(完整版)大一高数知识点,重难点整理,推荐文档
- 格式:pdf
- 大小:234.11 KB
- 文档页数:9
大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。
希望这份总结对你的学习有所帮助。
高等数学知识点大一详细高等数学是大学中一门重要的数学课程,它主要包括微积分、线性代数和概率统计等内容。
作为大一学生,了解高等数学的基本知识点是非常重要的。
本文将详细介绍大一学生需要了解的高等数学知识点。
一、微积分1.1 极限与连续在微积分中,极限与连续是最基础的概念之一。
学生需要掌握极限的定义、运算法则以及应用。
同时,连续函数的定义及其性质也是需要掌握的内容。
1.2 导数与微分导数是微积分的重要概念,它表示函数在某一点的变化率。
学生需要学习导数的定义、求导法则以及应用。
微分是导数的一种应用,它用来描述函数在某一点的局部线性近似。
1.3 积分与定积分积分是导数的逆运算,它表示函数在给定区间上的累积量。
学生需要学习积分的定义、求积法则、换元积分法等内容。
定积分是积分的一种具体形式,它表示函数在给定区间上的面积或曲线长度。
二、线性代数2.1 矩阵与行列式矩阵是线性代数中的基本概念,它由数个数按照特定规律排列而成。
学生需要学习矩阵的基本运算法则,包括矩阵的加法、减法、乘法等。
行列式是矩阵的一种特殊表示形式,它用来描述矩阵的性质。
2.2 向量与向量空间向量是线性代数中的重要概念,它表示具有大小和方向的量。
学生需要掌握向量的基本运算法则,包括向量的加法、减法、数量乘法等。
向量空间是向量的一种抽象概念,它描述了一组向量的性质。
2.3 线性方程组与特征值特征向量线性方程组是线性代数中的一类方程组,它可以用矩阵和向量的形式表示。
学生需要学习线性方程组的求解方法,包括高斯消元法、矩阵求逆等。
特征值和特征向量是矩阵的重要性质,它们用来描述矩阵的特征和变换。
三、概率统计3.1 随机变量与概率分布随机变量是概率统计中的一种随机量,它表示具有概率分布的变量。
学生需要学习随机变量的概念、概率分布函数、概率密度函数等内容。
3.2 期望与方差期望是随机变量的平均值,它表示随机变量在一次试验中的平均表现。
方差是随机变量离散程度的度量,它表示随机变量与其期望值之间的差异程度。
高数大一重难点知识点总结大学的第一学期,高数课程是许多学生都要面对的科目。
对于一些数学基础较弱的同学来说,高数可能会带来一定的困扰。
在这篇文章中,我将总结高数大一课程中的重难点知识点,以帮助大家更好地理解和掌握这门课程。
一、极限和连续性极限和连续性是高数课程中最基础也最重要的内容之一。
在研究函数的性质时,我们经常要用到极限的概念。
理解极限的含义,能够正确计算极限的运算法则,是学好高数的关键。
另外,连续性是极限的重要应用之一,学生们需要掌握连续函数的判定方法和连续函数的性质。
二、微分和导数微分和导数是高数课程中的一大难点。
在学习微分与导数时,需要逐渐掌握导数的定义、求导法则和高阶导数的计算。
此外,学生们还要理解导数的几何意义和物理意义,以便能够更好地应用导数进行问题求解。
三、积分和不定积分积分和不定积分是微积分学中的另一个重要部分。
学生们需要熟悉积分的定义和性质,掌握不定积分的计算方法和技巧。
特别地,需要重点掌握常见函数的不定积分公式,并学会运用换元积分法和分部积分法解决一些复杂的积分问题。
四、微分方程微分方程是高数课程中的一大难点,也是工科学生必须掌握的重要数学工具。
学生们需要学会分类和解常微分方程,并且掌握常微分方程的一些常用求解技巧和方法。
此外,对于一阶线性微分方程和二阶线性常系数齐次微分方程的解法,也需要加强理解和掌握。
五、级数和数列级数和数列是高数课程中的另一个重要部分。
学生们需要了解数列的定义和数列的极限概念,以及级数的定义和级数的收敛性判定方法。
此外,还要学会运用级数的求和公式,以及级数的一些特殊性质进行问题求解。
六、多元函数的极值与条件极值多元函数的极值与条件极值是高数课程中较为复杂的内容。
学生们需要深入理解多元函数的极值定义和条件极值的求解方法,熟悉方向导数和梯度的概念和计算方法。
另外,要牢记拉格朗日乘数法和极值存在性的相关定理,并能够灵活应用于问题求解中。
总结起来,高数大一课程中的重难点知识点主要包括极限和连续性、微分和导数、积分和不定积分、微分方程、级数和数列,以及多元函数的极值与条件极值。
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
大一高数笔记全部知识点第一章数列与极限1.1 数列1.1.1 数列的概念1.1.2 等差数列1.1.3 等比数列1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在的条件1.2.3 极限的性质1.3 极限运算法则1.3.1 无穷小量与无穷大量1.3.2 极限的四则运算第二章函数与连续2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的性质2.2 基本初等函数2.2.1 幂函数与指数函数2.2.2 对数函数与指数对数函数2.3 函数的极限与连续性2.3.1 函数的极限2.3.2 函数的连续性第三章导数与微分3.1 导数的概念与计算方法3.1.1 导数的定义3.1.2 常用函数的导数计算3.2 微分的概念与性质3.2.1 微分的定义3.2.2 微分的性质3.3 高阶导数与导数的应用3.3.1 高阶导数的定义3.3.2 导数的应用:切线与法线第四章积分与不定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的性质4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质4.3 积分的运算法则与应用4.3.1 积分的基本运算法则4.3.2 积分的应用:面积与曲线长度第五章多元函数与偏导数5.1 多元函数的概念与性质5.1.1 多元函数的定义5.1.2 多元函数的性质5.2 偏导数的概念与计算方法5.2.1 偏导数的定义5.2.2 常用函数的偏导数计算5.3 高阶偏导数与微分的应用5.3.1 高阶偏导数的定义5.3.2 微分的应用:切平面与法线以上是大一高数课程中的全部知识点。
