高考数学函数奇偶性之高考真题48道
- 格式:pdf
- 大小:177.94 KB
- 文档页数:5
绝密★启用前1.判断下列函数的奇偶性:(1)f(x)=x 3-1x ; (2)f(x)=|2|2x +-; (3)f(x)=(x -(4)f(x). 【答案】(1)奇函数(2)奇函数(3)既不是奇函数也不是偶函数(4)既是奇函数也是偶函数解析:(1)定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2)去掉绝对值符号,根据定义判断.由210|2|20x x ⎧≥⎨≠⎩-,+-,得1104x x x ≤≤⎧⎨≠≠⎩-,且-. 故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f(x)=22x x=+-, 这时有f(-x)=21(x x --)-=-f(x),故f(x)为奇函数. (3)因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4)因为f(x)定义域为{,所以f(x)=0,则f(x)既是奇函数也是偶函数2.下列函数是奇函数的是( )A .()||f x x =-B .()22x x f x -=+C .()lg(1)lg(1)f x x x =+--D .3()1f x x =-【答案】C 解析:对于B ,()22()x x f x f x --=+=,函数()f x 为偶函数,所以B 错;对于C ,由1010x x +>⎧⎨->⎩,故11x -<<,关于原点对称,又()lg(1)lg(1)()f x x x f x -=--+=-对于D ,33()()11()()f x x x f x f x -=--=--≠≠-,函数()f x 既不是奇函数,也不是偶函数,3.已知函数)(x f y =是奇函数,当0>x 时,,lg )(x x f =则( )C.2lgD.-2lg 【答案】D.解析:4.已知函数(1)f x +是奇函数,(1)f x -是偶函数,且(0)2,(4)则f f ==( )A .-2B .0C .2D .3【答案】A 解析:因为函数(1)f x +是奇函数,所以)(x f 的对称中心为(1,0),因为(1)f x -是偶函数,所以)(x f 的对称轴为x=-1。
函数奇偶性练习题高一一、判断函数的奇偶性1. 判断函数 $f(x) = x^3 3x$ 的奇偶性。
2. 判断函数 $f(x) = \frac{1}{x}$ 的奇偶性。
3. 判断函数 $f(x) = \sqrt{x^2 + 1}$ 的奇偶性。
4. 判断函数 $f(x) = x^2 x^4$ 的奇偶性。
5. 判断函数 $f(x) = \cos(x)$ 的奇偶性。
二、证明函数的奇偶性6. 证明函数 $f(x) = x^2 + x$ 是偶函数。
7. 证明函数 $f(x) = x^3 x$ 是奇函数。
8. 证明函数 $f(x) = \ln(x^2)$ 是偶函数。
9. 证明函数 $f(x) = \tan(x)$ 是奇函数。
10. 证明函数 $f(x) = e^{x^2}$ 是偶函数。
三、求给定函数的奇偶部分11. 求函数 $f(x) = x^4 2x^2 + 1$ 的奇偶部分。
12. 求函数 $f(x) = \sin(x) + \cos(x)$ 的奇偶部分。
13. 求函数 $f(x) = x^5 3x^3 + 2x$ 的奇偶部分。
14. 求函数 $f(x) = \frac{1}{x^2 + 1}$ 的奇偶部分。
15. 求函数 $f(x) = \sqrt{x} \frac{1}{\sqrt{x}}$ 的奇偶部分。
四、综合运用16. 已知函数 $f(x) = ax^3 + bx^2 + cx + d$,若 $f(x)$ 是偶函数,求 $a$、$b$、$c$ 的关系。
17. 已知函数 $f(x) = ax^4 + bx^3 + cx^2 + dx + e$,若$f(x)$ 是奇函数,求 $a$、$b$、$c$、$d$ 的关系。
18. 设函数 $f(x)$ 是奇函数,且 $f(1) = 2$,求 $f(1)$ 的值。
19. 设函数 $f(x)$ 是偶函数,且 $f(2) = 3$,求 $f(2)$ 的值。
20. 已知函数 $f(x) = x^3 + g(x)$ 是奇函数,求 $g(x)$ 的表达式。
函数的奇偶性练习一、选择题1.若)(x f 是奇函数,则其图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象上的是( ) A . (())a f a ,- B . (())--a f a , C . (())---a f a ,D .(())a f a ,-3.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y4. 如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( )A .增函数,最小值是-5B .增函数,最大值是-5C .减函数,最小值是-5D .减函数,最大值是-55. 已知函数)(1222)(R x a a x f x x ∈+-+⋅=是奇函数,则a 的值为( )A .1-B .2-C .1D .26.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( )A .)2()2()(f f f >->-ππ B .)()2()2(ππ->->f f fC .)2()2()(ππ->>-f f fD .)()2()2(ππ->>-f f f二、填空题7.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ . 8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为__________________________.9.已知)(x f是定义在[)2,0-⋃(]0,2上的奇函数,当0>x时,)(x f的图象如右图所示,那么f (x )的值域是 .10.已知分段函数)(x f 是奇函数,当),0[+∞∈x 时的解析式为 2x y =,则这个函数在区间)0,(-∞上的解析式为 .三、解答题11. 判断下列函数是否具有奇偶性:(1)35()f x x x x =++; (2) 2(),(1,3)f x x x =∈-; (3)2)(x x f -=; (4) 25)(+=x x f ;(5) )1)(1()(-+=x x x f .12.判断函数122+-=x x y 的奇偶性,并指出它的单调区间.13.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.能力题14.设()f x 是定义在R 上的偶函数,且在)0,(-∞上是增函数,则()2f -与()223f a a -+(a R ∈)的大小关系是( )A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f a a -+D .与a 的取值无关若函数15.已知)(x f 是奇函数,)(x g 是偶函数,且在公共定义域{}1,|±≠∈x R x x 上有11)()(-=+x x g x f ,求)(x f 的解析式.参考答案7.3-8.)1()3(->-f f 9.[)(]3,22,3⋃-- 10.2x y -=三、解答题11.(1)奇函数,(2)非奇非偶,(3)偶函数,(4) 非奇非偶函数,(5)偶函数12.偶函数. ⎩⎨⎧<++≥+-=,0,12,0,1222x x x x x x y ∴函数122+-=x x y 的减区间是(]1,-∞-和 ]1,0[,增区间是]0,1[- 和 ),1[+∞.13. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称, ∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-.能力题14.B (提示: ()f x 是定义在R 上的偶函数,且在)0,(-∞上是增函数,∴()f x 在),0(+∞上是减函数,)2()2(f f =-. 22)1(3222≥+-=+-a a a ,∴()223f a a -+)2(f ≤,因此()223f a a -+)2(-≤f . )15.⎪⎩⎪⎨⎧--=-+--=+,11)()(,11)()(x x g x f x x g x f ⇒⎪⎩⎪⎨⎧+-=+--=+11)()(11)()(x x g x f x x g x f 得11)(,1)(22-=-=x x g x x x f .。
