线性代数复习讲义
- 格式:doc
- 大小:216.50 KB
- 文档页数:4
高数线性代数第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;)定义:符号叫二阶行列所以二阶行列式的值等于两个例如)符号叫三阶行列式,它也例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9 =0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,解因为所以8-3a=0,时例2当x取何值时,解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
《线性代数》考研辅导讲义4 第四部分 线性方程组一.线性方程组的四种表示形式1.非齐次线性方程组(1)一般形式:11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(2)矩阵形式:令1112111212222212,,n n m m mn n m a a a x b a a a x b A x b a a a x b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则11m n n m A x b ⨯⨯⨯=,而11121121222212(|)_n nm m mnm a a a b a a a b B A b a a a b ⎛⎫⎪ ⎪== ⎪⎪⎝⎭增广矩阵(3)向量形式:令12(,,,)n A ααα= ,得向量形式1122n n x x x bααα+++= .其中()12,,,,1,2,,Tj j j mj a a a j n α== 为A 的列向量组.(4)内积形式:令12T T T m A ααα⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭ ,则内积形式1122T T T mm x b x b x b ααα⎧=⎪=⎪⎨⎪⎪=⎩ .其中12(,,,),1,2,,T i i i in a a a i m α== 为A 的行向量组.2.齐次线性方程组(1)一般形式:111122121122221122000n n n nm m mn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(2)矩阵形式:110m n n m A x ⨯⨯⨯=(3)向量形式:11220n n x x x ααα+++=(4)内积形式:12000T TT mx x x ααα⎧=⎪=⎪⎨⎪⎪=⎩ 二.线性方程组解的性质 1.110m n n m A x ⨯⨯⨯=解的性质(1)若12,ξξ为0Ax =的解,则12ξξ+也为0Ax =的解.(2)若ξ为0Ax =的解,则k ξ也为0Ax =的解.故{|0}S x Ax ==是n R 的一个子空间,其基础解系构成子空间的一个基.2.11m n n m A x b ⨯⨯⨯=解的性质(1)设12,ηη为Ax b =的解,则12ηη-为其导出组0Ax =的解.(2)设η为Ax b =的解,ξ为0Ax =的解,则ξη+为Ax b =的解.【注意】若12,ηη为Ax b =的解,则121,(1)k k ηηη+≠都不是Ax b =的解,故{|}S x Ax b ==不是nR 的一个子空间. 三.线性方程组解的理论及解的结构 1.110m n n m A x ⨯⨯⨯=解的理论及解的结构定理1110m n n m A x ⨯⨯⨯=至少有一个零解.(1)110m n n m A x ⨯⨯⨯=只有零解()R A n ⇔=(未知量的个数).不存在基础解系;(2)110m n n m A x ⨯⨯⨯=有非零解()R A r n ⇔=<.其基础解系含n r -个线性无关的解向量,设为12,,,n r ξξξ- ,则110m n n m A x ⨯⨯⨯=的通解为1122n r n r x k k k ξξξ--=+++其中12,,,n r k k k - 为任意常数; (3)(Crammer 定理)110n n n n A x ⨯⨯⨯= 只有零解0A ⇔≠.2.11m n n m A x b ⨯⨯⨯=解的理论及解的结构定理2 11m n n m A x b ⨯⨯⨯=可能有解.(1)11m n n m A x b ⨯⨯⨯=有解()()R A R B ⇔=;(2)有唯一解()()R A R B n ⇔==;(3)有无穷多解()()R A R B r n⇔==<.设其导出组的基础解系为12,,,n r ξξξ- ,η为11m n n m A x b ⨯⨯⨯=的一个特解,则11m n n m A x b ⨯⨯⨯=的通解为1122n r n r x k k k ξξξη--=++++其中12,,,n r k k k - 为任意常数; (4) (Crammer 定理)11n n n n A x b ⨯⨯⨯=有唯一解0A ⇔≠.四.两个线性方程组解之间的关系设方程组(1)的解集合为M ,方程组(2)的解集合为N ,则 1. M N =⇔方程组(1)与方程组(2)同解; 2. M N ⇔ 方程组(1)与方程组(2)的公共解; 3.M N ⊂⇔方程组(1)的解是方程组(2)的解.五.一个非常有用的结论 1. ()()m s s n m n A B O R A R B s ⨯⨯⨯=⇒+≤;2.m s s n m n A B O B ⨯⨯⨯=⇔的列向量是110m s s m A x ⨯⨯⨯=的解向量.典型例题一.解的概念、性质、理论、结构的基本题例1 设1231233,2,223A p b Ax b t ⎛⎫⎛⎫⎪ ⎪=+==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭无解,则t 与p 满足 .解 由12311231(|)233201302230021B A b p p t t p ⎛⎫⎛⎫⎪ ⎪==+→--⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ,得202t p t p -=⇒=.