通过学习这些知识,我们可以建立起数学的基础框架,为以后的学习打下坚实的基础。
每个知识点都有其重要性和实用性,在理解和掌握的过程中,我们要注重理论联系实际,通过例题和应用题的练习来提高解题能力。
希望同学们能够认真学习,并在课后进行适当的巩固和扩展。
加油!。
高数大一上知识点总结打印高等数学(简称:高数)是大学数学的一门重要基础课程,包括微积分和数学分析等内容,对于大一学生来说,高数是他们所学的第一门较为抽象和繁杂的数学课程。
为了帮助同学们更好地总结和复习高数大一上的知识点,并方便打印资料,本文将对高数大一上的重点知识进行总结。
一、函数与极限1. 函数及其性质:函数的定义、定义域、值域、可导性等。
2. 三角函数及其性质:正弦函数、余弦函数、正切函数等。
3. 极限与连续性:极限定义、极限运算定律、无穷小量与无穷大量、连续性定义等。
二、导数与微分1. 导数与导数计算:导数的定义、导数的计算、高阶导数等。
2. 微分与微分计算:微分的定义、微分的计算、微分中值定理等。
3. 高阶导数与高阶微分:高阶导数的定义、高阶微分的计算等。
三、不定积分1. 不定积分的概念:原函数与不定积分的关系、不定积分的性质等。
2. 基本积分公式与常用积分公式:幂函数、指数函数、三角函数等的基本积分公式与常用积分公式。
3. 牛顿-莱布尼茨公式:不定积分与定积分的关系、牛顿-莱布尼茨公式的应用等。
四、定积分与应用1. 定积分的概念与性质:定积分的定义、定积分的性质等。
2. 牛顿-莱布尼茨公式:定积分与不定积分的关系、牛顿-莱布尼茨公式的应用等。
3. 几何应用:曲线长度、曲线面积、旋转体体积等。
五、微分方程1. 微分方程的基本概念:微分方程的定义、阶数、常微分方程与偏微分方程等。
2. 常微分方程的解法:可分离变量法、一阶线性微分方程、二阶常系数线性齐次微分方程等。
3. 应用问题:人口增长问题、物理问题等。
六、级数1. 数项级数:数项级数的概念、收敛性判定、常见级数的性质等。
2. 幂级数:幂级数的收敛半径、收敛域等。
3. 函数展开:函数展开为幂级数、泰勒级数展开等。
以上是大一上高数课程的主要知识点总结,同学们可以根据自己的需要选择打印相应的内容。
希望这篇知识点总结能够帮助到大家更好地复习和掌握高数知识,祝愿大家在学习中取得优异的成绩!。
高数知识点大一重难点一、导数与微分1. 导数的定义及计算方法在数学中,导数是函数的一个概念,描述了函数图像的变化率。
导数的定义是函数在某一点的变化率,可以用极限来表示。
常用的导数计算方法有基本初等函数的求导法则、复合函数求导法则等。
2. 微分的概念与应用微分是数学分析中的一个重要工具,在物理、工程等领域有广泛应用。
微分可以理解为函数在某一点的局部线性逼近,可以用来近似计算函数的变化量、判断函数的极值等。
二、极限与连续性1. 极限的定义与性质极限是数学分析中的基本概念,它描述了函数在某一点或无穷远处的趋势。
极限具有一些重要性质,如唯一性、局部性等。
2. 极限存在与连续性的关系极限存在是函数连续的一个必要条件,连续函数的极限是函数在该点的函数值。
三、一元函数的导数与应用1. 导数的几何意义与物理意义导数的几何意义是函数曲线在某一点处的切线斜率,可以用来研究曲线的几何特征。
导数的物理意义是描述了物理量的变化率,如速度、加速度等。
2. 高等数学中的导数应用导数在高等数学中的应用非常广泛,如函数的最值、切线方程、曲线的凹凸性等。
四、不定积分与定积分1. 不定积分的概念与性质不定积分是微积分中一个重要的概念,它是原函数的一个定义域。
不定积分具有线性性质、积分换元法、分部积分法等运算性质。
2. 定积分的定义与计算方法定积分描述了函数在一定区间上的累积效应,可以用来计算曲线下的面积、质量等物理量。
定积分的计算方法有区间分割法、换元积分法、分部积分法等。
五、常微分方程1. 常微分方程的基本概念与解法常微分方程是研究变化过程中的函数与其导数之间关系的数学模型,可以描述很多物理、生物、经济等现象。
常微分方程的解法包括分离变量法、一阶线性微分方程的解法等。
2. 常微分方程的应用领域常微分方程在科学与工程领域中有广泛的应用,如天文学中的行星运动、生物学中的人口增长模型等。
六、级数与幂级数1. 级数的收敛性与发散性级数是无穷数列求和的一种形式,研究级数的收敛性可以判断级数是否有和。
大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
大一高数重点内容知识点大一高数是大学中数学专业的一门重要课程,也是学生们建立数学思维和分析问题的基础。
下面是大一高数的一些重点内容知识点,供大家参考。
