全氧燃烧技术
- 格式:doc
- 大小:30.00 KB
- 文档页数:4
全氧燃烧技术一、所属行业:建材、轻工等行业二、技术名称:全氧燃烧技术三、适用范围:玻璃纤维池窑及玻璃熔窑四、技术内容:1.技术原理空气中含氧量约21%,而氮的含量为79%。
在燃烧过程中,只有氧参加燃烧反应,氮仅仅作为稀释剂。
大量的稀释剂吸收了大量的燃烧反应放出的热,并从烟道排走,造成显著的浪费。
2.关键技术窑炉结构、燃烧设备、熔制工艺。
3.工艺流程以纯氧代替空气,经过调压后,以一定的流量送入窑炉,与燃料进行燃烧。
五、主要技术指标:1.与该节能技术相关生产环节的能耗现状:玻璃纤维池窑的作用是将矿石原料熔化成玻璃液,目前其熔化都采用空气燃烧的方式进行加热,每千克玻璃液的能耗一般在2700千卡以上。
2.主要技术指标:玻璃纤维池窑采用纯氧燃烧后,每千克玻璃液的能耗,一般在1350千卡以下,节能50%。
六、技术应用情况:巨石集团有限公司、泰山玻璃纤维股份有限公司已应用。
七、典型用户及投资效益:典型用户巨石集团有限公司(1) 年产6万吨无碱玻璃纤维池窑,节能技改投资额1000万元,建设期1年,节能量1000万标方天然气/年,综合效益2000万元/年,投资回收期0.5年。
(2) 年产10万吨无碱玻璃纤维池窑,节能技改投资额1200万元,建设期1年,节能量14000吨液化气/年,综合效益4000万元/年,投资回收期0.3年。
(3)中国耀华玻璃集团拟上全氧燃烧项目,利用制氮的富氧提纯,供熔窑燃烧,节能20%,年节标煤8427吨,减烟尘排放70%-80%。
八、推广前景和节能潜力:(1)6万吨玻璃纤维池窑,“十一五”末达到10条线,总投资8000万元,总节能量12000万标方天然气/年;(2)浮法玻璃窑,“十一五”期间完成浮法玻璃窑试点,总投资5亿元,年节能量5000吨重油左右。
九、推广措施及建议:玻璃纤维池窑全氧燃烧技术,其技术水平将达到国际前沿水平,填补国内空白。
“十一五”期间,该项技术可在大型玻璃纤维池窑上推广。
加热炉全氧燃烧技术推广方案一、实施背景随着能源结构的调整和环保要求的提高,加热炉全氧燃烧技术作为一种清洁、高效的能源利用方式,正逐渐引起人们的关注。
全氧燃烧技术具有高温、高速、高氧浓度等特点,可以大大提高燃料的燃烧效率和降低污染物排放,同时能够实现能源的梯级利用,提高能源的综合利用率。
二、工作原理加热炉全氧燃烧技术的工作原理是将燃料与氧气进行完全混合,在加热炉内进行燃烧反应,生成高温高压的燃烧气体。
由于氧气浓度高,燃料能够实现完全燃烧,同时高温高压的燃烧气体也可以直接引入到加热炉内的物料中,实现对物料的均匀加热。
三、实施计划步骤1. 技术调研:了解相关企业的生产工艺、燃料品种和加热需求,为技术推广提供基础数据。
2. 方案设计:根据企业实际需求,进行全氧燃烧技术的方案设计,包括燃烧器的选型、氧气供应系统的设计、加热炉的改造等内容。
3. 技术交流:组织技术专家和企业代表进行技术交流,就技术方案的可行性进行深入探讨和研究。
4. 试验验证:在实验室或现场进行全氧燃烧技术的试验验证,确保技术的稳定性和可靠性。
5. 技术培训:对企业人员进行全氧燃烧技术的培训和指导,确保技术能够在生产中得到顺利应用。
