2013大学物理规范作业B上册06相对论动力学解答
- 格式:ppt
- 大小:406.00 KB
- 文档页数:9
大学物理B 作业解答第二章2-2 (B ); 2-4 (B ); 2-5 (A ),; 2-6 22y x =-;2-7 1212m s t -=-+⋅v i j (),11s v -=⋅; 2-9 224m s n a t -=⋅,2-2m s a τ-=⋅,2s a -=⋅2-14 解:(1)由运动方程 221x t y t ⎧=⎨=-⎩得质点的轨迹方程为: 22(1)x y =-(2)1s 和3s 时的位置矢量分别是1331112m ,182m 162m 162m s 81m s 31v t --==-∆=-=-∆-==⋅=-⋅∆-r i r i j r r r i j r i j i j v ()()()()(3)2s t =-质点的速度和加速度2s1124m s 8m s 4m s t t =----=-⋅=--⋅=⋅v i j i j a i ()()()2-15 解:物体抛出后,水平方向做匀速直线运动,则有0cos 45cos 60v v ︒︒=竖直方向有 0sin 45sin 60v v gt ︒︒=-解上两式得:v t g= 或:000cos60sin 60 452x y x y v v v v gtv v v t g︒︒︒===-=∴=⋅v 与水平方向成角时,有2-16 解:(1)由加速度定义式,根据初始条件t 0 = 0时v 0 = 0,积分可得d =d (64)d t tt t =+⎰⎰⎰vv a i j积分得在任意时刻的速度: 1(64)m s t t -=+⋅v i j又由d d t=rv 及初始条件t = 0时,r 0 = (10 m)i , 0d =d (64)d ttt t t t =+⎰⎰⎰rr r v i j积分可得在任意时刻的位矢:2210+32m t t =+r i j ()()(2)由上述结果可得质点运动方程的分量式,即2210+32x t y t⎧=⎪⎨=⎪⎩() 消去参数t ,可得运动的轨迹方程: 2(10)3y x =-m 2-20 解:(1)质点的加速度a 的方向恰好与半径成45︒角时,有2n v a a R τ==,0=dva v v a t dtττ=+由得解上两式并带入数据得:15s s 1.67s 33t τ====(2)在上述时间内,质点所经过的路程 由ds v dt =得 20135m=5.83m 26s v t a t τ=+==L第三章P 68页思考题2,3; 2. 解:5510225N s I Fdt tdt ===⋅⎰⎰1010255275N s I Fdt tdt ===⋅⎰⎰21753251I I ==1501P P P I ∆=-= 21052P P P I ∆=-=2211753=251P I P I ∆==∆ 3. 解:在最高点时,物体被扔出后,由相对运动公式得物体对地的速度m m v u v '=-+此时人和物体组成的系统在水平方向动量守恒,则有()sin m m m v mv m m v α'''+=+解上三式可得sin m mv v u m mα'=+'+由sin 0v gt α-= 得 sin v t gα=增加距离:sin (sin )()m muv sv v t m m gαα'∆=-='+3-3(A ); 3-4(A ); 3-7112m m m +;3-8 0; 3-9 3-17.9710m s ⨯⋅; 3-10 20J;3-12解:(1)子弹和木块组成的系统动量守恒,由动量守恒定律得03v mv Mv m =+ 023mv v M∴=(2)设木块对子弹的阻力为F ,由能的转化和守恒定律得22200111F [()]2223v L mv Mv m =-+ 2022F=9M m mv ML-∴()3-13解:(1)1m 和2m 开始分离时弹簧的伸长量为零,此时两物体具有共同的速度,设为1v ,弹簧、1m 和2m 组成的系统机械能守恒,由机械能守恒定律得2212111()22kb m m v =+1=v ∴(2)1m 和2m 分离后,弹簧和1m 组成的系统机械能守恒,1m 速度为零时,弹簧有最大伸长量m x ,则由机械能守恒定律得22111122m kx m v =1m x v ∴=3-15解:221121211()r r r r k W Fdr dr k r r r ===-⎰⎰补充:如图所示,质量为m 的小球在光滑水平面上作圆周运动(半径为R 1,速度为v 1),今用力拉绳使圆半径变为R 2,求此时小球作圆周运动的速度大小。
实用标准文档文案大全1-5 力F 沿正六面体的对顶线AB 作用,F =100N ,求F 在ON 上的投影。
解:2220.330N 0.410.30.40.4x F F =-=-++ 2220.440N 0.410.30.40.4y F F ==++ 2220.440N 0.410.30.40.4z F F ==++ ON 方向单位矢量0.40.20.20.2ON j k =+ 400.4400.2N+N 83.8N 0.410.20.410.2ON F F ON =⋅==1-8 试求附图所示的力F对A点的矩,已知 1r =0.2m,2r =0.5m,F =300N 。
解:力F 作用点B o o121(sin 60,cos 60)r r r -o cos 60x F F =,o sin60y F F =o o 121()sin60(cos60)15kN m A y x M F r F r r F =⋅--⋅=-⋅1-9 试求附图所示绳子张力F T 对A 点及对B 点的矩。
已知F T =10kN ,l =2m ,R =0.5m,α=30°。
解:()100.55kN m A T T M F F R =⋅=⨯=⋅o o ()(sin 60)10(2sin 600.5) 5103=-12.3kN mB T T M F F l R =-⋅-=-⨯-=-⋅1-11 钢缆AB 的张力 F T =10kN 。
写出该张力F T 对x 、y 、z 轴的矩及该力对O 点的矩(大小和方向)。