高三数学函数的奇偶性试题答案及解析1.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是()A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C【解析】设,则,因为是奇函数,是偶函数,故,即是奇函数,选C.【考点】函数的奇偶性.2.若偶函数y=f(x)为R上的周期为6的周期函数,且满足f(x)=(x+1)(x-a)(-3≤x≤3),则f(-6)等于________.【答案】-1【解析】∵y=f(x)为偶函数,且f(x)=(x+1)(x-a)(-3≤x≤3),∴f(x)=x2+(1-a)x-a,1-a=0.∴a=1.f(x)=(x+1)(x-1)(-3≤x≤3).f(-6)=f(-6+6)=f(0)=-1.3.若的图像是中心对称图形,则( )A.4B.C.2D.【答案】B【解析】,因为为偶函数,所以当且仅当,即时,为奇函数,图像关于原点对称.故选B.【考点】奇函数4.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于()A.-3B.-1C.1D.3【答案】A【解析】因为f(x)为定义在R上的奇函数,所以有f(0)=20+2×0+b=0,解得b=-1,所以当x≥0时,f(x)=2x+2x-1,即f(-1)=-f(1)=-(21+2×1-1)=-3.故选A.5.已知函数f(x)=为奇函数,则f(g(-1))=()A.-20B.-18C.-15D.17【答案】C【解析】由于函数f(x)是奇函数,所以g(x)=-f(-x)=-x2+2x,g(-1)=-3.故f(-3)=g(-3)=-15.6.若函数f(x)=(a+)cosx是奇函数,则常数a的值等于()A.-1B.1C.-D.【答案】D【解析】设g(x)=a+,t(x)=cosx,∵t(x)=cosx为偶函数,而f(x)=(a+)cosx为奇函数,∴g(x)=a+为奇函数,又∵g(-x)=a+=a+,∴a+=-(a+)对定义域内的一切实数都成立,解得:a=.7.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(-1)=________.【答案】-2【解析】f(-1)=-f(1)=-2.8.已知定义域为R的函数f(x)=是奇函数,则a=________.【答案】2【解析】因为函数f(x)=是定义域为R的奇函数,所以f(-1)=-f(1),即=-,解得a=2.9.函数y=sin22x是().A.周期为π的奇函数B.周期为π的偶函数C.周期为的奇函数D.周期为的偶函数【答案】D【解析】y=sin22x==-cos 4x,则周期为:=,且为偶函数.10.已知,其中是常数.(1))当时,是奇函数;(2)当时,的图像上不存在两点、,使得直线平行于轴.【答案】证明见解析.【解析】(1)奇函数的问题,可以根据奇函数的定义,利用来解决,当然如果你代数式变形的能力较强,可以直接求然后化简变形为,从而获得证明;(2)要证明函数的图像上不存在两点A、B,使得直线AB平行于轴,即方程不可能有两个或以上的解,最多只有一个解,,,因此原方程最多只有一解,或者用反证法证明,设存在,即有两个,且,使,然后推理得到矛盾的结论,从而完成证明.试题解析:(1)由题意,函数定义域, 1分对定义域任意,有:4分所以,即是奇函数. 6分(2)假设存在不同的两点,使得平行轴,则9分化简得:,即,与不同矛盾。
高三数学奇偶数试题1.已知是奇函数. 若且.,则 .【答案】 3【解析】是奇函数,则,,所以.2.设函数y=f(x)与函数y=g(x)的图象如右图所示,则函数y= f(x)·g(x)的图象可能是【答案】A【解析】解:因为函数y=f(x)为偶函数,与函数y=g(x)的图象为奇函数,因此乘积函数y= f (x)·g(x)为奇函数,排除B,D,再看图像在靠近原点附件的函数值符号,可知选A。
3.下列函数中,在其定义域内既是增函数又是奇函数的是A.y= -B.y="lnx"C.y=D.y=x3+【答案】D【解析】解:因为是奇函数,则排除选项B,C,在定义域内是增函数,则排除A,只有D项符合题意。
4.已知函数是奇函数,是偶函数,且=()A.-2B.0C.2D.3【答案】A【解析】因为函数是奇函数,所以的对称中心为(1,0),因为是偶函数,所以的对称轴为x=-1。
所以。
5.设是定义在上的奇函数,当时,,则()A.-3B.-1C.1D.3【答案】A【解析】是奇函数。
,当时,,。
故选A6.设分别是定义在R上的奇函数和偶函数,当时,,且,则不等式的解集为A.B.C.D.【答案】D【解析】记,则,所以是奇函数。
当时,,单调递增。
根据奇函数的图象性质可知,当,也单调递增。
因为,所以,则。
而,结合的单调性可得即的解集为或,故选D7.已知函数是偶函数,则此函数图象与轴交点的纵坐标的最大值是▲ .【答案】【解析】应为是偶函数,,,;函数图象与轴交点的纵坐标是;当且仅当时取等。
所以,最大值为2.8.已知函数,则下列结论正确的是A.是偶函数,递增区间是B.是偶函数,递减区间是C.是奇函数,递减区间是D.是奇函数,递增区间是【答案】C【解析】函数定义域是R;;所以是奇函数;当时,。
在(0,1)上是减函数;在(1,+∞)上是增函数;因是奇函数,所以函数在(-1,0)上是减函数;在(-∞,0)上是增函数;又所以函数,递减区间是.故选C9.已知f(x)为奇函数,g(x)="f(x)+9, " g(-2)=3,则f(2)=_________.【答案】6【解析】略10.下列命题中:①若函数的定义域为R,则一定是偶函数;②若是定义域为R的奇函数,对于任意的都有,则函数的图象关于直线对称;③已知是函数定义域内的两个值,且,若,则是减函数;④若是定义在R上的奇函数,且也为奇函数,则是以4为周期的周期函数。
高中数学高考总复习函数的奇偶性习题及详解一、选择题1.(文)以下函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,假设x =0在定义域内,那么应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,应选A.(理)以下函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.应选D.2.(2021·安徽理,4)假设f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,那么f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,应选A.3.(2021·河北唐山)f (x )与g (x )分别是定义在R 上奇函数与偶函数,假设f (x )+g (x )=log 2(x 2+x +2),那么f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.4.(文)(2021·北京崇文区)f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,那么f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2021·山东日照)函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),假设f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2021·辽宁锦州)函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.