1. 函数与极限- 函数的定义与性质:定义域、值域、单调性、奇偶性等- 极限的概念与性质:左极限、右极限、无穷极限等- 极限的运算法则:四则运算、复合函数、初等函数的极限等2. 导数与微分- 导数的定义与几何意义:切线斜率、导函数等- 常见函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等- 导数的运算法则:四则运算、复合函数、隐函数等3. 不定积分与定积分- 不定积分的概念与性质:原函数、积分常数等- 常见函数的不定积分:幂函数、指数函数、对数函数、三角函数等- 定积分的概念与性质:定积分的几何意义、积分中值定理等 - 定积分的计算方法:分部积分法、换元法、简单曲线下的面积等4. 微分方程- 微分方程的定义与分类:一阶、二阶、线性、非线性等- 常微分方程的解法:可分离变量法、一阶线性常微分方程等5. 序列与级数- 数列的概念与性质:递增、递减、有界性、极限等- 常见数列的极限:等差数列、等比数列等- 级数的概念与性质:收敛、发散、部分和等- 常见级数的收敛性:等比级数、调和级数等6. 二元函数与偏导数- 二元函数的概念与性质:定义域、值域、单调性、极值等- 偏导数的定义与计算:偏导数的几何意义、求导法则等7. 多元函数与多重积分- 多元函数的概念与性质:定义域、值域、极值等- 多重积分的概念与计算:重积分的几何意义、直角坐标系与极坐标系下的计算等8. 无穷级数- 数项级数的概念与性质:部分和、收敛、发散等- 常见无穷级数:等比级数、调和级数、幂级数等这些知识点是大一高数课程的重点内容,掌握了这些知识点,可以为后续的高等数学、微积分和其他相关学科打下坚实的基础。
希望大家在学习过程中能够认真对待,多进行练习与理解,以便更好地掌握这些知识。
高数大一上期末复习要点高等数学是一门大一上学期的重要课程,它是数学的一门基础性课程,也是理工科学生必修的一门课程。
本文将总结和归纳高等数学大一上学期的复习要点,以帮助同学们对这门课程进行有效的复习。
一、函数与极限1. 函数的概念、性质和表示法2. 函数的基本类型:多项式函数、指数函数、对数函数、三角函数等3. 函数的运算:和、差、积、商、复合函数4. 函数的单调性、奇偶性、周期性以及对称性5. 极限的定义、性质和相关定理6. 数列极限与函数极限的关系二、导数与微分1. 导数的概念、定义和几何意义2. 导数的计算法则:常数求导、幂函数求导、指数函数求导、对数函数求导、三角函数求导等3. 高阶导数的概念与计算4. 函数的微分与微分近似值的应用5. 函数的单调性与极值问题6. 函数的图像与导数的关系三、积分与不定积分1. 积分的概念、性质和计算方法2. 定积分的概念、性质和计算方法3. 牛顿-莱布尼茨公式与不定积分的概念4. 不定积分的基本性质和计算方法5. 不定积分的换元法与分部积分法6. 定积分的几何应用:面积、曲线长度、平均值等四、微分方程1. 微分方程的概念和基本形式2. 一阶微分方程的可分离变量、齐次方程和线性方程解法3. 一阶线性微分方程的常数变易法和伯努利方程解法4. 二阶齐次线性微分方程的特征方程解法5. 二阶非齐次线性微分方程的特解叠加法与待定系数法6. 微分方程的应用:变种种群模型、生命问题、机械振动等五、级数与幂级数1. 数列与级数的概念和性质2. 收敛与发散的判定:比较判别法、比值判别法、根值判别法等3. 常数项级数的和与收敛域4. 幂级数的收敛半径与收敛域5. 幂级数的运算:求导、求积等6. 幂级数的应用:函数展开、函数逼近等上述要点是大一上学期高等数学课程的重点内容,同学们在复习的过程中应该重点关注,并通过课堂笔记、教材、习题集等进行系统复习和巩固。
同时,在复习过程中要注重提高自己的问题解决能力和应用能力,培养数学思维和分析能力。
大一高数知识点总结完整版导言:大学高级数学(简称高数)是一门对很多理工科学生来说非常重要的课程。
在大一期间,我们学习了高数的基础知识,这些知识对我们后续学习进一步的数学课程以及其他学科都有很大帮助。
下面将对大一高数的几个重要知识点进行总结,以便于我们复习巩固。
1. 一元函数的极限和连续性1.1 函数的极限:介绍了函数极限的概念、定义和性质。
包括左极限和右极限,无穷大极限等。
1.2 连续性:介绍了函数连续性的概念,以及一些函数连续性的判定方法,如闭区间上的连续函数必定有界。
1.3 中值定理:包括罗尔定理、拉格朗日中值定理和柯西中值定理等,讲述了函数导数和函数性质之间的关系。
2.1 导数的定义:介绍了导数的定义和性质,导数的图形意义以及几何意义。
2.2 导数的四则运算法则:讲述了求和、差、积和商的函数的导数的法则。
2.3 高阶导数:介绍了导数的概念,如一阶导数、二阶导数等。
2.4 微分:讲述了微分的定义、性质和微分形式。
3. 微分中值定理和泰勒级数3.1 罗尔中值定理和拉格朗日中值定理:介绍了导数中值定理的概念和应用。
3.2 泰勒级数:讲述了泰勒级数的概念、性质以及泰勒展开公式的推导。
4.1 不定积分的定义和常用公式:介绍了不定积分的定义和性质,以及一些基本的不定积分公式。
4.2 定积分和变量替换法:讲述了定积分的概念和性质,以及变量替换法在定积分中的应用。
5. 定积分的应用5.1 平均值、面积和弧长:介绍了定积分在求函数平均值、曲线下面积和弧长等方面的应用。
5.2 微分方程的应用:讲述了定积分在求解微分方程的问题中的应用。
6. 多元函数的极限与连续性6.1 多元函数的极限:讲述了多元函数的极限的定义和判定方法。
6.2 多元函数的偏导数:介绍了多元函数的偏导数的定义和计算方法。
6.3 多元函数的连续性:讲述了多元函数的连续性的概念和性质。
7. 重积分7.1 二重积分:介绍了二重积分的定义和性质,以及二重积分的计算方法。