例2 设三平面0(1,2,3)i i i i a x b y c z d i +++==重合,则齐次线性方程组0(1,2,3)i i i a x b y c z i ++==的解空间的维数等于 2 .解111222333a b c a b c a b c ⎛⎫ ⎪⎪ ⎪⎝⎭的秩等于1. 例3 设A 为n 阶实矩阵,则以下命题成立的是( C ).(A)若0Ax =有解时0T A Ax =也有解,则A 必可逆;(B)若0T A Ax =有解时0Ax =也有解, 则A 必可逆;(C) 0T A Ax =的解必是0Ax =的解; (D)0T A Ax =的解与0Ax =的解无任何关系.解0Ax =与0T A Ax =同解.例4 设541234(,,,)A αααα⨯=,已知12(1,1,1,1),(0,1,0,1)T T ηη==是0Ax =的基础解系,则( D ). (A) 13,αα线性无关; (B) 24,αα线性无关; (C)1α不能被34,αα线性表示;(D)4α能被23,αα线性表示.解 由1η知: 12340αααα+++=;由2η知: 240αα+=,则4α能被2α线性表示,所以4α能被23,αα线性表示.例5 设12,ββ是0Ax b =≠的两个不同的解, 12,αα是0Ax =的基础解系, 12,k k R ∈,则Ax b =的通解必是( B )(A) 1211212()2k k ββααα-+++; (B) 1211212()2k k ββααα++-+; (C) 1211212()2k k ββαββ-+++;(D)1211212()2k k ββαββ++++.例6 设123,,ααα是四元非齐次线性方程组Ax b=的三个解向量,且()3R A =,123(1,2,3,4),(0,1,2,3)T T ααα=+=,则Ax b =的通解是( C ).(A)11213141c ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (B) 10213243c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (C) 12233445c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (D) 13243546c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭二.含参数的线性方程组解的讨论例7 当λ为何值时,方程组12312312321,2,4551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩无解,有唯一解,无穷多解?并在有无穷多解时求方程组的通解.解 方法一:一般情形.13211121(|)11211245515541c c B A b λλλλ↔--⎛⎫⎛⎫⎪ ⎪==-−−−→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭121012300549rλλλλ-⎛⎫ ⎪−−→-+ ⎪ ⎪+⎝⎭(1)方程组有唯一解104()()3,15405R A R B λλλλ-≠⎧⇔==⇔⇒≠-≠⎨+≠⎩;(2)当45λ=-时,()2()3R A R B =≠=,方程组无解;(3)当1λ=时,1121(|)00110000rB A b ---⎛⎫⎪=−−→ ⎪ ⎪⎝⎭,方程组的解13211x x x =⎧⎨=+⎩,令2x k =,则方程组的通解(0,1,1)(1,0,1),TT x k k =+为任意常数.方法二:特殊情形. (54)(1)A λλ=+-.(1)当4,15λλ≠-≠时,方程组有唯一解;(2)当45λ=-时,()2()3R A R B =≠=,方程组无解;(3)当1λ=时,1001(|)01110000rB A b ⎛⎫ ⎪=→-- ⎪ ⎪⎝⎭,()()23R A R B ==<,方程组有无穷多解,且通解为(0,1,1)(1,1,0),TT x k k =+-为任意常数.三.与解的结构相关问题 例8 若n 阶矩阵11(,,,)n n A ααα-= 的前1n -个列向量线性相关,后1n -个列向量线性无关,12n βααα=+++ .证明:(1)Ax β=必有无穷多解;(2)若12(,,,)Tn k k k 是Ax β=的任一解,则1nk =.证 (1)2,,n αα 线性无关,则21,,n αα- 线性无关,又121,,,n ααα- 线性相关,所以1α可由21,,n αα- 线性表示,则()1R A n =-.因为12n βααα=+++ ,则()()1R B R A n n ==-<,所以Ax β=必有无穷多解.(2)121,,,n ααα- 线性相关,存在一组不全为零的数121,,,n λλλ- ,使得1122110n n λαλαλα--+++= ,即11221100n n n λαλαλαα--++++⋅= ,又()1R A n =-,则121(,,,,0)Tn λλλ- 为0Ax =的基础解系.因为12n βααα=+++ ,则(1,1,,1)T 是Ax β=的一个特解,故Ax β=的通解为111,101n x c c R λλ-⎛⎫⎛⎫⎪ ⎪⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 若12(,,,)Tn k k k 是Ax β=的解,则1nk =.例9 设A 为(1)m m -⨯矩阵, j D 是去掉A 的第j 列所得1m -阶矩阵的行列式,证明:(1)向量112(,,,(1))m T m D D D +-- 是0Ax =的解向量;(2)当12,,,m D D D 不全为零时,112(,,,(1))m T m D D D +-- 是0Ax =的一个基础解系.