假设g (x )=f (x )+2,那么g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定[答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,那么函数f (x )=2⊗x(x ⊕2)-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[答案] B[解析] f (x )=4-x 2|x -2|-2,∵x 2≤4,∴-2≤x ≤2, 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 那么f (x )=4-x 2-x ,f (x )+f (-x )=0,应选B.7.f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),那么a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .应选C.8.函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),那么f (2021)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x∈N *).∴f (x )的周期为4, 故f (2021)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),9.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,那么使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,应选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,那么f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,应选A.(理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是以下图象中的( )[答案] C [解析] ∵y =xsin x是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sin π6=π3>1,排除B ,应选C.二、填空题11.(文)f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),那么f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2[解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,那么f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2021·深圳中学)函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如下图,那么不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)假设f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.那么f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.(理)函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,那么f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2 x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2021·山东枣庄模拟)假设f (x )=lg ⎝⎛⎭⎫2x1+x +a (a ∈R)是奇函数,那么a =________.[答案] -1[解析] ∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a =lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,那么问题变得比拟简单.f (x )=lg (a +2)x +a 1+x 为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2021·吉林长春质检)函数f (x )=lg ⎝⎛⎭⎫-1+a 2+x 为奇函数,那么使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.三、解答题15.(2021·杭州外国语学校)f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)假设曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)假设当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1). 令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2021·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2021).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)当x ∈[-2,0]时,-x ∈[0,2],由得 f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时, f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2021)+f (2021)+f (2021)+f (2021)=0.∴f (0)+f (1)+f (2)+…+f (2021)=0.17.(文)函数f (x )=1-42a x +a (a >0且a ≠1)是定义在(-∞,+∞)上的奇函数.(1)求a 的值; (2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x =1+y1-y ,由2x >0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x =u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0. (理)设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f (x ) x >0-f (x ) x <0.(1)假设f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2 x >03(x +1)2 x <0.(2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 假设m >0,那么n <0.那么F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 假设m <0,那么n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。