解:(1)kN 36.2231104111222=⋅=++⋅=T Tx F FkN 36.2231104111222-=⋅-=++⋅-=T Ty F FkN 43.9234104114222-=⋅-=++⋅-=T Tz F F(2)对轴的矩(位置矢量k j r OA42+==)m kN 43.9234042)(⋅-=-=⋅-⋅=Ty Tz T x F F F MB2m kN 43.923404)(⋅==⋅=Tx T y F F M ,20()2 4.72kN m 32z T Tx M F F =-⋅=-=-⋅ (3)对点的矩()9.439.43 4.72(kN m)O T T x y z M F r F i j k M i M j M k =⨯=-+-=++⋅1-13 工人启闭闸门时,为了省力,常常用一根杆子插入手轮中,并在杆的一端C 施力,以转动手轮。
大学物理b习题集答案详解大学物理B习题集答案详解一、引言大学物理B是大学物理课程中的一门重要课程,对于培养学生的科学素养和解决实际问题的能力起着至关重要的作用。
然而,由于其涉及到许多抽象的概念和复杂的计算,很多学生在学习过程中遇到了困难。
为了帮助学生更好地掌握大学物理B的知识,本文将对一些常见的习题进行详细解析。
二、力学1. 问题描述:一个物体以初速度v0沿着水平方向匀速运动,经过时间t后,速度变为v。
求物体所受到的加速度。
解析:根据匀速运动的定义,速度不变,即v = v0。
而加速度的定义是速度的变化率,即a = (v - v0) / t。
代入已知数据,可以得到物体所受到的加速度a = 0。
2. 问题描述:一个质量为m的物体以速度v沿着水平方向运动,在水平地面上受到一个恒定的摩擦力f。
求物体所受到的加速度。
解析:根据牛顿第二定律,物体所受到的合力等于质量乘以加速度,即ΣF = ma。
在这个问题中,物体受到的合力包括摩擦力和重力。
由于物体在水平方向上运动,重力不会对其产生影响,因此ΣF = f。
代入已知数据,可以得到物体所受到的加速度a = f / m。
三、热学1. 问题描述:一个理想气体在等温过程中,体积从V1变为V2。
求气体所做的功。
解析:根据理想气体的状态方程PV = nRT,其中P为气体的压强,V为气体的体积,n为气体的物质的量,R为气体常数,T为气体的温度。
在等温过程中,温度保持不变,即T = 常数。
所以可以得到P1V1 = P2V2。
而功的定义是力乘以位移,即W = F·s。
在这个问题中,气体所受到的力是压强乘以面积,即F = P·A。
代入已知数据,可以得到气体所做的功W = P1V1·ln(V2 / V1)。
2. 问题描述:一个物体的质量为m,初始温度为T1,最终温度为T2。
求物体所吸收的热量。
解析:物体所吸收的热量可以通过热容量来计算,即Q = mcΔT,其中Q为热量,m为物体的质量,c为物体的比热容,ΔT为温度的变化。
1.在惯性系S 中观察到有两个事件发生在同一地点,其时间间隔为4.0 s ,从另一惯性系S '中观察到这两个事件的时间间隔为6.0 s ,试问从S ′系测量到这两个事件的空间间隔是多少?设S ′系以恒定速率相对S 系沿x x '轴运动。
解:由题意知在 S 系中的时间间隔为固有时,即Δt = 4.0 s ,而Δt ′ = 6.0 s 。
根据时间延缓效应的关系式22/1'c v tt -∆=∆可得S′系相对S 系的速度为c c t t v 35'1212=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∆∆-= 两事件在S′系中的空间间隔为m 1034.1''9⨯=∆=∆t v x2.若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少?(以光速c 表示)解:设宇宙飞船的固有长度为0l ,它相对于惯性系的速率为v ,而从此惯性系测得宇宙飞船的长度为20l ,根据洛伦兹长度收缩公式,有200121⎪⎭⎫ ⎝⎛-=c v l l可解得c c v 866.023==3.半人马星座α星是离太阳系最近的恒星,它距地球为4.3×1016 m 。
设有一宇宙飞船自地球往返于半人马星座α星之间。
(1)若宇宙飞船的速率为0.999C ,按地球上时钟计算,飞船往返一次需多少时间?(2)如以飞船上时钟计算,往返一次的时间又为多少?解:(1)以地球上的时钟计算,飞船往返一次的时间间隔为a 0.91087.228≈⨯==∆s v s t(2)以飞船上的时钟计算,飞船往返一次的时间间隔为a 0.40s 1028.11'722≈⨯=-∆=∆c v t t4.若一电子的总能量为5.0 MeV ,求该电子的静能、动能、动量和速率。
解:电子静能为)kg 101.9(,MeV 512.0310200-⨯===m c m E 电子动能为MeV488.40K =-=E E E由20222E c p E +=,得电子动量为 12121202s m kg 1066.2)(1--⋅⋅⨯=-=E E c p由 21220)-(1-=c v E E 得电子速率为cE E E c v 995.0212202=⎪⎪⎭⎫ ⎝⎛-=5.如果将电子由静止加速到速率为0.10c ,需对它作多少功?如将电子由速率为0.80 c 加速到0.90c ,又需对它作多少功?解:由相对论性的动能表达式和质速关系可得当电子速率从 v 1增加到v 2时,电子动能的增量为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-==-=--2121212220202120221211)-(-)-()c v ()c v (c m c m c m c m c m E E E Δk k k根据动能定理,当v 1 = 0, v 2 = 0.10c 时,外力所作的功为eV 1058.23k ⨯=∆=E W当v 1 = 0.80c ,v 2 = 0.90c 时,外力所作的功为eV 1021.35k ⨯='∆='E W由计算结果可知,虽然同样将速率提高0.1c ,但后者所作的功比前者要大得多,这是因为随着速率的增大,电子的质量也增大。