证 令1211121(1)1(1)2(1)mT m m m m m m b b b a a a b B A a a a ---⎛⎫ ⎪⎛⎫ ⎪== ⎪ ⎪⎝⎭⎪⎪⎝⎭,则(1,2,,)j D j m = 分别为B中第一行元素的余子式,而112,,,(1)m m D D D +-- 分别为B中第一行元素的代数余子式,由行列式按行(或列)展开定理,有11122()(1)0,1,2,,m i i im m a D a D a D i m ++-++-== ,则112(,,,(1))m T m D D D +-- 是0Ax =的解向量.(2) 当12,,,m D D D 不全为零时,则A 至少有一个1m -子式不为零,所以()1R A m =-,从而Ax =的基础解系含一个解向量,又112(,,,(1))0m T m D D D +--≠ ,故112(,,,(1))m T m D D D +-- 是0Ax =的一个基础解系.例10 设非齐次线性方程组Ax b =,其中A 为m n ⨯矩阵, ()(|)R A R A b r ==,求由Ax b=的所有解向量组成的向量组的一个极大无关组及该向量组的秩.解 要点:设0Ax=的一个基础解系为12,,,n r ξξξ- ,Ax b =的一个特解为η,则Ax b =的所有解向量组成的向量组的一个极大无关组为12,,,,,n r ηηξηξηξ-+++ 该向量组的秩为1n r -+. 例11 设A 为m n ⨯矩阵,证明:Ax B =有解的充分必要条件是对0T A y =的任一解0y 都有00T B y =.证 必要性:设0Ax B =,则000000()()00T T T T TB y Ax y x A y x ====;充分性: 对T A y =的任一解y 都有00T B y =,则0T A y =与0,0TT A y B y ⎧=⎪⎨=⎪⎩同解,所以()()(|)T TT A R A R R A R A B B ⎛⎫=⇒= ⎪⎝⎭,即Ax B =有解.四.两个线性方程组的公共解的问题例11 (1.求公共解的方法之一:已知线性方程组,Ax Bx αβ==,则它们的全部公共解即为线性方程组,Ax Bx αβ=⎧⎨=⎩的解.)设两个四元齐次线性方程组:12240,()0x x x x +=⎧I ⎨-=⎩与1232340,()0x x x x x x -+=⎧II ⎨-+=⎩问方程组()I 与()II 是否有非零的公共解?若有,求出所有公共的非零解;若没有,说明理由.解 讨论方程组12241232340,0,0,0x x x x x x x x x x +=⎧⎪-=⎪⎨-+=⎪⎪-+=⎩是否有非零解.1100100101010101111000120111000r A ⎛⎫⎛⎫⎪ ⎪--⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭,因为()34R A =<,所以方程组有非零解,即方程组()I 与()II 有公共的非零解,且11,021x k k -⎛⎫ ⎪ ⎪=≠ ⎪ ⎪⎝⎭为所有公共的非零解.(2. 求公共解的方法之二:已知线性方程组Ax α=的通解1122x k k ξξη=++和线性方程组Bx β=,则它们的全部公共解即为线性方程组1122,x k k Bx ξξηβ=++⎧⎨=⎩的解.其求法是:解含12,k k 是未知变量的线性方程组1122()B k k ξξηβ++=,得12,k k ,则所求的全部公共解为1122x k k ξξη=++.3. 求公共解的方法之三: 已知线性方程组Ax α=的通解11221x k k ξξη=++和线性方程组Bx β=的通解11222x l l γγη=++,则它们的全部公共解即为线性方程组1122111222,x k k x l l ξξηγγη=++⎧⎨=++⎩的解. 其求法是:解含12,k k 及12,l l 是未知变量的线性方程组1122111222k k l l ξξηγγη++=++得12,k k (或12,l l ),则所求的全部公共解为11221x k k ξξη=++(或11222x l l γγη=++).)五.线性方程组解的应用 例12 已知三平面123:,:,:x y z y z x z x y πγβπαγπβα=+=+=+,证明:它们至少相交于一直线22221αβγαβγ⇔+++=.证 显然123,,πππ过坐标原点, 它们至少相交于一直线⇔齐次线性方程组0,0,0x y z x y z x y z γβγαβα-++=⎧⎪-+=⎨⎪+-=⎩有非零解,则1101γβγαβα--=-,即22221αβγαβγ+++=. 例13 证明:如果非齐次线性方程组11112211211222221122,,n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 有解,则向量12(,,,)T n b b b β= 与齐次线性方程组1112121121222211220,0,0m m m mn n nm m a y a y a y a y a y a y a y a y a y +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的解空间正交. 证 令12(,,,),(1,2,,)T j j j mj a a a j n α== ,非齐次线性方程组1122n n x x x αααβ+++=有解,则β可由12,,,n ααα 线性表示.令12(,,,)T m y y y y = ,则齐次线性方程组可表示为120,0,0,T TT ny y y ααα⎧=⎪=⎪⎨⎪⎪=⎩ 即12,,,n ααα 与齐次线性方程组的解正交,从而11221[,]()()0nTT n n i i i y x x x y x y βαααα==+++==∑ ,即β与齐次线性方程组的任一解正交,则β与齐次线性方程组的解空间正交.。
宋浩线代辅导讲义一、引言宋浩线代辅导讲义是为了帮助学生更好地理解和掌握线性代数的基本概念和方法而编写的。
线性代数是数学中非常重要的一个分支,它在各个领域都有广泛的应用,如物理学、工程学、计算机科学等。