函数的奇偶性之高考真题48道一、具体函数的奇偶性1.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =e x C.y =cos x D.y =e x -e -x2.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =|sin x | C.y =cos xD.y =e x -e -x3.(2014•广东)下列函数为奇函数的是(A )A.y =2x - 12xB.y =x 3sin xC.y =2cos x +1D.y =x 2+2x4.(2015•北京)下列函数中为偶函数的是(B )A.y =x 2sin xB.y =x 2cos xC.y =|lnx |D.y =2-x5.(2019•全国)下列函数中,为偶函数的是(C )A.y =(x +1)2B.y =2-xC.y =|sin x |D.y =lg (x +1)+lg (x -1)6.(2018•上海)下列函数中,为偶函数的是(A )A.y =x -2B.y =x13C.y =x -12D.y =x 37.(2012•广东)下列函数为偶函数的是(D )A.y =sin xB.y =x 3C.y =e xD.y =lnx 2+18.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y =x +sin2xB.y =x 2-cos xC.y =2x + 12xD.y =x 2+sin x 9.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y = 1+x 2B.y =x + 1xC.y =2x + 12xD.y =x +e x 二、抽象函数的奇偶性10.(2014•新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C )A.f (x )∙g (x )是偶函数B.|f (x )|∙g (x )是奇函数C.f (x )∙|g (x )|是奇函数D.|f (x )∙g (x )|是奇函数三、已知奇偶性求参数11.(2020•上海)若函数y =a ∙3x + 13x为偶函数,则a =1.12.(2009•重庆)若f (x )=a + 12x +1是奇函数,则a =- 12.13.(2019•北京)设函数f (x )=e x +ae -x (a 为常数).若f (x )为奇函数,则a =-1;若f (x )是R 上的增函数,则a 的取值范围是(-∞,0].14.(2014•湖南)若f (x )=ln (e 3x+1)+ax 是偶函数,则a =- 32.15.(2015•新课标Ⅰ)若函数f (x )=xln (x +a +x 2)为偶函数,则a =1.资料下载来源——高中数学优质资料群群号:114265753916.(2015•上海)已知a 是实数,函数f (x )= x 2+ax +4x是奇函数,求f (x )在(0,+∞)上的最小值及取到最小值时x 的值.四、奇函数性质的应用之中值定理17.(1990•全国)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于(A )A.-26B.-18C.-10D.1018.(2013•重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg 2))=(C )A.-5 B.-1C.3D.419.(2018•新课标Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=-2.20.(2012•上海)已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=3.五、奇函数性质的应用之分段函数21.(2019•新课标Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=(D )A.e -x -1B.e -x +1C.-e -x -1D.-e -x +122.(2019•新课标Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3.六、偶函数性质应用之比较大小23.(2019•新课标Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则(C )A.f (log 3 14)>f (2- 32)>f (2- 23)B.f (log 3 14)>f (2- 23)>f (2- 32)C.f (2- 32)>f (2- 23)>f (log 3 14)D.f (2- 23)>f (2- 32)>f (log 3 14)七、函数性质综合24.(2018•新课标Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C )A.-50B.0C.2D.50八、奇偶性与单调性综合判断25.(2020•新课标Ⅱ)设函数f (x )=x 3- 1x 3,则f (x )(A )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减26.(2020•新课标Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )(D )A.是偶函数,且在( 12,+∞)单调递增B.是奇函数,且在(- 12, 12)单调递减C.是偶函数,且在(-∞,- 12)单调递增D.是奇函数,且在(-∞,- 12)单调递减27.(2015•湖南)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是(A )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数28.(2014•湖南)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(A )A.f (x )= 1x2B.f (x )=x 2+1C.f (x )=x 3D.f (x )=2-x 29.(2017•北京)已知函数f (x )=3x -( 13)x ,则f (x )(A )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数30.(2005•山东)下列函数既是奇函数,又在区间[-1,1]上单调递减的是(D )A.f (x )=sin xB.f (x )=-|x +1|C.f (x )= 12(a x -a -x )D.f (x )=ln 2-x 2+x31.(2013•北京)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(D )A.y =1x B.y =e -x C.y =lg |x | D.y =-x 2+132.(2012•陕西)下列函数中,既是奇函数又是增函数的为(D )A.y =x +1B.y =-x 2C.y =1xD.y =x |x |33.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(B )A.y =cos2x ,x ∈RB.y =log 2|x |,x ∈R 且x ≠0C.y = e x -e -x2,x ∈R D.y =x 3+1,x ∈R34.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(B )A.y =2x 3B.y =|x |+1C.y =-x 2+4D.y =2-|x |九、奇偶函数图象的对称性35.(2009•黑龙江)函数y =log 2 2-x 2+x的图象(B )A.关于直线y =-x 对称B.关于原点对称C.关于y 轴对称D.关于直线y =x 对称36.(2010•重庆)函数f (x )= 4x+12x 的图象(D )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称37.(2011•上海)f (x )= 4x-12x的图象关于(A )A.原点对称B.直线y =x 对称C.直线y =-x 对称D.y 轴对称38.(2008•全国卷Ⅱ)函数f (x )= 1x-x 的图象关于(C )A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称十、奇函数性质应用之解不等式39.(2020•山东)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是(D )A.[-1,1]∪ 3,+∞)B.[-3,-1]∪ 0,1]C.[-1,0]∪ 1,+∞)D.[-1,0]∪ 1,3]40.