大一高数知识点全总结一、导数与微分大一高数的第一个重点知识点是导数与微分。
导数是研究函数变化率的工具,表示函数在某一点处的切线斜率。
微分则是导数的另一种表达方式,它是建立在导数的基础上,用于在某一点附近对函数进行线性逼近。
在学习导数与微分时,需要注意以下几个重要的概念和公式:1. 导数的定义:导数可以用函数的极限表示,即 f'(x) =lim(Δx→0) (f(x+Δx)-f(x))/Δx,其中 f'(x) 表示函数 f(x) 在点 x 处的导数。
2. 常见函数求导法则:常数函数、幂函数、指数函数、对数函数、三角函数等函数的导数可以利用一些基本的求导法则确定。
3. 高阶导数:函数的导数也可以再次求导,得到的导数称为高阶导数。
4. 微分的定义:函数 y = f(x) 在点 x 处的微分可以表示为 dy = f'(x)dx。
5. 微分的应用:微分可以用来进行近似计算,比如在物理上的位移、速度和加速度等问题中的应用。
二、极限与连续极限与连续是大一高数的第二个重点知识点。
极限是数列、函数趋近于某个确定值的概念,连续则是函数在某一区间内无断点的特性。
在学习极限与连续时,需要注意以下几个重要的概念和定理:1. 数列极限的定义:对于一个数列 {an},若存在常数 A,使得当 n 趋于无穷时,an 与 A 的差值无限接近,则称数列 {an} 的极限为 A。
2. 函数极限的定义:对于一个函数 f(x),若存在常数 A,使得当 x 趋于某个值 x0 时,f(x) 与 A 的差值无限接近,则称函数 f(x) 的极限为 A。
3. 极限的性质与四则运算:极限具有唯一性和有界性,并且可利用四则运算法则求解。
4. 无穷小量与无穷大量:无穷小量是指当 x 趋于某个值时,其极限为 0 的量;无穷大量是指当 x 趋于某个值时,其绝对值无限增大的量。
5. 连续函数的定义与性质:函数在某一点 x0 处连续,意味着函数在 x0 处的极限等于函数在 x0 处的取值,并且连续函数的四则运算结果仍然是连续函数。
大一高数知识点总结及重难点在大学的学习过程中,高等数学是一个重要而又基础的学科。
对于大一学生来说,高等数学作为一门必修课程,掌握其中的知识点是非常重要的。
下面将对大一高数的知识进行总结,并重点介绍一些难点和重点。
1.导数与微分导数是高等数学中的一个重要概念,它描述了函数在某点的变化率。
在导数的计算中,需要掌握基本的导数公式和求导法则,并理解其几何和物理意义。
微分是导数的一个应用,它可以用来求函数的极值和切线方程。
在微分的应用中,需要注意极值点和拐点以及函数图像的性质。
2.积分与不定积分积分是导数的逆运算,可以用来求函数的原函数或定积分。
在积分的计算中,需要熟练掌握各种常见函数的积分表达式和基本的积分法则,并理解其几何和物理意义。
不定积分是积分的一种形式,它表示用来求函数的原函数的过程。
在不定积分的计算中,需要注意常数项的添加和变量代换的方法。
3.一元函数的极限与连续极限是数列和函数的重要性质之一,可以用来描述数列或函数中的趋势和趋近程度。
在极限的计算中,需要掌握各种常见函数的极限计算方法和基本的极限定理。
连续是函数的一个重要性质,可以用来描述函数图像的连贯性和光滑性。
在连续的判断和计算中,需要注意间断点和连续函数的性质。
4.级数与收敛性级数是数列的一种形式,它是数列的和的无穷和。
在级数的计算和判断中,需要掌握各种级数的收敛性判断方法和级数求和的技巧。
收敛是级数的一个重要性质,可以用来描述级数的和的无穷性。
在级数的收敛性判断中,需要注意正项级数和交错级数以及比较判别法和积分判别法。
5.空间解析几何与向量空间解析几何是研究空间中的点、直线和平面的一个分支,可以用来描述和解决空间几何问题。
在空间解析几何中,需要掌握点、直线和平面的方程表示和性质,并能够进行相应的解题操作。
向量是空间解析几何的基本概念,它可以用来表示空间中的位移和力的方向和大小。
在向量的计算和运算中,需要掌握向量的线性运算和数量积、向量积的性质。
大一高等数学全部知识点汇总高等数学是大一学生所学的一门重要课程,它涵盖了许多重要的数学知识点。
本文将对大一高等数学的全部知识点进行汇总,以帮助学生更好地理解和掌握这门学科。
1. 极限与连续1.1 极限的定义与性质1.2 无穷大与无穷小1.3 极限存在准则1.4 函数的连续性与间断点1.5 已知极限求函数值2. 导数与微分2.1 导数的定义与性质2.2 基本导数公式2.3 高阶导数2.4 隐函数求导2.5 微分的定义与应用3. 微分中值定理与导数应用3.1 罗尔定理3.2 拉格朗日中值定理3.3 柯西中值定理3.4 泰勒公式与泰勒展开3.5 极值点与凹凸性4. 积分与不定积分4.1 函数的原函数与不定积分 4.2 定积分的概念与性质4.3 牛顿—莱布尼茨公式4.4 定积分的计算4.5 反常积分5. 定积分应用5.1 曲线长度与曲面面积5.2 物理应用:质量、质心、转动惯量5.3 统计学应用:均值、方差、概率密度函数6. 多元函数微分学6.1 多元函数的极限与连续性6.2 偏导数与全微分6.3 方向导数与梯度6.4 高阶偏导数与多元函数的泰勒公式7. 重积分7.1 二重积分的概念与性质7.2 二重积分的计算7.3 三重积分的概念与性质7.4 三重积分的计算7.5 曲线曲面积分8. 无穷级数8.1 数列极限与数列的性质8.2 常数项级数的收敛性与发散性8.3 正项级数的审敛法8.4 幂级数与泰勒级数9. 常微分方程9.1 常微分方程的基本概念9.2 一阶线性微分方程9.3 二阶线性常系数齐次微分方程9.4 二阶线性常系数非齐次微分方程9.5 常微分方程的应用以上是大一高等数学的全部知识点汇总。