本讲义将从基础概念开始介绍,并逐步深入,帮助学生建立起对线性代数的系统性理解。
二、线性方程组与矩阵2.1 线性方程组2.1.1 定义与表示定义:线性方程组是由一系列线性等式组成的方程组。
例如,下面是一个包含三个未知数x、y、z的线性方程组:2x + y - z = 4x - y + 3z = -13x + 2y + z = 72.1.2 解的存在唯一性对于一个线性方程组,它可能有三种解的情况:•无解:当方程组中存在矛盾等式时,即出现了0=1这样不可能成立的等式。
•有唯一解:当方程组中的方程数量等于未知数的数量,并且方程组的系数矩阵满秩时,方程组有唯一解。
•有无穷多解:当方程组中的方程数量小于未知数的数量,并且方程组的系数矩阵不满秩时,方程组有无穷多解。
2.2 矩阵与向量2.2.1 矩阵的定义与运算定义:矩阵是一个按照长方阵列排列的数表。
一个m×n的矩阵有m行n列。
例如,下面是一个3×3的矩阵:1 2 34 5 67 8 9矩阵可以进行加法、减法和乘法等运算。
其中,加法和减法要求两个矩阵具有相同的行数和列数,乘法则需要满足第一个矩阵的列数等于第二个矩阵的行数。
2.2.2 向量与线性组合定义:向量是一种特殊类型的矩阵,它只有一列。
向量可以表示为:v = [v1, v2, ..., vn]其中vi表示向量v中第i个元素。
线性组合是指将若干个向量按照一定的权重进行加权求和的操作。
例如,对于向量v1和v2,它们的线性组合可以表示为:c1 * v1 + c2 * v2其中c1和c2为常数。
2.3 矩阵的转置与逆2.3.1 矩阵的转置定义:矩阵的转置是将矩阵的行与列互换得到的新矩阵。
例如,对于一个3×2的矩阵A,其转置矩阵记为A^T,可以表示为:A^T = [a11, a21, a31;a12, a22, a32]2.3.2 矩阵的逆定义:对于一个n×n的方阵A,如果存在一个n×n的方阵B,使得AB=BA=I(单位矩阵),则称B为A的逆矩阵。
线性代数绪论一、线性代数研究的核心问题代数——用字母代替数;代数学——关于字母运算的学说,研究的中心内容:解方程。
初等代数(用字母代替数):)1(一元一次方程)2(行列式解法消元法四元一次方程组三元一次方程组二元一次方程组无一般根式解一元五次及更高次方程根式解或求根公式一元四次方程一元三次方程一元二次方程⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−→−⎪⎭⎪⎬⎫)2()1(问题一:如何求解含更多个未知数的一次方程组?1.Varga ,1962年提到在Bettis 原子能实验室已经解了108000个未知数的方程组;2.70年代末,我国“全国天文大地网首次整体平差计算”课题,核心部分是求解一个含16万个未知数31万个方程式的矛盾方程组。
一般地,如何求解含n 个未知数m 个一次方程的方程组:⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111其中未知数之间的关系由加法与数乘来实现,称这种关系为线性关系,称相应的方程组为线性方程组。
线性代数如何求解线性方程组发展−−→−线性代数研究的核心问题——求解线性方程组。
字母——代替代数量(如行列式、向量、矩阵、张量等)。
线性代数定义——研究具有线性关系的代数量的一门学科。
问题二:一元高次方程及多元高次方程组(简称为代数方程(组))的有关问题,如:根的个数、根的性质(实根、虚根、重根等)、根的分布(上界与下界、分布区域等)、根的近似计算、公共根等。
研究代数方程(组)−−→−发展多项式代数⎭⎪⎬⎫→→→研究代数结构抽象代数研究代数方程(组)多项式代数等研究线性方程组的求解线性代数高等代数二、线性代数的重要性1.数学基础课之一数学系: 数学分析(252学时)高等代数(128学时)空间解析几何(48学时)工科类: 高等数学(192学时)线性代数(40学时)空间解析几何(高等数学含14学时)2.工程应用的基础1)线性模型——利用线性代数的理论直接处理;2)非线性模型——利用一系列的线性运算逐步完成;3)高维问题——利用线性代数中的概念和方法,书写上十分简洁,理论上高度概括,容易抓住问题的本质;4)计算机为处理线性代数问题提供了强有力的工具。
《线性代数》部分讲义(Word版)GCT 线性代数辅导第一讲行列式一. 行列式的定义● 一阶行列式定义为1111a a =● 二阶行列式定义为2112221122211211a a a a a a a a -=● 在n 阶行列式中,划去元素ij a 所在的第i 行第j 列,剩余元素构成1-n 阶行列式,称为元素ij a 的余子式,记作ij M .● 令ij j i ij M A +-=)1(,称ij A 为ij a 的代数余子式.●n 阶行列式定义为n n nnn n nn A a A a A a a a a a a a a a a 1112121111212222111211+++=.二. 行列式的性质1.行列式中行列互换,其值不变.=333231232221131211a a a a a a a a a 332313322212312111a a a a a a a a a 2.行列式中两行对换,其值变号.=333231232221131211a a a a a a a a a –333231131211232221a a a a a a a a a 3.行列式中如果某行元素有公因子,可以将公因子提到行列式外.=333231232221131211a a a ka ka ka a a a 333231232221131211a a a a a a a a a k4.行列式中如果有一行每个元素都由两个数之和组成,行列式可以拆成两个行列式的和.=+++333231232322222121131211a a a b a b a b a a a a +333231232221131211a a a a a a a a a 333231232221131211a a a b b b a a a 由以上四条性质,还能推出下面几条性质5.