(2015•山东)若函数f (x )= 2x+12x -a是奇函数,则使f (x )>3成立的x 的取值范围为(C )A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)十一、奇函数性质比较大小41.(2017•天津)已知奇函数f (x )在R 上是增函数.若a =-f (log 2 15),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为(C )A.a <b <cB.b <a <cC.c <b <aD.c <a <b42.(2009•山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x )且在区间[0,2]上是增函数,则(A )A.f (-25)<f (80)<f (11)B.f (80)<f (11)<f (-25)C.f (11)<f (80)<f (-25)D.f (-25)<f (11)<f (80)十二、偶函数性质比较大小43.(2015•天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为(C )A.a <b <cB.a <c <bC.c <a <bD.c <b <a44.(2008•天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a=f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则(A )A.b <a <cB.c <b <aC.b <c <aD.a <b <c 解:b =f (-cos 5π7)=f (cos 2π7),c =f (-tan 5π7)=f (tan 2π7)因为 π4< 2π7< π2,又由函数在区间[0,+∞)上是增函数,所以0<cos 2π7<sin 2π7<1<tan 2π7,所以b <a <c ,故选:A .十三、奇偶性综合之比较大小45.(2008•安徽)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有(D )A.f (2)<f (3)<g (0)B.g (0)<f (3)<f (2)C.f (2)<g (0)<f (3)D.g (0)<f (2)<f (3)十四、偶函数性质应用之解不等式46.(2016•天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f (2|a -1|)>f (- 2),则a 的取值范围是( 12, 32).47.(2014•新课标Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是(-1,3).48.(2015•新课标Ⅱ)设函数f (x )=ln (1+|x |)- 11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是(B )A.(-∞, 13)∪(1,+∞)B.( 13,1)C.(- 13, 13)D.(-∞,- 13)∪( 13,+∞)。
高三数学函数的奇偶性试题1.设是定义在上的奇函数,当时,,则的图像与圆的公共点的个数是()A.个B.个C.个D.个【答案】B【解析】根据奇函数的定义,可知x<0时,f(x)=x-1直接检验可得x>0是与圆有一个公共点,x<0时没有公共点,但注意到奇函数中f(0)=0恰好在圆周上,所以两者有两个公共点.选B【考点】函数的奇偶性,图像的公共点2.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=3x,则f(log94)的值为()A.-2B.C.D.2【答案】B【解析】根据对数性质,f(log94)=f(log32)因为f(x)是奇函数,于是f(log32)=-f(-log32)=-f(log3),且log3<0故f(log94)=-f(log3)=-【考点】函数的奇偶性,分段函数3.已知奇函数f (x)和偶函数g(x)分别满足,,若存在实数a,使得成立,则实数b的取值范围是A.(-1,1)B.C.D.【答案】C,【解析】由f (x)的解析式知,当0≤<1时,f (x)=是增函数,其值域为[0,1],当≥1时,f (x)=是减函数,值域为(0,1],故当≥0时,值域为[0,1],因为f (x)是奇函数,根据奇函数的对称性知,当≤0时,值域为[-1,0],所以f (x)的最小值为-1,由存在实数a,使得成立知,>=-1,①当≥0时,,解得,因为g(x)是偶函数,由偶函数的对称性知,当b≤0时,不等式的解为,所以实数b的取值范围是,故选C.【考点】函数奇偶性,指数函数与幂函数图像性质,含参数不等式成立问题4.已知,.现有下列命题:①;②;③.其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【答案】A【解析】对①,,成立;对②,左边的可以取除之外的任意值,而右边的,故不成立;注:.当时成立.对③,,所以在内单调递增,且在处的切线为.作出图易知③成立法二、根据图象的对称性,可只考虑的情况. 时,,则,所以,所以③成立.标准答案选A,笔者认为有错,应该选C.题干中的应理解为函数的定义域,而不是后面三个命题中的范围,因为在它的前面是逗号.如果前是句号,则选A.【考点】1、函数的奇偶性;2、对数运算;3、函数与不等式.5.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.【考点】1、分段函数;2、函数的图象和性质;3、不等式的解集.6.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】{x|-7<x<3}【解析】设x<0,则-x>0.∵当x≥0时,f(x)=x2-4x,∴f(-x)=(-x)2-4(-x).∵f(x)是定义在R上的偶函数,∴f(-x)=f(x),∴f(x)=x2+4x(x<0),∴f(x)=由f(x)=5得或∴x=5或x=-5.观察图像可知由f(x)<5,得-5<x<5.∴由f(x+2)<5,得-5<x+2<5,∴-7<x<3.∴不等式f(x+2)<5的解集是{x|-7<x<3}.7.(5分)(2011•湖北)若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=()A.e x﹣e﹣x B.(e x+e﹣x)C.(e﹣x﹣e x)D.(e x﹣e﹣x)【答案】D【解析】根据已知中定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,根据奇函数和偶函数的性质,我们易得到关于f(x)、g(x)的另一个方程:f(﹣x)+g(﹣x)=e﹣x,解方程组即可得到g(x)的解析式.解:∵f(x)为定义在R上的偶函数∴f(﹣x)=f(x)又∵g(x)为定义在R上的奇函数g(﹣x)=﹣g(x)由f(x)+g(x)=e x,∴f(﹣x)+g(﹣x)=f(x)﹣g(x)=e﹣x,∴g(x)=(e x﹣e﹣x)故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f(x)、g(x)的另一个方程:f(﹣x)+g(﹣x)=e﹣x,是解答本题的关键.8.已知函数是定义在R上的可导函数,其导函数记为,若对于任意实数x,有,且为奇函数,则不等式的解集为()A.B.C.D.【答案】B【解析】令,所以在R上是减函数,又为奇函数,所以,所以,所以原不等式可化为,所以,故选B.【考点】导数的综合应用问题9.已知且,若,则 .【答案】【解析】由得,令,则,又由得,而函数是奇函数,∴,即,.【考点】奇函数的性质.10.已知定义在上的函数满足为奇函数,函数关于直线对称,则下列式子一定成立的是()A.B.C.D.【答案】B【解析】因为为奇函数,所以,则.又因为关于直线对称,所以关于对称,所以,则,于是8为函数的周期,所以,故选B.【考点】1、抽象函数;2、函数的奇偶性;3、函数的对称性;4、函数的周期性.11.已知函数是定义在上的偶函数,为奇函数,,当时,logx,2则在内满足方程的实数为A.B.C.D.