学生们可以根据这个知识点汇总来制定学习计划,有针对性地进行复习和提高。
同时,理解这些知识点的定义、性质和应用是非常重要的,因为它们在后续学习和职业发展中都会起到关键作用。
希望本文对大一学生的数学学习有所帮助,使他们能够更好地掌握高等数学这门学科。
大一高数知识点详细总结高等数学作为大一学生的一门重要基础课程,是数学科学与工程领域的重要基石。
掌握大一高数知识点对于后续学习其他相关学科和解决实际问题至关重要。
本文将详细总结大一高数的主要知识点。
一、函数与极限1. 函数与函数的性质- 函数的定义及表示方法- 奇偶性、周期性、单调性等函数性质- 反函数与复合函数2. 极限- 极限的概念与性质- 极限的运算法则- 无穷小量与无穷大量- 函数的连续性与间断点3. 微分学- 导数的定义与性质- 微分中值定理与拉格朗日中值定理 - 高阶导数与导数应用- 函数的凹凸性与拐点4. 微分学与应用- 泰勒公式与泰勒展开式- 最大值与最小值的求解- 弧长、曲率与曲线的图形二、积分学1. 定积分- 定积分的定义与性质- 牛顿—莱布尼茨公式- 定积分的应用2. 不定积分- 不定积分的定义与性质- 基本积分表与换元法- 分部积分法与有理函数积分法3. 微分方程- 微分方程的基本概念与解法 - 一阶线性微分方程- 高阶线性微分方程4. 积分学与应用- 曲线的长度与曲面的面积- 旋转体的体积及侧面积- 质心与转动惯量三、级数与级数应用1. 数列与数列极限- 数列的定义与性质- 数列极限的定义与性质- 常见数列的极限2. 级数与级数收敛- 级数的定义与性质- 级数收敛的判定方法- 正项级数与一般级数- 幂级数与函数展开3. 幂级数应用- 泰勒级数与函数展开- 幂级数收敛半径与收敛区间 - 幂级数的求和与运算四、多元函数与偏导数1. 二元函数与多元函数- 二元函数的概念与性质- 隐函数与参数方程- 多元函数的概念与性质- 高阶偏导数与混合偏导数2. 多元函数的极值与条件极值 - 多元函数的极值判定- 多元函数的条件极值3. 方向导数与梯度- 方向导数的定义与性质- 梯度与梯度向量4. 多元函数的极值与最值应用 - 约束条件下的极值问题- 条件极值的拉格朗日乘子法五、重积分与坐标变换1. 二重积分- 二重积分的概念与性质- 二重积分的计算方法2. 三重积分- 三重积分的概念与性质- 三重积分的计算方法3. 极坐标与柱坐标变换- 极坐标下的二重积分计算 - 柱坐标下的三重积分计算4. 坐标变换与曲面积分- 雅可比行列式与坐标变换 - 曲面积分的概念与计算方法六、常微分方程简介1. 驯化常微分方程- 常微分方程的定义与概念- 常微分方程的解与初值问题2. 一阶常微分方程- 可分离变量和齐次方程- 线性和可降阶的一阶常微分方程3. 高阶常微分方程- 高阶常微分方程的解与线性组合- 常系数齐次线性方程以上是大一高数的主要知识点的详细总结。
大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩ 四. 必备公式:1. 等价无穷小: 当()0u x →时,sin ()()u x u x :; tan ()()u x u x :; 211cos ()()2u x u x -:; ()1()u x eu x -:; ln(1())()u x u x +:; (1())1()u x u x αα+-:;arcsin ()()u x u x :; arctan ()()u x u x : 2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=V V V3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰L ,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑L ,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?nf x kx x →: (1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔L ()()!!n n na a f x x x x n n α=+: (2)()xxn f t dt kt dt ⎰⎰:2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++:(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-V V V ; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导)2. 微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=V V V V (1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx 5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++L 注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++L L ()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =):(1) '()0()f x f x ≥⇒Z ; '()0()f x f x ≤⇒];(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计: '()f f x ξ=V V九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简):x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax nx e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰ 三. 