四、适用范围加热炉全氧燃烧技术适用于各种需要进行加热处理的行业,如钢铁、有色金属、陶瓷、玻璃等领域。
同时,该技术还可以应用于废弃物处理、能源回收等领域。
五、创新要点1. 全氧燃烧技术可以提高燃料的燃烧效率,降低能源消耗和污染物排放。
2. 配合加热炉的改造,可以实现能源的梯级利用,提高能源的综合利用率。
3. 通过智能化控制系统,可以实现燃烧过程的自动化控制,提高生产效率和产品质量。
六、预期效果1. 提高加热效率:全氧燃烧技术可以使得燃料在加热炉内实现快速、均匀的燃烧,提高加热效率。
2. 降低能源消耗:由于全氧燃烧技术可以提高燃料的燃烧效率,因此可以降低能源消耗,减少生产成本。
3. 降低污染物排放:由于全氧燃烧技术可以实现燃料完全燃烧,因此可以减少废气、废渣等污染物的排放,提高环保效益。
玻璃熔窑全氧燃烧技术问答
玻璃熔窑是玻璃生产过程中不可或缺的设备,而燃烧是玻璃熔窑中最重要的环节之一。
传统的燃烧方式是采用空气燃烧,但这种方式存在着一些问题,如燃烧不充分、烟气排放污染等。
为了解决这些问题,全氧燃烧技术应运而生。
下面是一些关于玻璃熔窑全氧燃烧技术的问答。
1. 什么是全氧燃烧技术?
全氧燃烧技术是指在燃烧过程中,将空气中的氮气排除,只使用氧气作为燃烧气体。
这种燃烧方式可以提高燃烧效率,减少烟气排放,降低能耗。
2. 全氧燃烧技术在玻璃熔窑中的应用有哪些优势?
全氧燃烧技术可以提高燃烧效率,使燃料完全燃烧,减少烟气排放,降低能耗。
此外,全氧燃烧技术还可以提高玻璃质量,减少玻璃中的气泡和杂质,提高玻璃的透明度和光泽度。
3. 全氧燃烧技术在玻璃熔窑中的应用有哪些挑战?
全氧燃烧技术需要使用纯氧气作为燃烧气体,这增加了燃料成本。
此外,全氧燃烧技术还需要对燃烧过程进行精确控制,以确保燃烧效率和玻璃质量。
4. 全氧燃烧技术在玻璃熔窑中的应用现状如何?
全氧燃烧技术已经在玻璃熔窑中得到了广泛应用。
许多玻璃生产企业已经采用了全氧燃烧技术,以提高生产效率和玻璃质量。
随着技术的不断发展,全氧燃烧技术在玻璃熔窑中的应用前景将会更加广阔。
全氧燃烧技术是一种高效、环保的燃烧方式,可以提高玻璃熔窑的生产效率和玻璃质量。
虽然全氧燃烧技术在应用过程中存在一些挑战,但随着技术的不断发展,这些问题将会得到解决。
水泥生产制备全氧燃烧、富氧燃烧技术推广方案一、实施背景水泥行业是全球最大的二氧化碳排放源之一,其碳排放量约占全球总排放量的7%。
在全球气候变化的背景下,减少水泥行业的碳排放量已成为当务之急。
另一方面,随着我国经济发展的转型和升级,水泥行业的产业结构也需要进行调整和优化。
因此,推广水泥生产制备全氧燃烧、富氧燃烧技术,已成为我国水泥行业产业结构改革的重要方向。
全氧燃烧、富氧燃烧技术是一种新型的燃烧技术,相比传统的空气燃烧技术,具有更高的燃烧效率和更低的二氧化碳排放量。
全氧燃烧技术采用纯氧作为氧化剂,燃烧过程中产生的烟气主要为水蒸气,几乎不产生氮气,因此烟气中的二氧化碳浓度较高,便于进行捕获和利用。
富氧燃烧技术则采用氧气浓度高于空气的富氧空气作为氧化剂,能够减少烟气中氮气的含量,提高二氧化碳的浓度,同样有利于二氧化碳的捕获和利用。
全氧燃烧、富氧燃烧技术已在一些发达国家的水泥企业中得到了应用,并取得了一定的减排效果。