行列式中如果有两行元素对应相等,则行列式的值为0.6.行列式中如果有两行元素对应成比例,则行列式的值为0.7.行列式中如果有一行元素全为0,则行列式的值为0.8.行列式中某行元素的k 倍加到另一行,其值不变.=333231232221131211a a a a a a a a a 133312321131232221131211ka a ka a ka a a a a a a a +++三.n 阶行列式展开性质nnn n nn a a a a a a a a a D212222111211= 等于它的任意一行的各元素与其对应代数余子式的乘积的和,即in in i i i i A a A a A a D +++= 2211 n i ,,2,1 = ● 按列展开定理nj nj j j j j A a A a A a D +++= 2211 n j ,,2,1 =●n 阶行列式D 的某一行的各元素与另一行对应元素的代数余子式的乘积的和等于零.即02211=+++jn in j i j i A a A a A a j i ≠ ● 按列展开的性质02211=+++nj ni j i j i A a A a A a j i ≠四.特殊行列式●nn nna a a a a a22112211=;()11212)1(11211n n n n n n n na a a a a a ----=● 上(下)三角行列式和上面的对角行列式的结果相同.五.计算行列式● 消零降阶法.● 消为特殊行列式(上(下)三角行列式或和对角行列式)..典型习题1. =3D xx x 121332=()。
宋浩线代辅导讲义1. 引言线性代数是数学中的一个重要分支,研究向量空间及其上的线性变换和线性方程组等内容。
它在许多领域中都有广泛的应用,包括物理学、计算机科学、经济学等。
本讲义旨在帮助读者掌握宋浩线代课程的关键概念和技巧,提供辅导和指导。
2. 向量空间2.1 向量的定义向量是一个有大小和方向的量,可以用箭头表示。
在线性代数中,向量通常用列向量表示。
例如,一个二维向量可以表示为:[x y]其中x和y分别表示向量在x轴和y轴上的分量。
2.2 向量的运算在向量空间中,我们可以进行多种运算,包括加法、乘法等。
2.2.1 向量加法给定两个向量u和v,它们的加法定义为:u+v=[u1+v1 u2+v2]其中u1和v1分别表示u和v在第一个维度上的分量,u2和v2分别表示u和v在第二个维度上的分量。
2.2.2 向量乘法给定一个向量u和一个标量k,它们的乘法定义为:ku=[ku1 ku2]其中k是一个实数。
2.3 向量空间的性质向量空间具有以下性质:•加法交换律:u+v=v+u•加法结合律:(u+v)+w=u+(v+w)•零向量存在性:存在一个零向量0,使得对于任意向量x,都有x+0=x•加法逆元存在性:对于任意向量x,存在一个加法逆元−x,使得x+(−x)= 03. 线性变换3.1 线性变换的定义线性变换是指保持向量空间中的加法和数乘运算的映射。
给定两个向量空间V和W,一个从V到W的线性变换将向量v∈V映射为一个向量w∈W。
3.2 线性变换的表示线性变换可以用矩阵表示。
给定一个线性变换T:V→W,我们可以找到一个矩阵A,使得对于任意向量v∈V,有:T(v)=Av其中A称为线性变换的矩阵表示。
3.3 线性变换的特征线性变换具有以下特征:•对于任意向量u,v∈V,有T(u+v)=T(u)+T(v)•对于任意标量k和向量u∈V,有T(ku)=kT(u)4. 线性方程组4.1 线性方程组的定义线性方程组是一组线性方程的集合,其中每个方程都是关于未知数的一次多项式,并且未知数之间的系数是常数。
【最新整理,下载后即可编辑】考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲 基本概念1.线性方程组的基本概念线性方程组的一般形式为: a 11x 1+a 12x 2+…+a 1n x n =b 1,a 21x 1+a 22x 2+…+a 2n x n =b 2,… … … …a m1x 1+a m2x 2+…+a mn x n =b m ,其中未知数的个数n 和方程式的个数m 不必相等.线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足:当每个方程中的未知数x i 都用k i 替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组.n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m ⨯n 个数排列成的一个m 行n 列的表格,两边界以圆括号或方括号,就成为一个m ⨯n 型矩阵.例如2 -1 0 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a 11 a 12 … a 1n a 11 a 12 … a 1nb 1A = a 21 a 22 … a 2n 和(A |)= a 21 a 22 … a 2n b 2… … … … … … …a m1 a m2 … a mn a m1 a m2 … a mnb m为其系数矩阵和增广矩阵. 增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i 行第j 列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A 和B 相等(记作A =B ),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n 个数构成的有序数组称为一个n 维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a 1,a 2,⋯ ,a n 的向量可表示成a 1(a 1,a 2,⋯ ,a n )或 a 2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列是一个m 维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为1,2,⋯ ,n 时(它们都是表示为列的形式!)