定积分:1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*2(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰,(4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰220sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x +∞⎰; (2)101p dx x⎰ 五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰ 2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds =(1)(),[,]y f x x a b =∈ as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩ 21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()baf a b f x dx b a =-⎰;(2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程:含双变量条件()f x y +=L 的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==L8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+V V V V (2)lim ,lim,lim y x x y f ff f f x y∆∆∆==∆∆(3),x y f x f y df +V V @ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =U ; *(,)f x y 分片定义; *(,)f x y 奇偶 2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++L ; (3)lim n n S →∞(如1(1)!n nn ∞=+∑) 注: (1)lim n n a →∞; (2)n q ∑(或1n a∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: n S Z ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n∑, (2)ln k n n α∑, (3)1ln k n n ∑3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):n p ka n:(估计), 如10()n f x dx ⎰;()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛?注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0n n a a →]; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比 na∑;(1)n na-∑;na∑;2na∑之间的敛散关系四. 幂级数:1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域) 23111,2!3!xe x x x R =++++Ω=L 24111()1,22!4!x x e e x x R -+=+++Ω=L 35111(),23!5!x x e e x x x R --=+++Ω=L 3511sin ,3!5!x x x x R =-+-Ω=L 2411cos 1,2!4!x x x R =-++Ω=L ;211,(1,1)1x x x x =+++∈--L ; 211,(1,1)1x x x x=-+-∈-+L 2311ln(1),(1,1]23x x x x x +=-+-∈-L2311ln(1),[1,1)23x x x x x -=----∈-L3511arctan ,[1,1]35x x x x x =-+-∈-L (2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x @0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰@()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑ (2)'()S x =L ,(注意首项变化) (3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰L4. 