在我国,一些水泥企业也开始进行试点应用,但由于技术、资金、政策等方面的限制,尚未得到广泛应用。
因此,本次推广方案旨在通过产业结构改革的角度,加快水泥行业全氧燃烧、富氧燃烧技术的推广应用,促进水泥行业的绿色转型和升级。
二、工作原理1. 全氧燃烧技术全氧燃烧技术是指采用纯氧作为氧化剂,将燃料和纯氧在高温下进行燃烧,产生的水蒸气和二氧化碳为主要烟气的燃烧方式。
其工作原理如图1所示。
在全氧燃烧过程中,燃料和纯氧在高温下发生氧化还原反应,生成水和二氧化碳。
由于采用纯氧作为氧化剂,燃烧过程中几乎不产生氮气,因此烟气中的二氧化碳浓度较高,一般可达到80%以上。
同时,由于烟气中水蒸气的含量也较高,可以采用冷凝的方法将水蒸气转化为液态水进行回收利用,进一步减少二氧化碳的排放量。
2. 富氧燃烧技术富氧燃烧技术是指采用氧气浓度高于空气的富氧空气作为氧化剂,将燃料和富氧空气在高温下进行燃烧,产生的烟气中二氧化碳浓度较高的燃烧方式。
ecra提出的全氧燃烧技术路线解释说明以及概述1. 引言1.1 概述在能源需求不断增长的同时,传统燃烧技术所引发的环境问题也变得日益严重。
因此,寻找一种更高效、更清洁的燃烧技术变得尤为重要。
ECRA(Energy Combustion and Reduction Agency)提出了一种全新的全氧燃烧技术路线,该技术借助纯氧气作为氧化剂而不是空气中含有大量的氮气和其他杂质。
这种采用全氧燃烧技术路线的方法被认为是未来能源系统中最具前景和可持续性的选择之一。
1.2 文章结构本文章主要分为五个部分,重点讨论ECRA提出的全氧燃烧技术路线,并深入探讨该技术路线在工业应用领域中的应用和发展前景。
第二部分将介绍ECRA组织及其背景历史,并说明他们提出的全氧燃烧技术路线。
第三部分将解释全氧燃烧的工作原理,包括反应原理以及所需设备与措施。
第四部分将探讨实施全氧燃烧技术路线所面临的挑战,并提出相应的解决方案,包括技术上的挑战与难点分析、可行性与经济性考量及优化策略,以及环境影响评估和风险措施。
最后,第五部分将总结全氧燃烧技术路线的重要性和优势,并展望未来该技术的发展前景。
1.3 目的本文旨在介绍ECRA提出的全氧燃烧技术路线,并对其优势和应用领域进行解释。
同时,我们也将详细说明全氧燃烧技术的工作原理以及实施该技术路线所面临的挑战。
通过对这些问题的深入探讨,我们可以更好地了解全氧燃烧技术在未来能源系统中的潜力,并为其进一步发展提供有益参考。
2. 全氧燃烧技术路线的提出(ECRA)2.1 ECRA的背景和历史全氧燃烧技术路线是由ECRA(全氧燃烧研究协会)提出的。
ECRA成立于XX 年,是由一群国际专家组成的非营利性组织,致力于推动和促进环境友好型燃烧技术的发展和应用。
在过去几十年里,传统的火焰反应(氮气存在)所产生的排放物在环境污染方面表现出了明显的负面影响。
为了解决这个问题,全氧燃烧技术被提出并日益受到重视。
ECRA在此背景下成立,旨在推动全氧燃烧技术的发展,以改善能源利用效率、减少排放和降低环境污染。
玻璃熔窑全氧燃烧技术及发展方向摘要:玻璃生产行业是碳排放高耗能行业之一,玻璃熔窑是平板玻璃行业中碳排放主要来源。
平板玻璃行业内能效标杆水平能达标的到2020年底只有5%,要求到2025年比例达到30%以上,平板玻璃行业其能效基准。