可记A =(1,2,⋯ ,n ).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m ⨯n 的矩阵A 和B 可以相加(减),得到的和(差)仍是m ⨯n 矩阵,记作A +B (A -B ),法则为对应元素相加(减).数乘: 一个m ⨯n 的矩阵A 与一个数c 可以相乘,乘积仍为m ⨯n 的矩阵,记作c A ,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:① 加法交换律: A +B =B +A .② 加法结合律: (A +B )+C =A +(B +C ).③ 加乘分配律: c(A +B )=c A +c B .(c+d)A =c A +d A .④ 数乘结合律: c(d)A =(cd)A .⑤ c A =0⇔ c=0 或A =0.转置:把一个m ⨯n 的矩阵A 行和列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T (或A ').有以下规律:① (A T )T = A .② (A +B )T =A T +B T .③ (c A )T =c A T .转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T 表示行向量,当是行向量时, T 表示列向量.向量组的线性组合:设1,2,…,s 是一组n 维向量, c 1,c 2,…,c s 是一组数,则称c 11+c 22+…+c s s 为1,2,…,s 的(以c 1,c 2,…,c s 为系数的)线性组合.n 维向量组的线性组合也是n 维向量.(3) n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n 阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n 阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E (或I ).数量矩阵: 对角线上的的元素都等于一个常数c 的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式:a 11 a 12 … a 1na 21 a 22 … a 2n… … … .a n1 a n2 … a nn 如果行列式的列向量组为1,2, … ,n ,则此行列式可表示为|1,2, … ,n |.意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 .a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 0023********,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(nn n nj j j j j j j j j a a a τ-∑ … … …a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如 |,1+2|=|,1|+|,2|.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦ 如果A 与B 都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |)作初等行变换,使得A 变为单位矩阵:(A |)→(E |η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ②1+x 1 1 1③1+a 1 1 1a 2 a a a 1 1+x 1 12 2+a 2 2a a 2 a a . 1 1 1+x 1 .3 3 3+a 3 .a a a 2 a 1 1 1 1+x4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例31+x1 1 111 1 .1 1+x211 1 1+x31 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 3 3x 2-29 x 3 6 -6例7 求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(, 1, 2 ,3),B =(, 1, 2 ,3),|A |=2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n i i i i i n i i a c c c a b c c -+==-∑∏.… … … …b n … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i i i a b a b a b ++-=-=-∑(当a ≠b 时).0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10).例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a 2-a 3+a 4-a 5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲 矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A 的列数和B 的行数相等时,和A 和B 可以相乘,乘积记作AB . AB 的行数和A 相等,列数和B 相等. AB 的(i,j)位元素等于A 的第i 个行向量和B 的第j 个列向量(维数相同)对应分量乘积之和.