第一讲-坐标系
- 格式:pptx
- 大小:473.70 KB
- 文档页数:43
第一讲:坐标系 1.坐标系的种类(直角坐标系、空间直角坐标系、极坐标系)2.直角坐标系的运用(实现了数形结合,用坐标法研究几何位置形状等问题)【例1(课本)】一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程【练习】用两种以上的方法证明:三角形的三条高线交于一点。
3.平面直角坐标系中的伸缩变换定义:_____________________________________________________________.【例2(课本)】在直角坐标系中,求下列方程所对应的图形经过伸缩变换''23x x y y⎧=⎨=⎩后的图形。
(1)2x+3y=0; (2) 221x y +=【练习】 1、在同一平面坐标系中,经过伸缩变换⎩⎨⎧='='yy x x ,3后,曲线C 变为曲线9922='+'y x ,求曲线C 的方程并画出图象。
2、把圆2216x y +=变成椭圆22116y x ''+=的伸缩变换为 3、在同一坐标系中将直线321x y +=变成直线''22x y +=的伸缩变换为4.极坐标系:(1)实用背景(2)极坐标系定义__________________________________________(3)相关概念:__________________叫极径_______________极角____________极坐标考点一:由点的位置确定极坐标例1 写出下图中各点的极坐标(见教材14页)A (4,0)B (2 )C ( )D ( )E ( )F ( )G ( )① 平面上一点的极坐标是否唯一?② 若不唯一,那有多少种表示方法?③坐标不唯一是由谁引起的?③ 不同的极坐标是否可以写出统一表达式约定:极点的极坐标是ρ=0,θ可以取任意角。
第1讲坐标系种类及坐标转换在数学和物理学中,坐标系是用于表示和定位点的一组数学规则。
它可以帮助我们在平面或空间中精确地描述和测量位置、方向和距离。
坐标系通常由坐标轴和原点组成,坐标轴是一条直线,它们与原点形成直角。
有多种类型的坐标系,每一种都有特定的用途和应用。
以下是常见的几种坐标系:1.直角坐标系:直角坐标系也称为笛卡尔坐标系,是最常见的坐标系。
它由两条垂直的坐标轴和一个原点组成。
坐标轴可以是水平的x轴和垂直的y轴,或者在三维空间中可以加上一个垂直的z轴。
直角坐标系使用(x,y,z)来表示点的坐标,其中x表示点在x轴上的位置,y表示点在y轴上的位置,z表示点在z轴上的位置。
2.极坐标系:极坐标系用于描述平面上的点,它由一个原点和一个角度和距离组成。
极坐标系以原点为中心,用一个角度(通常用弧度表示)表示点与参考线(通常是x轴)之间的角度,用一个距离表示点与原点之间的距离。
极坐标系使用(r,θ)来表示点的坐标,其中r表示点与原点的距离,θ表示点与参考线之间的角度。
3.柱坐标系:柱坐标系是三维空间中的一种坐标系,它由一个原点、一个角度、一个距离和一个高度组成。
柱坐标系类似于极坐标系,但增加了一个垂直的z轴来表示高度。
柱坐标系使用(r,θ,z)来表示点的坐标,其中r表示点与原点的水平距离,θ表示点与参考线(通常是x轴)之间的角度,z表示点的高度。
4.球坐标系:球坐标系也是三维空间中的一种坐标系,它由一个原点、一个纬度、一个经度和一个距离组成。
球坐标系使用(r,θ,φ)来表示点的坐标,其中r表示点与原点的距离,θ表示点与参考线(通常是z轴)之间的纬度,φ表示点在参考平面上的经度。
在不同的坐标系之间进行转换时,我们需要使用特定的转换公式。
以直角坐标系和极坐标系为例,我们可以使用以下公式进行转换:x = r * cos(θ)y = r * sin(θ)r = sqrt(x^2 + y^2)θ = atan2(y, x)这些公式使我们能够在不同坐标系之间相互转换,并确保保持位置的准确性。