【答案】C【解析】由f(x+1)为奇函数,可得f(x)=-f(2-x).由f(x)为偶函数可得f(x)=f(x+4),故 f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x-8)=log2(x-8).由log2(x-8)+1=0,得x的值.当9<x<10时,求得x无解,从而得出结论.【考点】函数性质的综合应用.12.已知定义域为R的函数f(x)=是奇函数,则a=________.【答案】2【解析】因为函数f(x)=是定义域为R的奇函数,所以f(-1)=-f(1),即=-,解得a=2.13.函数是上的奇函数,是上的周期为4的周期函数,已知,且,则的值为___________.【答案】2【解析】本题就是要待计算式中的每个式子计算化简,由已知,,因此,,,,,从而已知式为,∴.【考点】奇函数与周期函数的定义.14.函数,若,则()A.2018B.-2009C.2013D.-2013【答案】C【解析】因为函数为偶函数,.【考点】函数的奇偶性.15.若函数,则函数()A.是偶函数,在是增函数B.是偶函数,在是减函数C.是奇函数,在是增函数D.是奇函数,在是减函数【答案】A【解析】由定义易得,函数为奇函数.求导得:.(这里之所以在分子提出来,目的是便于将分子求导)再令,则.当时,,所以在时单调递减,,从而.所以在上是减函数,由偶函数的对称性知,在上是增函数.巧解:由定义易得,函数为奇函数.结合选项来看,函数在上必单调,故取特殊值来判断其单调性. ,,所以在上是减函数,由偶函数的对称性知,在上是增函数.选A【考点】函数的性质.16.已知函数为奇函数,且当时,,则( )A.2B.0C.1D.﹣2【答案】D【解析】.【考点】奇函数的性质及应用17.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.18.设是周期为2的奇函数,当时,,则 .【答案】【解析】因为是周期为2的奇函数,所以.【考点】函数的基本性质.19.已知一个奇函数的定义域为则=___________.【答案】【解析】奇函数的定义域要关于原点对称,于是对应于,所以.【考点】奇函数的概念.20.定义在上的偶函数满足且,则的值为()A.B.C.D.【答案】B【解析】,故函数是以为一个周期的周期函数,,故选B.【考点】1.函数的周期性;2.函数的奇偶性21.已知可以表示为一个奇函数与一个偶函数之和,若不等式对于恒成立,则实数的取值范围是____________.【答案】【解析】依题意,g(x)+h(x)= .....(1),∵g(x)是奇函数,∴g(-x)=-g(x);∵h(x)是偶函数,∴h(-x)=h(x);∴g(-x)+h(-x)="h(x)-g(x)=" (2)解(1)和(2)组成的方程组得h(x)=,g(x)=∴ag(x)+h(2x)=a +,∴a· +≥0在x∈[1,2]恒成立令t=,∴=,当x∈[1,2]时,t∈[2,4],∴原不等式化为a(t-)+(t2+)≥0在t∈[2,4]上恒成立,由不等式a(t-)+(t2+)≥0,可得a(t-)≥-(t2+),∵当t∈[2,4]时,t-t>0恒成立,∴a≥ == ,即a≥在t∈[2,4]上恒成立,令u=t-,求导得=1+>0恒成立,∴u=t-在t∈[2,4]上单调递增∴u∈[ ],令f(u)=u+,u∈[],求导得(u)=1->0在u∈[]上恒成立,∴f(u)在u∈[]上单调递增即当u=,f(u)取最小值f()= ,当u=时,可解得t=2(另一根不在t∈[2,4]内故舍去)∴当t=2时,取最小值为,即取最大值为-,∴a≥-,当t=2,x=1时取等号,∴a的最小值为-.【考点】1.函数的奇偶性;2.不等式的性质;3.导数的性质.22.已知函数(为常数)是奇函数,则实数为()A.1B.C.3D.【答案】D【解析】函数在处有意义,所以,得.【考点】函数的奇偶性.23.若函数f(x) (x∈R)是奇函数,函数g(x) (x∈R)是偶函数,则 ( )A.函数f(x)g(x)是偶函数B.函数f(x)g(x)是奇函数C.函数f(x)+g(x)是偶函数D.函数f(x)+g(x)是奇函数【答案】B【解析】令,由于函数为奇函数,,由于函数为偶函数,则,,故函数为奇函数,故选;对于函数,取,,则,此时函数为非奇非偶函数,故、选项均错误.【考点】函数的奇偶性24.已知函数是上的偶函数,若对于,都有,且当时,,则的值为A.B.C.1D.2【答案】C【解析】根据题意,由于函数是上的偶函数,若对于,都有,可知函数的周期为2,且当时,,那么则有,故可知答案为C。
必修一函数奇偶性及综合题型大全函数的奇偶性是指函数图像关于y轴或原点的对称性。
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数。
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。
判定函数奇偶性的常用方法有定义法和图象法。
在判断分段函数的奇偶性时,需要注意定义域内x取值的任意性,应分段讨论。
讨论时可依据x的范围取相应的解析式化简,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断。
在进行函数奇偶性的操作时,乘以任何系数k不改变奇偶性,不管是kf(x)还是f(kx);偶函数在加上或减去常数a时不变(相当于图象上下平移,不改变偶函数的对称性),奇函数不行;奇函数加上或减去奇函数仍为奇函数,奇函数乘以奇函数为偶函数,偶函数乘以偶函数为偶函数。
例题1、判断下列函数的奇偶性:1) f(x)=x^2+2(x>0)2) f(x)=x-1+1-x3) f(x)=3(x=0)x^2-2(x<0)例题2、定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,则f(x)为偶函数;y=f(x)的奇偶性为偶函数。
又如定义在(-1,1)上的函数f(x),对任意x,y∈(-1,1)都有f(x)+f(y)=f((x+y)/(1-xy)),则f(x)为奇函数。
变式1、判断下列函数的奇偶性:1) f(x)=2x+x(x<0)。
f(x)=9-x。
f(x)=x-1)(x>0)x-x(x<0)变式2、设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则f(x)g(x)是奇函数。
函数的奇偶性是函数的重要性质,常与函数的单调性及周期性相结合命题,以选择题或填空题的形式考查,难度稍大,为中高档题。
高考对函数奇偶性考查主要有以下四个命题角度:1) 求函数值;2) 求函数解析式;3) 已知单调性求参数的值;4) 作函数图象或判断单调性。
高中数学奇偶性训练题(带答案)高中数学奇偶性训练题(带答案)1.下列命题中,真命题是()A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在(-3,0)上为减函数D.函数y=ax2+c(ac0)是偶函数,且在(0,2)上为增函数解析:选C.选项A中,y=1x在定义域内不具有单调性;B 中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac0)在(0,2)上为减函数,故选C.2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为() A.10 B.-10C.-15 D.15解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.2f(-6)+f(-3)=-2f(6)-f(3)=-28+1=-15.3.f(x)=x3+1x的图象关于()A.原点对称 B.y轴对称C.y=x对称 D.y=-x对称解析:选A.x0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.解析:∵f(x)是[3-a,5]上的奇函数,区间[3-a,5]关于原点对称,3-a=-5,a=8.答案:81.函数f(x)=x的奇偶性为()A.奇函数 B.偶函数C.既是奇函数又是偶函数 D.非奇非偶函数解析:选D.定义域为{x|x0},不关于原点对称.2.