要在2025年能效基准水平以下产能基本清零,由于平板玻璃行业高能源消耗、高碳排放等特点,采用全氧燃烧是玻璃行业节能降耗、低碳排放的有效途经,也是未来的发展趋势。
关键词:玻璃熔窑;全氧燃烧;技术;发展方向引言玻璃工业具有能耗高、污染重的特性。
燃料燃烧产生的烟气中含有的NOx、SO2、粉尘等有害气体,以及大量可引发温室效应的CO2气体是国家环保监测的重要指标。
与此相对的,政府在环境保护方面与管理方面投入的力度越来越大,污染物排放标准的提高增加了玻璃生产企业在环保上的投资。
全氧燃烧通过把燃料与高纯度助燃氧气按固定比例混合,来使燃烧方式更精确,以提高熔窑的燃烧效率,节约燃料,减少企业生产成本;减少NOx、SO2、粉尘等有害气体的排放,减少对环境的污染,降低企业在环保脱硫脱硝上的成本;同时还可以提升火焰温度,改善玻璃液熔化质量,增加熔窑熔化能力,提高企业产品的生产能力和产品质量;降低熔窑建设费用,延长熔窑使用年限,降低企业投资成本和折旧成本。
根据国内外生产经验,全氧燃烧玻璃熔窑如今已经广泛应用于微晶玻璃、各种特种玻璃、优质平板玻璃等几乎所有的玻璃种类生产中。
全氧燃烧熔窑技术必将成为玻璃行业新的增长点和发展点。
1全氧燃烧技术优越性玻璃工业是耗能大户,目前我国玻璃窑炉的热效率较低,产品单耗大,成本高。
因此,节能降耗已成为玻璃窑炉改造的中心任务。
据测算和国外玻璃公司的经验,天然气全氧燃烧大型玻璃窑炉综合节能40%以上。
根据国家下发的《“十一五”十大重点节能工程实施意见》中的“建材行业中玻璃:推广全保温富氧、全氧燃烧浮法玻璃熔窑,降低烟道散热损失”精神,优化全氧超白压延玻璃生产线熔窑设计是必要的。
“十四五”期间,对我国玻璃行业来说,面临着如何将“玻璃熔窑全氧燃烧技术”成果进一步产业化并为行业尽早实现节能减排和碳达峰碳中和,寻找可靠技术措施的重大工程技术问题。
玻璃熔窑全氧燃烧技术最显著的特点一是节能减排,二是提高玻璃质量,目前只有使用重油、天然气等高热值燃料,生产优质玻璃的企业才有动力和需求采用全氧燃烧技术。
通过近年的科研设计和生产实践,玻璃熔窑全氧燃烧技术已经在光伏玻璃、玻璃纤维、玻璃器皿、微晶玻璃等生产领域中广泛应用,其优异的提高玻璃质量、节能减排效果得到了充分验证,但广泛实施浮法玻璃全氧燃烧技术仍然面临着一些重大工程技术和经济问题,总的来说主要需要在以下几个方面开展技术创新:1优化全氧熔窑三维仿真模拟体系通过研究全氧燃烧玻璃熔窑火焰空间和玻璃液流场的三维数学模型,开发界面友好、操作方便、参数设置容易的全氧燃烧浮法玻璃熔窑三维仿真系统,使参与玻璃熔窑设计和仿真的工程技术人员只要输入熔窑结构、燃气布置和相关边界条件等参数,玻璃熔窑三维仿真系统将自动根据使用者提供的设计要求,完成CFD建模、求解和后处理三个步骤。
图1为全氧燃烧数学模拟火焰空间温度分布图。
图1 全氧燃烧数学模拟火焰空间温度分布图进一步形成玻璃原料COD值的快速测定、玻璃的Redox控制、熔体性能、澄清新工艺、火焰空间的数值模拟等理论与关键技术,为全氧燃烧条件下排除玻璃液中的微气泡,保证优质玻璃的熔制提供工艺指导。
2全氧浮法熔窑耐火材料国产化大型全氧浮法熔窑池宽超过11 m,比国内最大的全氧玻壳、玻璃纤维窑池宽30%以上。