设 a 11 a 12 … a 1n b 11 b 12 … b 1s c 11c 12 … c 1sA = a 21 a 22 … a 2nB = b 21 b 22 … b 2sC =AB =c 21 c 22 … c 2s… … … … … …… … …a m1 a m2 … a mn ,b n1 b n2 … b ns ,c m1c m2 … c ms ,则c ij =a i1b 1j +a i2b 2j +…+a in b nj .矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件.② 矩阵乘法无交换律.③ 矩阵乘法无消去律,即一般地由AB =0推不出A =0或B =0.由AB =AC 和A ≠0推不出B =C .(无左消去律)由BA =CA 和A ≠0推不出B =C . (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:① 加乘分配律 A (B +C )= AB +AC , (A +B )C =AC +BC .② 数乘性质 (c A )B =c(AB ).③ 结合律 (AB )C = A (BC ).④ (AB )T =B T A T .2. n 阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质:|AB |=|A ||B |.如果AB =BA ,则说A 和B 可交换.方幂 设k 是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A的连乘积.规定A 0=E .显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则:① A k A h = A k+h .② (A k )h = A kh .但是一般地(AB )k 和A k B k 不一定相等!n 阶矩阵的多项式设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22A 21 A 22B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等.准对角矩阵的乘法:形如A 1 0 0A = 0 A 2 0… … …0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 ... 0 , B = 0 B 2 0… … … … … …0 0 … A k 0 0 … B k如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为1,2,…,n ,B的列向量组为1,2,…,s , AB 的列向量组为1,2,…,s ,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):① AB 的每个列向量为:i =A i ,i=1,2,…,s.即A (1,2,…,s )= (A 1,A 2,…,A s ).② =(b 1,b 2,…,b n )T ,则A = b 11+b 22+…+b n n .应用这两个性质可以得到:如果i =(b 1i ,b 2i ,…,b ni )T ,则i =A I =b 1i 1+b 2i 2+…+b ni n .即:乘积矩阵AB 的第i 个列向量i 是A 的列向量组1,2,…,n 的线性组合,组合系数就是B 的第i 个列向量i的各分量.类似地, 乘积矩阵AB 的第i 个行向量是B 的行向量组的线性组合,组合系数就是A 的第i 个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c 倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(1,2,…,s),则X也应该有s 列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.)“⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E,CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)② 如果A 和B 都可逆,则AB 也可逆,并且(AB )-1=B -1A -1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E (i,j)-1= E (i,j), E (i(c))-1=E (i(c -1)), E (i,j(c))-1= E (i,j(-c)).(4) 逆矩阵的计算和伴随矩阵① 计算逆矩阵的初等变换法当A 可逆时, A -1是矩阵方程AX =E 的解,于是可用初等行变换求A -1:(A |E )→(E |A -1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.② 伴随矩阵若A 是n 阶矩阵,记A ij 是|A |的(i,j)位元素的代数余子式,规定A的伴随矩阵为A 11 A 21 … A n1A *= A 12 A 22 … A n2 =(A ij )T .… … …A 1n A 2n … A mn请注意,规定n 阶矩阵A 的伴随矩阵并没有要求A 可逆,但是在A 可逆时, A *和A -1有密切关系.基本公式: AA *=A *A =|A |E .于是对于可逆矩阵A ,有A -1=A */|A |, 即A *=|A |A -1.因此可通过求A *来计算A -1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc ≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A;n=2时,(A*)*=A.二典型例题1.