下列函数为偶函数的是()A.f(x)=|x|+x B.f(x)=x2+1xC.f(x)=x2+x D.f(x)=|x|x2解析:选D.只有D符合偶函数定义.3.设f(x)是R上的任意函数,则下列叙述正确的是() A.f(x)f(-x)是奇函数B.f(x)|f(-x)|是奇函数C.f(x)-f(-x)是偶函数D.f(x)+f(-x)是偶函数解析:选D.设F(x)=f(x)f(-x)则F(-x)=F(x)为偶函数.设G(x)=f(x)|f(-x)|,则G(-x)=f(-x)|f(x)|.G(x)与G(-x)关系不定.设M(x)=f(x)-f(-x),M(-x)=f(-x)-f(x)=-M(x)为奇函数.设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).N(x)为偶函数.4.已知函数f(x)=ax2+bx+c(a0)是偶函数,那么g(x)=ax3+bx2+cx()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-xf(-x)=-xf(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.5.奇函数y=f(x)(xR)的图象必过点()A.(a,f(-a)) B.(-a,f(a))C.(-a,-f(a)) D.(a,f(1a))解析:选C.∵f(x)是奇函数,f(-a)=-f(a),即自变量取-a时,函数值为-f(a),故图象必过点(-a,-f(a)).6.f(x)为偶函数,且当x0时,f(x)2,则当x0时()A.f(x) B.f(x)2C.f(x)-2 D.f(x)R解析:选B.可画f(x)的大致图象易知当x0时,有f(x)2.故选B.7.若函数f(x)=(x+1)(x-a)为偶函数,则a=________. 解析:f(x)=x2+(1-a)x-a为偶函数,1-a=0,a=1.答案:18.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(xR)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.答案:③④9.①f(x)=x2(x2+2);②f(x)=x|x|;③f(x)=3x+x;④f(x)=1-x2x.以上函数中的奇函数是________.解析:(1)∵xR,-xR,又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),f(x)为偶函数.(2)∵xR,-xR,又∵f(-x)=-x|-x|=-x|x|=-f(x),f(x)为奇函数.(3)∵定义域为[0,+),不关于原点对称,f(x)为非奇非偶函数.(4)f(x)的定义域为[-1,0)(0,1]即有-11且x0,则-11且-x0,又∵f(-x)=1--x2-x=-1-x2x=-f(x).f(x)为奇函数.答案:②④10.判断下列函数的奇偶性:(1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+xx<0-x2+x x>0.解:(1)由1+x1-x0,得定义域为[-1,1),关于原点不对称,f(x)为非奇非偶函数.(2)当x<0时,-x>0,则f(-x)=-(-x)2-x=-(-x2+x)=-f(x),当x>0时,-x<0,则f(-x)=(-x)2-x=-(-x2+x)=-f(x),综上所述,对任意的x(-,0)(0,+),都有f(-x)=-f(x),f(x)为奇函数.11.判断函数f(x)=1-x2|x+2|-2的奇偶性.解:由1-x20得-11.由|x+2|-20得x0且x-4.定义域为[-1,0)(0,1],关于原点对称.∵x[-1,0)(0,1]时,x+2>0,f(x)=1-x2|x+2|-2=1-x2x,f(-x)=1--x2-x=-1-x2x=-f(x),f(x)=1-x2|x+2|-2是奇函数.12.若函数f(x)的定义域是R,且对任意x,yR,都有f(x +y)=f(x)+f(y)成立.试判断f(x)的奇偶性.解:在f(x+y)=f(x)+f(y)中,令x=y=0,得f(0+0)=f(0)+f(0),f(0)=0.再令y=-x,则f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0,f(-x)=-f(x),故f(x)为奇函数.。
函数的奇偶性之高考真题48道一、具体函数的奇偶性1.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =e x C.y =cos x D.y =e x -e -x2.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =|sin x | C.y =cos xD.y =e x -e -x3.(2014•广东)下列函数为奇函数的是(A )A.y =2x - 12xB.y =x 3sin xC.y =2cos x +1D.y =x 2+2x4.(2015•北京)下列函数中为偶函数的是(B )A.y =x 2sin xB.y =x 2cos xC.y =|lnx |D.y =2-x5.(2019•全国)下列函数中,为偶函数的是(C )A.y =(x +1)2B.y =2-xC.y =|sin x |D.y =lg (x +1)+lg (x -1)6.(2018•上海)下列函数中,为偶函数的是(A )A.y =x -2B.y =x13C.y =x -12D.y =x 37.(2012•广东)下列函数为偶函数的是(D )A.y =sin xB.y =x 3C.y =e xD.y =lnx 2+18.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y =x +sin2xB.y =x 2-cos xC.y =2x + 12xD.y =x 2+sin x 9.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y = 1+x 2B.y =x + 1xC.y =2x + 12xD.y =x +e x 二、抽象函数的奇偶性10.(2014•新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C )A.f (x )∙g (x )是偶函数B.|f (x )|∙g (x )是奇函数C.f (x )∙|g (x )|是奇函数D.|f (x )∙g (x )|是奇函数三、已知奇偶性求参数11.(2020•上海)若函数y =a ∙3x + 13x为偶函数,则a =1.12.(2009•重庆)若f (x )=a + 12x +1是奇函数,则a =- 12.13.(2019•北京)设函数f (x )=e x +ae -x (a 为常数).若f (x )为奇函数,则a =-1;若f (x )是R 上的增函数,则a 的取值范围是(-∞,0].14.(2014•湖南)若f (x )=ln (e 3x+1)+ax 是偶函数,则a =- 32.15.(2015•新课标Ⅰ)若函数f (x )=xln (x +a +x 2)为偶函数,则a =1.16.(2015•上海)已知a 是实数,函数f (x )= x 2+ax +4x是奇函数,求f (x )在(0,+∞)上的最小值及取到最小值时x 的值.四、奇函数性质的应用之中值定理17.(1990•全国)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于(A )A.-26B.-18C.-10D.1018.(2013•重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg 2))=(C )A.-5 B.-1C.3D.419.(2018•新课标Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=-2.20.(2012•上海)已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=3.