到目前为止,国内已经建成了600 t/d、800 t/d规模的全氧燃烧平板玻璃生产线,主要耐火材料也都是国内配套,但要使窑炉达到高质量、长寿命,对大型全氧熔窑的结构安全、关键部位耐火材料的国产化还需要深入研究。
通过总结成功经验,克服存在的不足,持续改进、不断推进全氧玻璃熔窑关键耐火材料的国产化进程。
全氧窑的长宽比是一项重要指标。
全氧燃烧的应用全氧燃烧指的是使用纯氧作为燃料燃烧过程中的氧化剂,而不是使用空气中的氧气。
相比传统的空气燃烧,全氧燃烧具有许多优势和应用领域。
1. 高温燃烧领域:全氧燃烧在高温燃烧领域有广泛的应用。
其主要应用包括工业领域的熔炼、钢铁生产、玻璃加工、陶瓷生产等。
全氧燃烧可以提供高温、高纯度的燃烧环境,从而提高燃烧过程的效率和产能,并减少废气排放。
此外,全氧燃烧还可以用于高温热处理、石化工业中的裂解、重整等过程,提高产品质量和产能。
2. 节能环保领域:全氧燃烧在节能环保领域也有重要的应用。
与传统的空气燃烧相比,全氧燃烧可以提供更高的燃烧效率,减少燃料消耗,从而降低能源消耗和碳排放。
此外,全氧燃烧可以有效控制氮氧化物的生成,减少大气污染物的排放。
因此,在发电、锅炉、工业炉窑等领域中,全氧燃烧被广泛应用于节能减排措施中。
3. 废物处理领域:全氧燃烧在废物处理领域也具有重要应用价值。
传统的废物焚烧通常使用空气作为氧化剂,但其存在一些问题,如燃烧效率低、废气排放污染等。
采用全氧燃烧可以提高废物处理的效率和安全性。
全氧燃烧可以在高温下将废物完全氧化,减少有害物质的生成,提高资源回收利用率,并最大限度地降低废气中的污染物排放。
4. 金属冶炼领域:全氧燃烧在金属冶炼领域也有广泛应用。
传统的金属冶炼通常采用燃料和空气混合燃烧,但存在燃烧不完全、热效率低等问题。
全氧燃烧可以提供高温高纯度的燃烧环境,提高金属冶炼的效率和产品质量。
此外,全氧燃烧还可以应用于金属粉末冶金、金属表面处理等领域,提高生产效率和产品质量。
5. 化学工业领域:在化学工业领域,全氧燃烧可以应用于催化剂的制备、气相氧化反应等过程。
全氧燃烧可以提供高纯度的氧气,使催化剂的制备更加精确和稳定。
此外,全氧燃烧可以提供高温高压的氧化环境,促进气相氧化反应的进行,提高反应速率和产物收率。
6. 生物质能领域:在生物质能领域,全氧燃烧可以应用于生物质能发电、生物质热能利用等过程。
全氧燃烧技术我们日常生活中,随处可见药用玻璃瓶的身影。
无论是饮料、药品,还是化妆品等等,药用玻璃瓶都是它们的好伙伴。
这些玻璃包装的容器,因其透明的美感,化学稳定性好,对内容物无污染,可以高温加热,旧瓶可回收再生利用等优点,一直被认为是最好的包装材料。
尽管如此,为了与金属罐、塑料瓶等包装材料竞争,药用玻璃瓶也在不断地提高其生产技术,使产品质量更好、外观更美、成本更低。
在蓄热式玻璃窑的建造技术之后,玻璃熔化技术迎来了第二次革命,这就是全氧燃烧技术。
在过去十年里,世界各国在玻璃熔窑上进行该技术改造的实践表明,全氧燃烧技术具有低投资、低能耗、低污染物排放等显著的优越性。
在美国、欧洲,轻量化的瓶罐已是玻璃瓶罐的主导产品,小口压吹技术(NNPB)、瓶罐的冷热端喷涂技术等,都是轻量化生产的先进技术。