题型: (注: ()(),?f x S x x =∈)(1)2T π=且(),(,]f x x ππ=∈-L (分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +r r ; (平行b a λ⇔=v v)2. a r ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=u u v v @v )3. a b ⋅r r ; (投影:()aa b b a⋅=v v vv v ; 垂直:0a b a b ⊥⇔⋅=v v v v ; 夹角:(,)a b a b a b⋅=v v v v S v v ) 4. a b ⨯r r ; (法向:,n a b a b =⨯⊥v v v v v ; 面积:S a b =⨯Y v v )二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=v(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕=v(2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =)(2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒v (或(,1)x y n z z =--v)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t =r (或12s n n =⨯v u v u u v)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=, z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=v , 注: (,)(,1)x y z f x y n f f =⇒=-v(2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒=v(2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯v uv u u v六. 方向导与梯度(重点)1. 方向导(l v方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒v(2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==u r cos sin x y zf f lθθ∂⇒=+∂r(3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G u r:(1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==u v; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒==u v(2)结论()a u l∂∂0G l =⋅u r ur ; ()b 取l G =ur v 为最大变化率方向;()c 0()G M u r为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰u v v u v v4. 应用范围 (1)第一类积分 (2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点): (1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换: A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰u v v u v u v四: 第二类曲线积分(1):(,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: (1)()LDQ PPdx Qdy dxdy x y∂∂+=-∂∂⎰⎰⎰Ñ; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径(3)L⎰Ñ(xy QP =但D 内有奇点)*LL =⎰⎰蜒(变形)3. 推广(路径无关性):P Qy y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰u v v(Γ有向τv ,(,,)F P Q R =u v ,(,,)d r ds dx dy dz τ==v v ) 五. 第二类曲面积分: 1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--v[()()]xyPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=v(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用:(1)散度计算: P Q RdivA x y z∂∂∂=++∂∂∂u v (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰u vÒ(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰Ò(含奇点)4. 