选修4-4_第一讲_坐标系 (用)
- 格式:ppt
- 大小:759.50 KB
- 文档页数:3
1.坐标系
教学目标班级______姓名_________
1.了解常见的坐标系.
2.了解坐标法,并能运用解决相关问题.
教学过程
一、知识要点.
1.坐标系:坐标系是联系几何与代数的桥梁;是数形结合的有力工具;利用坐标系可以使数与形相互转化.
2.常用坐标系:①数轴、平面直角坐标系、空间直角坐标系;②极坐标系(重点)、柱坐标系、球坐标系.
3.坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系,这就是研究几何问题的坐标法.
二、例题分析.
1.运用坐标法解决实际问题.
例1:某信息中心O接到位于正西、正北、正东方向三个观测点A、B、C的报告:A、B 两个观测点同时听到一声巨响,C观测点听到巨响声的时间比它们晚4s. 已知各观测点到信息中心的距离都是1020m. 试确定巨响发生的位置.(假设声音传播速度为340m/s,各观测点均在同一平面上)
练1:已知ABC ∆的三边a ,b ,c 满足2225a c b =+,BE ,CF 分别是边AC ,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系.
作业:1.两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹.
2.已知点A 为定点,线段BC 在定直线l 上滑动,已知4||=BC ,点A 到直线l 的距离为3,求ABC ∆外心的轨迹方程.。
高中数学选修4-4全套教案第一讲坐标系一平面直角坐标系课题:1、平面直角坐标系教学目的:知识与技能:回顾在平面直角坐标系中刻画点的位置的方法能力与与方法:体会坐标系的作用情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?二、学生活动学生回顾刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P都可以由惟一的实数对(x,y)确定3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标四、数学运用例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
*变式训练如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置?例2已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m.但在A 村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?*变式训练1.一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2.在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程例3已知Q (a,b ),分别按下列条件求出P 的坐标(1)P 是点Q 关于点M (m,n )的对称点(2)P 是点Q 关于直线l:x-y+4=0的对称点(Q 不在直线1上)*变式训练用两种以上的方法证明:三角形的三条高线交于一点。
数学选修4-4 坐标系和参数方程第一讲 直角坐标系和极坐标系【基础知识】1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
3.平面直角坐标系中的伸缩变换(0)(,){(0)(,)(,)x x P x y y u y u P x y P x y λλφφ'=⋅>'=⋅>''定义:设点是平面直角坐标系中的任意一点,在变换:的作用下,点对到应点,称为平面直角坐标系中的坐标伸缩变换。
4.极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
)设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。
那么有序数对(,)ρθ称为点M 的极坐标。
其中ρ称为极径,θ称为极角。
约定:极点的极坐标是ρ=0,θ可以取任意角。
5.负极径的规定:在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角,当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM =ρ。
M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈ 6.直角坐标与极坐标的互化以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则cos ,sin .x y ρθρθ==222,tan (0).yx y x xρθ=+=≠ 【典型例题】例1 求下列点经过伸缩变换'2,'3x x y y =⎧⎨=⎩后的点的坐标: (1) (1,2);(2) (-2,-1).【分析】利用伸缩(0){(0)x x y u y u λλφ'=⋅>'=⋅>变换:公式实行坐标之间的转化.【解】(1)(2,6);(2)(-4,-3).【点拨】利用伸缩(0){(0)x x y u y u λλφ'=⋅>'=⋅>变换:公式是解决坐标与坐标之间、曲线与曲线之间变换的重要手段例2 在伸缩变换⎩⎨⎧==y y x x '2'与伸缩变换⎩⎨⎧==yy x x 2'2'的作用下,单位圆122=+y x 分别变成什么图形?解:在⎩⎨⎧==y y x x '2'的作用下,单位圆变成椭圆1'4'22=+y x ;在⎩⎨⎧==yy x x 2'2'的作用下,单位圆变成圆4''22=+y x 。