德国公司已能生产出1公升的浓缩果汁瓶,仅重295克,瓶壁表面涂覆了有机树脂,可提高瓶子压力强度20%。
在现代工厂里,生产玻璃瓶可不是容易的事,有很多的科学难题需要解决。
全氧燃烧技术在玻璃熔炉的应用一、概论:改革开放以来, 国民经济迅速发展举世瞩目。
玻璃工业(平板玻璃、电子玻璃、玻璃纤维、日用玻璃、光学玻璃等)相应得到迅速发展,仅以浮法玻璃为例,截止2004年底,已建成投产126条浮法线(总产量已达到3亿重量箱,日熔量52930T),还有51条线在建、拟建。
熔化玻璃采用煤、煤焦油、重油、烊黄 ⒒虻?少量)作燃料。
目前我国熔化一公斤玻璃液(平板玻璃)平均指标在1500-1800大卡。
按此单位能耗测算,玻璃工业无疑是重要能耗大户之一。
当今世界石油价格上涨,我国进口石油逐年增加(中国生产力发展研究报告研究表明;中国石油进口率测算到2010、2015和2020年进口率下限将分别达到55.4%、57.4%、59.7%。
大大超过30%理论上控制指标,按国际能源组织今年预测2030年中国石油对外依存度将达到74%的进口率)。
玻璃熔窑大部分采用重油做燃料,因此,对于玻璃工业的总量控制,尤其是高能耗玻璃熔窑的能耗限制,从节能、成本考虑采用新燃烧技术已是当务之急。
2005年2月16日“京都协议书”生效、2005年7月27日美国、澳大利亚、中国、印度、韩国在万象签订了亚太地区清洁能源开发及气候变化研究伙伴关系的协议“万象协议”,都在呼吁保护全球环境。
目前中国的温室气体排放量已高居世界第二,并预计将会超过美国升至第一(美国纽约时报10月30日文章:中国下一个剧增的可能是污染空气)。
根据粗略统计,中国有1/3的地区受到酸雨侵蚀。
中国政府现在必须认识到,在环境方面,它既有国内责任,也有国际责任。
党和国家提出的“十一五”规划纲要,已将节能、环保列为“十一五”规划着重解决的课题。
严格控制大气污染、降低温室气体排放的新法规、新技术已是既定方针。
随着玻璃工业的发展,人们对产品质量要求的不断提高,燃料成本的不断增加,使得科技工作者对玻璃生产的核心——“玻璃熔窑”的各个环节进行了不断地探索和改进,燃烧系统也不例外,至今已有了可喜的成效。
人们除了关注全球日益紧缺的能源供应,探索种种节约能源的措施之外,还关注着人类的生存环境,针对熔窑排放的各种废气,采取必要的措施进行处理。
除燃烧高硫燃料产生的“SOx”已引起重视外,在以空气助燃的燃烧中所产生的废气含有大量的NOx,它造成光化学大气污染、温室效应,影响全球人类生存环境,其更应予以关注.有史以来,玻璃熔窑一直都是以空气作为助燃介质。
经过对现有燃烧系统的分析研究,认为采用空气助燃是导致高能耗、高污染、温室效应高要因素。
空气中只有21%的氧气参与助燃,78%的氮气不仅不参与燃烧,还携带大量的热量排入大气。
通过长期反复地试验研究认为;采用纯度≥85%的氧气作为助燃介质,对于节约能源,改善环境效果十分显著:能耗可降低12.5% - 22%,未来可望降低30%以上(见图二),废气排放量减少60%以上,废气中“NOx”下降了80-90%、烟尘也降低50%以上。
这种采用纯度≥85%的氧气参与燃烧的系统,我们称之为全氧燃烧、玻璃熔窑中,部分设置全氧燃烧系统(浮法玻璃熔窑俗称的“0”号小炉助熔)称之谓全氧助燃。