平面直角坐标系定义:平面直角坐标系是由两条互相垂直的数轴组成,且两轴的交点是原点,同一数轴上的单位长度是一样的,一般情况下两轴上的单位长度也相同.注意数轴有三个要素——原点、正方向和单位长度.我们规定水平的数轴叫做横轴,取向右为正方向;另一数轴叫纵轴,取向上为正方向.点的坐标:如右图,由点P 分别向x 轴和y 轴作垂线,垂足A 在x 轴上的坐标是a ,垂足B 在y 轴上的坐标是b ,则点P 的坐标为()a b ,.点的坐标是一对有序数对,横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来象限和轴:横轴(x 轴)上的点()x y ,的坐标满足:0y =;纵轴(y 轴)上的点()x y ,的坐标满足:0x =;第一象限内的点()x y ,的坐标满足:00x y >⎧⎨>⎩; 第二象限内的点()x y ,的坐标满足:00x y <⎧⎨>⎩; 第三象限内的点()x y ,的坐标满足:00x y <⎧⎨<⎩;第四象限内的点()x y ,的坐标满足:00x y >⎧⎨<⎩【引例】已知()32A -,、()32B --,、()32C -,为长方形的三个顶点,⑴ 建立平面直角坐标系,在坐标系内描出A 、B 、C 三点;⑵ 根据这三个点的坐标描出第四个顶点D ,并写出它的坐标;⑶ 描点后并进一步判断点A 、B 、C 、D 分别在哪一象限?⑷ 观察A 、B 两点,它们的坐标有何特点?B 与C 呢?A 与C 呢?【解析】 ⑴ 如右图所示;⑴ ()32D ,;⑴ A :第二象限;B :第三象限;C :第四象限;D :第一象限 ⑴ A 、B 坐标特点:横坐标相同,纵坐标互为相反数,位置特点:关于x 轴对称. B 、C 坐标特点:纵坐标相同,横坐标互为相反数, 位置特点:关于y 轴对称.A 、C 坐标特点:横、纵坐标均互为相反数,位置特点:关于原点对称.【例1】 ⑴ 如图,如果“士”所在位置的坐标为()12--,,“相”所在位置的坐标为()22-,,那么“炮”所在位置的坐标为 . ⑴ 由坐标平面内的三点()()()113113A B C -,,,,,构成的ABC △是( ) A .钝角三角形B .直角三角形C .锐角三角形D .等腰直角三角形⑶ 若规定向北方向为y 轴正方向,向东方向为x 轴正方向,小明家的坐标为()12,,小丽家的坐标为()21--,,则小明家在小丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向⑷ 已知点M ()34a a +-,在y 轴上,则点M 的坐标为 . ⑸ 方格纸上A B 、两点,若以B 点为原点,建立平面直角坐标系,则A 点坐标为()34,,若以A 点为原点建立平面直角坐标系,则B 点坐标为( )A .()34--,B .()34-,C .()34-,D .()34,【解析】 ⑴()31-,; ⑴B ; ⑴ B ; ⑴ ()07,;⑴ A .【例2】 ⑴ 如果点()12P m m -,在第四象限,那么m 的取值范围是( )A .102m <<B .102m -<<C .0m <D .12m >(人大附中期中)⑵ 已知点()391M a a --,在第三象限,且它的坐标都是整数,则a =( ) A .1B .2C .3D .0 (一五六中学期中)⑶ 已知点()23A a b -,在第一象限,点()43B a b --,在第四象限,若a b ,都为整数,则2a b += .(人大附中期中)⑷ 已知点()381P a a --,,若点P 在y 轴上,则点P 的坐标为 ;若点P 在第二象限,并且a 为整数,则P 点坐标为 .(四中期中)⑸ 如果点()A a b ,在第二象限,则点()221B a b -++,在( ) A .第一象限 B .第二象限C .第三象限D .第四象限⑴ 设()3,a ab 在第三象限,则:① (),a b 在第 象限;② ,a a b b ⎛⎫- ⎪⎝⎭在第 象限; ③ ()3,b a b -在第 象限.【解析】 ⑴D ; ⑵ B ; ⑶ 7或8; ⑷ 503⎛⎫ ⎪⎝⎭,,()21-,; ⑸A ; ⑹由题意知0,0a b <>,答案依次为:一;三;一.【例3】 ⑴ 对任意实数x ,点()22P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限⑵ 点()11P x x -+,,当x 变化时,点P 不可能在第( )象限.A .一B .二C .三D .四(四中期中) ⑶ 证明:①点()22m n ,不在第三、四象限;②点()2122m m ++,不在第四象限.【解析】 ⑴ C ;⑵ D ;⑶ ①∵20n ≥,∴点()22m n ,不在第三、四象限;② 若210220m m +>⎧⎨+<⎩,不等式组无解, ∴点()2122m m ++,不在第四象限. 【点评】 “不存在类问题”需要对点坐标进行正负分析.【变式】平面直角坐标系内,点(),1A n n -一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】 C【点评】 本题主要考查平面直角坐标系中各象限内点的坐标的符号,把符号问题转化为解不等式组的问题.。