通量与积分:A d S ∑Φ=⋅⎰⎰u v u v (∑有向n v ,(),,A P Q R =u v,(,,)d S ndS dydz dzdx dxdy ==u v v )六: 第二类曲线积分(2):(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =u v v 时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰u v v2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧)(1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂u v u v (2)交面式(一般含平面)封闭曲线: 0F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =v 或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰u v v u v vÑ(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。
大一第一学期高数知识点在大一的第一学期,高等数学(又称高数)是必修课程之一,对于理工科的学生来说,掌握高数知识点是十分重要的。
本文将介绍大一第一学期高数的主要知识点,包括函数与极限、导数与微分、高阶导数与泰勒展开、不定积分和定积分五个部分。
一、函数与极限1. 函数的概念:函数是两个集合之间的一种映射关系,常用符号表示为y=f(x)。
2. 极限的概念:极限是数列或函数逐渐趋近于某个值的过程,包括左极限、右极限和无穷极限。
3. 极限的性质:包括四则运算法则、绝对值法则、比较法则等。
4. 常见函数的极限:如幂函数、指数函数、对数函数等。
二、导数与微分1. 导数的概念:导数描述了函数在某一点的变化率,也可以理解为函数曲线在该点的切线斜率。
2. 导数的计算方法:使用极限定义、基本导数法则、求导公式等方法计算导数。
3. 常见函数的导数:如幂函数、指数函数、对数函数、三角函数等。
4. 微分的概念:微分是导数的一种近似表示,表示函数在某一点附近的增量。
5. 微分的计算方法:使用微分公式和微分运算法则等方法计算微分。
三、高阶导数与泰勒展开1. 高阶导数的概念:高阶导数表示导数的导数,如二阶导数、三阶导数等。
2. 高阶导数的计算方法:通过对原函数多次求导来计算高阶导数。
3. 泰勒展开的概念:泰勒展开是一种使用多项式逼近函数的方法,可将函数在某点附近展开成幂级数。
4. 泰勒展开的计算方法:使用公式对函数进行泰勒展开。
四、不定积分1. 不定积分的概念:不定积分是求解函数的原函数的过程,表示为∫f(x)dx。
2. 基本积分公式:包括幂函数积分、三角函数积分、指数函数积分等基本公式。
3. 换元积分法:使用换元法将原函数转化为容易求解的形式。
4. 分部积分法:使用分部积分公式对复杂函数进行求积分。
五、定积分1. 定积分的概念:定积分是计算曲线下面的面积的方法,表示为∫[a,b]f(x)dx。
2. 定积分的性质:包括线性性质、区间可加性、积分中值定理等性质。
高数大一最全知识点总结高等数学作为一门重要的学科,对于大一学生来说是一门必修课程。
掌握高等数学的基本知识点,不仅对于日后的学习打下了坚实的基础,也有助于理解其他相关学科的内容。
本文将对高数大一学习中的各个知识点进行总结和归纳,帮助读者更好地理解和应用这些知识。
一、微分与导数1. 函数与极限- 一元函数与多元函数- 函数的极限定义- 常见函数的极限计算方法2. 导数与微分- 导数的定义与性质- 常见函数的导数计算方法- 微分的概念与应用3. 高级导数- 高阶导数的定义- 高阶导数的性质- 隐函数与参数方程的高阶导数计算二、积分与微分方程1. 不定积分与定积分- 不定积分的定义与性质- 常见函数的积分计算方法- 定积分的定义与性质- 积分中值定理及其应用2. 微分方程基础- 微分方程的概念- 一阶常微分方程的解法- 高阶常微分方程的解法3. 微分方程的应用- 物理问题中的微分方程- 生活中的微分方程应用- 模型问题中的微分方程建立与求解三、级数与数列1. 数列与极限- 数列极限的定义与性质- 常见数列极限计算方法- 无穷大与无穷小2. 常数项级数- 级数的概念与性质- 常数项级数的敛散性判定- 常数项级数的收敛性判定方法3. 幂级数- 幂级数的概念与性质- 幂级数的收敛区间与收敛半径的计算 - 幂级数的应用四、空间解析几何1. 三维空间中的点、直线、平面- 点的坐标表示- 直线的参数方程与一般方程- 平面的点法式与一般方程2. 直线与平面的位置关系- 直线与平面的交点- 直线与平面的夹角- 平面与平面的位置关系3. 空间曲线与曲面- 空间曲线的参数方程- 隐函数方程与参数方程的相互转化 - 曲面方程的一般形式与特殊形式五、多元函数与偏导数1. 多元函数的概念与性质- 多元函数的定义- 多元函数的极限与连续性判定- 多元函数的偏导数与全微分2. 偏导数的计算- 偏导数的定义与性质- 偏导数的计算方法与应用- 高阶偏导数的定义与计算3. 多元函数极值与条件极值- 多元函数的极值判定条件- 多元函数的最值计算- 有条件的极值问题总结:通过对高数大一知识点的总结,我们了解了微分与导数、积分与微分方程、级数与数列、空间解析几何以及多元函数与偏导数等重要内容。
大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。