五、奇函数性质的应用之分段函数21.(2019•新课标Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=(D )A.e -x -1B.e -x +1C.-e -x -1D.-e -x +122.(2019•新课标Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3.六、偶函数性质应用之比较大小23.(2019•新课标Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则(C )A.f (log 3 14)>f (2- 32)>f (2- 23)B.f (log 3 14)>f (2- 23)>f (2- 32)C.f (2- 32)>f (2- 23)>f (log 3 14)D.f (2- 23)>f (2- 32)>f (log 3 14)七、函数性质综合24.(2018•新课标Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C )A.-50B.0C.2D.50八、奇偶性与单调性综合判断25.(2020•新课标Ⅱ)设函数f (x )=x 3- 1x 3,则f (x )(A )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减26.(2020•新课标Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )(D )A.是偶函数,且在( 12,+∞)单调递增B.是奇函数,且在(- 12, 12)单调递减C.是偶函数,且在(-∞,- 12)单调递增D.是奇函数,且在(-∞,- 12)单调递减27.(2015•湖南)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是(A )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数28.(2014•湖南)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(A )A.f (x )= 1x2B.f (x )=x 2+1C.f (x )=x 3D.f (x )=2-x 29.(2017•北京)已知函数f (x )=3x -( 13)x ,则f (x )(A )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数30.(2005•山东)下列函数既是奇函数,又在区间[-1,1]上单调递减的是(D )A.f (x )=sin xB.f (x )=-|x +1|C.f (x )= 12(a x -a -x )D.f (x )=ln 2-x 2+x31.(2013•北京)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(D )A.y =1x B.y =e -x C.y =lg |x | D.y =-x 2+132.(2012•陕西)下列函数中,既是奇函数又是增函数的为(D )A.y =x +1B.y =-x 2C.y =1xD.y =x |x |33.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(B )A.y =cos2x ,x ∈RB.y =log 2|x |,x ∈R 且x ≠0C.y = e x -e -x2,x ∈R D.y =x 3+1,x ∈R34.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(B )A.y =2x 3B.y =|x |+1C.y =-x 2+4D.y =2-|x |九、奇偶函数图象的对称性35.(2009•黑龙江)函数y =log 2 2-x 2+x的图象(B )A.关于直线y =-x 对称B.关于原点对称C.关于y 轴对称D.关于直线y =x 对称36.(2010•重庆)函数f (x )= 4x+12x 的图象(D )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称37.(2011•上海)f (x )= 4x-12x的图象关于(A )A.原点对称B.直线y =x 对称C.直线y =-x 对称D.y 轴对称38.(2008•全国卷Ⅱ)函数f (x )= 1x-x 的图象关于(C )A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称十、奇函数性质应用之解不等式39.(2020•山东)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是(D )A.[-1,1]∪ 3,+∞)B.[-3,-1]∪ 0,1]C.[-1,0]∪ 1,+∞)D.[-1,0]∪ 1,3]40.(2015•山东)若函数f (x )= 2x+12x -a是奇函数,则使f (x )>3成立的x 的取值范围为(C )A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)十一、奇函数性质比较大小41.(2017•天津)已知奇函数f (x )在R 上是增函数.若a =-f (log 2 15),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为(C )A.a <b <cB.b <a <cC.c <b <aD.c <a <b42.(2009•山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x )且在区间[0,2]上是增函数,则(A )A.f (-25)<f (80)<f (11)B.f (80)<f (11)<f (-25)C.f (11)<f (80)<f (-25)D.f (-25)<f (11)<f (80)十二、偶函数性质比较大小43.(2015•天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为(C )A.a <b <cB.a <c <bC.c <a <bD.c <b <a44.(2008•天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a=f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则(A )A.b <a <cB.c <b <aC.b <c <aD.a <b <c 解:b =f (-cos 5π7)=f (cos 2π7),c =f (-tan 5π7)=f (tan 2π7)因为 π4< 2π7< π2,又由函数在区间[0,+∞)上是增函数,所以0<cos 2π7<sin 2π7<1<tan 2π7,所以b <a <c ,故选:A .十三、奇偶性综合之比较大小45.(2008•安徽)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有(D )A.f (2)<f (3)<g (0)B.g (0)<f (3)<f (2)C.f (2)<g (0)<f (3)D.g (0)<f (2)<f (3)十四、偶函数性质应用之解不等式46.(2016•天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f (2|a -1|)>f (- 2),则a 的取值范围是( 12, 32).47.(2014•新课标Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是(-1,3).48.(2015•新课标Ⅱ)设函数f (x )=ln (1+|x |)- 11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是(B )A.(-∞, 13)∪(1,+∞)B.( 13,1)C.(- 13, 13)D.(-∞,- 13)∪( 13,+∞)。