由于燃烧系统的改变,引起玻璃熔窑结构的变革,全氧燃烧窑炉取消了蓄热室、小炉、换火系统,如同单元窑(见图一)。
就采用横火焰窑炉的玻璃厂而言,熔化部厂房跨度可缩小2/5,主生产线投资减少30%左右。
鉴于采用全氧燃烧的熔窑,无需“传统换火工艺”使得玻璃熔化更加稳定,近乎达到理想境界。
熔化过程飞料大幅度降低,澄清区气泡释放非常彻底,玻璃熔化质量显著提高。
采用空气或全氧作为助燃介质,其传热过程差异很大.传统的空气助燃,需要通过定时换火进行烟气与助燃空气的热交换,回收部分热能。
但是,换火过程窑内瞬间失去火焰,玻璃液必然失去热源,导致窑温波动,受到换火过程的冲击,窑压瞬间波动也是必然的结果。
通常空气助燃,因为小炉结构的需要,必须占据沿池壁长度方向较宽的位置,因此,喷枪的合理布置受到限制。
采用全氧燃烧,由于燃烧器不同于小炉,外形结构尺寸相对较小,它可以按照熔化温度曲线合理分布,“燃烧器”或对烧、或交叉燃烧。
完全可以按照熔化温度曲线自动控制窑内温度,不致烧坏窑体。
就浮法窑而言,一般反而使热点温度下降,原料预熔区温度上升,其结果是预熔区的原料受高温气体传热很快形成薄壳,从而阻止了粉料的飞扬。
用于浮法玻璃熔窑的全氧助燃,俗称“0号小炉”,是在“1号小炉”与前脸墙之间两侧胸墙上各安装一支“氧+燃料”燃烧器,用于熔窑的中、后期以及生产特种深色玻璃时投运,以提高预熔区的温度,将泡界线前移,减少飞料,可提高产量约10-15%,并大幅度减少玻璃中的气泡,提高产品质量,以便恢复熔窑前期功能,而无需进行蓄热室热修,节约了人力、物力、热修费用。
二、“全氧 + 燃料”燃烧的技术成果到本世纪初,全世界已有200多座全氧燃烧窑炉,北美拥有的550座包括小型特种玻璃窑在内, 其中约有140座为全氧燃烧窑炉,欧洲现有的350座窑炉中已有30余座为全氧燃烧窑(不包括玻璃棉及特种玻璃窑),亚洲已有20多座全氧燃烧窑炉。
近几年在中国已开始推行全氧燃烧,如玻璃纤维池窑、薄壳、玻锥电子窑及在浮法窑增设“0号小炉”的全氧助燃已相继建成投运,(见图三、图四)。
美国Praxair 、Air Product等公司为了开发气体市场,长期进行全氧燃烧技术的开发研究。
十五年来,全氧燃烧技术逐步完善,世界上有燃烧试验装置的公司取得了许多成功经验。
诸如:提供包含数学模型等技术软件在内的设计依据资料、全氧燃烧窑炉的结构设计,还包含供氧系统、燃烧器、支撑燃烧器的耐火砖材、燃料(重油、煤焦油、天黄 ┳怨┫低场ⅰ把跗?+ 燃料”的自控系统在内的各项装备以及各种不同类型制氧装备等。
美国Praxair公司在这方面还拥有多项专利,如硅砖高碹结构设计技术、“氧气 + 燃料”的燃烧器专利等。
到目前为止,全氧燃烧已经是一项成效显著的成熟的科技成果。
三、全氧燃烧的有关问题在此仅就玻璃窑全氧燃烧氧气纯度(富氧、全氧)、浮法窑内温度场、窑内气氛、全氧助燃“0号小炉”的氧气用量、高碹等的有关问题进行讨论。
1、氧气纯度:空气中只有21%的氧气,氧气大于21%,如22%就是富氧,所以,通常提到的“富氧燃烧”没有定量,易混淆含义。
试验证明,含氧量≥85%作为助燃介质,燃烧效果才显著,一般全氧燃烧含氧量≥91-92%,含氧量< 85%燃烧效果不好,因此将供给一条浮法线锡槽用氮所采用的空分设备产出的含氧尾气,作为助燃介质是不够的,燃烧效果甚微。
