第二定律及其微分形式§2.4牛顿运动定律应用举例§2.5牛顿第二定律积分形式之一:动量定理§2.6牛顿第二定律积分形式之二:动能定理§2.7非惯性系惯性力阅读材料A 混沌和自组织现象第三章运动的守恒定律第三章运动的守恒定律§3.1保守力成对力作功势能§3.2功能原理§3.3机械能守恒定律能量守恒定律§3.4质心质心运动定理动量守恒定律火箭飞行§3.5碰撞§3.6质点的角动量和角动量守恒定律§3.7质点在有心力场中的运动§3.8对称性和守恒定律阅读材料B 宇宙的膨胀第四章刚体的转动第四章刚体的运动§4.1刚体的平动、转动和定轴转动§4.2刚体的角动量转动动能转动惯量§4.3 力矩刚体定轴转动定律§4.4定轴转动的动能定理§4.5刚体的自由度刚体的平面平行运动§4.6定轴转动刚体的角动量定理和角动量守恒定律§4.7进动第五章相对论基础第五章相对论基础§5.1伽利略相对性原理经典力学的时空观§5.2狭义相对论基本原理洛伦兹坐标变换式§5.3相对论速度变换公式§5.4狭义相对论时空观§5.5狭义相对论动力学基础§5.6广义相对论简介阅读材料C 超新星爆发和光速不变性第六章气体动理论第二篇热学第六章气体动理论§6.1 状态过程理想气体§6.2分子热运动和统计规律§6.3气体动理论的压强公式§6.4理想气体的温度公式§6.5能量均分定理理想气体的内能§6.6麦克斯韦速率分布律§6.7玻尔兹曼分布律重力场中粒子按高度的分布§6.8分子的平均碰撞次数及平均自由程§6.9气体内的迁移现象§6.10真实气体范德瓦耳斯方程§6.11物态和相变阅读材料D 非常温和非常压第七章热力学基础第七章热学基础§7.1热力学第一定律§7.2热力学第一定律对于理想气体等值过程的应用§7.3绝热过程多方过程§7.4焦耳-汤姆孙实验真实气体的内能§7.5循环过程卡诺循环§7.6热力学第二定律§7.7可逆过程与不可逆过程卡诺定理§7.8熵§7.9熵增加原理热力学第二定律的统计意义阅读材料E 熵与能源第三篇电场和磁场第八章真空中的静电场§8-1 电荷库仑定律§8-2 电场电场强度§8-3 高斯定理§8-4 静电场的环路定理电势§8-5 等势面电场强度与电势梯度的关系§8-6 带电粒子在静电场中的运动阅读材料F电子的发现和电子电荷量的测定第九章导体和电介质中的静电场§9-1 静电场中的导体§9-2 空腔导体内外的静电场§9-3 电容器的电容§9-4 电介质及其极化§9-5 电介质中的静电场§9-6 有电介质时的高斯定理电位移§9-7 电场的边值关系§9-8 电荷间的相互作用能静电场的能量§9-9 铁电体压电体永电体阅读材料G静电现象的应用第十章恒定电流和恒定电场§10-1 电流密度电流连续性方程§10-2 恒定电流和恒定电场电动势§10-3 欧姆定律焦耳一楞次定律§10-4 一段含源电路的欧姆定律。
高考高中物理学史归纳总结必修部分:(必修1、必修2)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》着作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
高考高中物理学史归纳总结必修部分:(必修1、必修2)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
[吸收系数]absorption coefficient 又称“衰减系数”当电磁波进入岩石中时,由于涡流的热能损耗,将使电磁波的强度随进入距离的增加而衰减,这种现象又称为岩石对电磁波的吸收作用。
吸收或衰减系数β的大小和电磁波角频率ω、岩石导电率σ、岩石导磁率μ、岩石介电系数ε有关,1)1(2222-+=δωσμεωβ。
在导体中则简化为:2ωμσβ=。
第十六章机械波和电磁波振动状态的传播就是波动,简称波.激发波动的振动系统称为波源16-1机械波的产生和传播1. 机械波产生的条件(1)要有作机械振动的物体,亦即波源.(2)要有能够传播这种振动的介质波源处质点的振动通过弹性介质中的弹性力,将振动传播开去,从而形成机械波。
波动(或行波)是振动状态的传播,是能量的传播,而不是质点的传播。
◆ 质点的振动方向和波的传播方向相互垂直,这种波称为横波.◆ 质点的振动方向和波的传播方向相互平行,这种波称为纵波.2.波阵面和波射线● 在波动过程中,振动相位相同的点连成的面称为波阵面(wave surface)● 波面中最前面的那个波面称为波前(wave front)● 波的传播方向称为波线(wave line)或波射线波面波线平面波球面波3. 波的传播速度由媒质的性质决定与波源情况无关● 液体和气体中纵波传播速度B-介质体变弹性模量ρ-介质密度●在固体中G-介质切变模量Y-介质杨氏模量4.波长和频率● 一个完整波的长度,称为波长.● 波传过一个波长的时间,叫作波的周期● 周期的倒数称为频率.振动曲线波形曲线图形研究对象某质点位移随时间变化规律某时刻,波线上各质点位移随位置变化规律物理意义由振动曲线可知周期T. 振幅A 初相φ0某时刻方向参看下一时刻由波形曲线可知该时刻各质点位移,波长λ,振幅 A只有 t=0 时刻波形才能提供初相某质点方向参看前一质点特征对确定质点曲线形状一定曲线形状随 t 向前平移16-2 平面简谐波波动方程● 前进中的波动,称为行波.● 描述介质中各质点的位移随时间变化的数学函数式称为行波的波动表式(或波动方程)设坐标原点的振动为:O 点运动传到 p 点需用时相位落后所以 p点的运动方程:1.平面简谐波的波动表式定义 k 为角波数又因此下述表达式等价:为波的相位● 波在某点的相位反映该点媒质的“运动状态”,所以简谐波的传播也是媒质振动相位的传播。