2、浮法窑内温度场:由于燃烧器外形结构尺寸相对较小.+燃料燃烧器”可以按照熔化温度曲线合理分布,与空气助燃相比,一般浮法窑预熔区温度(投料口至一号小炉间),上升65℃,热点温度下降20℃(见图五),实践证明这对玻璃熔化过程:预熔、熔化、澄清及调节窑内气氛,减缓对耐火材料的侵蚀是有利的。
3、窑内气氛:全氧燃烧窑内气氛变化较大,在玻璃熔体表面碱(NaOH)的挥发反应,碱蒸气(NaOH)浓度增加数倍,造成碹顶硅砖侵蚀加剧(见图六)。
4、全氧助燃“0号小炉”的氧气用量:氧气用量可按全窑助燃氧气用量≧15%或按增加玻璃产量计算。
5、高碹:为了防止硫酸钠(Na2SO4)等物质造成碹顶硅砖侵蚀,美国Praxair 公司采取了高碹顶技术,提高碹顶高度、将加料段温度升高、抬高燃烧器,降低了碱蒸气(NaOH)挥发浓度,减低了对碹顶硅砖的侵蚀,延长了窑龄,实际效果很好(见图六、图五、图七)。
四、全氧燃烧技术经济分析1、全氧助燃“0号小炉”投入成本低,日用氧气量少,效果明显。
在浮法窑炉投运的中、后期可增加产量、提高玻璃质量、无需再支付蓄热室等热修费用,其经济效益十分明显。
2、全氧燃烧的技术经济比较上述700T/d浮法生产线氧气供应站投资,由供气方投资。
氧气价格为含电价。
从简略的测算可以看出,由于能源(重油)价格上涨,两者可比成本仅差1.85元/箱,如果考虑“氧气+燃料”熔化玻璃的质量提高,使得质量从建筑级提高到汽车级,则5毫米玻璃每平米售价可增加1-1.5元的因素,同时国家对新的环保、节能技术的应用实施政策倾斜,采用全氧燃烧的经济效益是好的。
五、如何应用全氧助燃、全氧燃烧应用“氧气 + 燃料”的方案实际上有两种选择:第一,采用全氧助燃安装“0号小炉”。
原则上国内现在运行的浮法窑都可以安装,特别对于已运行3-4年的中、后期熔窑,增加“0号小炉”,运行之后,它可以恢复窑前期产量,而且玻璃质量明显提高。
对新投运的窑,施工前预留“0号小炉”安装位置,在运行之后安装更加合理。
对于某些大型玻璃集团公司,在一地有三条以上浮法线,可以合用一套制氧设备,节省设备投资。
第二,设计全氧燃烧熔窑。
由于制备氧气的成本比空气高,因此,在选择应用全氧燃烧方案时应做可行性分析,选择可靠性高的制氧机组(如真空变压吸附法可制造浓度为90-91%以上的制氧气设备),同时也要考虑附近是否有“液氧气源”,作为应急备用氧气供应基地,一般在高速公路连接处,距液氧工厂300-400公里之内为宜。
对现有浮法玻璃公司的浮法线冷修改造,如采用全氧燃烧方案也可以节约用于蓄热室、小炉的投资,并减低换火系统维修费用,提高产品质量、产量。
测算运营成本:测算时应逐项考虑,氧气支出费用、燃料节省费用、增加的收益、玻璃产品质量等级提升增加的产品收益,投资节约减低的财务费用收益以及窑龄延长摊销的费用等。
从运行效益考虑,对于马蹄焰窑,单元窑、横火焰窑等,应选择产品附加值高的窑炉实行全氧燃烧。
对于浮法玻璃熔窑应选择附加值高的超薄玻璃、超透明玻璃的熔窑以及大、中型生产中、高档浮法玻璃的熔窑。
从长远的观点看,一旦能源价格继续上涨,玻璃污染费征收额度增加,国家施行减排烟气的奖励办法得以落实,全氧燃烧的推行势在必行。