计算题例1=(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A=T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,⋯,0,a)T, a<0, A=E-T, A-1=E+a-1T,求a. (03三,四)④n维向量=(1/2,0,⋯,0,1/2)T,A=E-T,B=E+2T,求AB. (95四)⑤A=E-T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n =A n-2+A 2-E . (2) 求A n .例4设A 为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足 A1=1+2+3, A 2=22+3,A 3=22+33.求作矩阵B ,使得A (1,2,3)=(1,2,3)B . (2005年数学四)例5设3阶矩阵A =(1,2,3),|A |=1,B =(1+2+3,1+22+33,1+42+93),求|B |.(05)例6 3维向量1,2,3,1,2,3满足1+3+21-2=0,31-2+1-3=0,2+3-2+3=0,已知1,2,3|=a,求|1,2,3|.例7设A 是3阶矩阵, 是3维列向量,使得P =(,A ,A 2)可逆,并且A 3=3A -2A 2.又3阶矩阵B 满足A =PBP -1.(1)求B .(2)求|A +E |.(01一)2 1 0例8 3阶矩阵A ,B 满足ABA *=2BA *+E ,其中A = 1 2 0 ,求|B |.(04一)0 0 1例9 3 -5 1设3阶矩阵A = 1 -1 0 , A -1XA =XA +2A ,求X .-1 0 2例10 1 1 -1设3阶矩阵A = -1 1 1 , A *X =A -1+2X ,求X .1 -1 1例11 4阶矩阵A ,B 满足ABA -1=BA -1+3E ,已知1 0 0 0A *= 0 1 0 0 ,求B . (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A = 2 1 0 , B = 0 0 0 , XA +2B =AB +2X ,求X 11.2 13 0 0 -1例13 设1=(5,1,-5)T ,2=(1,-3,2)T ,3=(1,-2,1)T ,矩阵A满足A 1=(4,3) T , A 2=(7,-8) T , A 3=(5,-5) T ,求A .2.概念和证明题例14 设A 是n 阶非零实矩阵,满足A *=A T .证明:(1)|A |>0.(2)如果n>2,则|A |=1.例15 设矩阵A =(a ij )3 3满足A *=A T ,a 11,a 12,a 13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A⇔T =1.(2)T =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵,E+AB可逆,证明(E+AB)-1A 也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C 为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1①3.②a2(a-2n). ③-1. ④E. ⑤4.例2 O.例 3 (1)提示:A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例4 1 0 0B= 1 2 2 .1 1 3例5 2.例6 –4a.例7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例9 -6 10 4X= -2 4 2 .-4 10 0例10 1 1 0(1/4) 0 1 1 .1 0 1例11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例12 1 0 02 0 0 .6 -1 -1例13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系 设1,2,…,s 是一个n 维向量组.如果n 维向量等于1,2,…,s 的一个线性组合,就说可以用1,2,…,s 线性表示.如果n 维向量组1,2,…,t 中的每一个都可以可以用1,2,…,s 线性表示,就说向量 1,2,…,t 可以用1,2,…,s 线性表示.判别“是否可以用1,2,…,s 线性表示? 表示方式是否唯一?”就是问:向量方程x 11+x 22+…+x s s =是否有解?解是否唯一?用分量写出这个向量方程,就是以1,2,…,s为增广矩阵的线性方程组.反之,判别“以A 为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB 的每个列向量都可以表示为A 的列向量组的线性组合,从而AB 的列向量组可以用A 的列向量组线性表示;反之,如果向量组1,2,…,t 可以用1,2,…,s 线性表示,则矩阵(1,2,…,t )等于矩阵(1,2,…,s )和一个s ⨯t 矩阵C 的乘积. C 可以这样构造: 它的第i 个列向量就是i 对1,2,…,s 的分解系数(C 不是唯一的).向量组的线性表示关系有传递性,即如果向量组1,2,…,t 可以用1,2,…,s 线性表示,而1,2,…,s 可以用γ1,γ2,…,γr 线性表示,则1,2,…,t 可以用γ1,γ2,…,γr 线性表示.当向量组1,2,…,s 和1,2,…,t 互相都可以表示时就说它们等价并记作1,2,…,s ≅1,2,…,t. 等价关系也有传递性.。
《线性代数》考研辅导讲义3五.向量的内积与线性无关向量组的正交化 1.内积设1212(,,,),(,,,)TT n n x x x x y y y y == ,则1122(,)T n n x y x y x y x y x y =+++=向量x的长度x ===若1x =,称x 为单位向量.向量的单位化:(0)xx x≠. 若(,)0x y =,称x 与y 正交.2.标准正交向量组、标准正交基若向量组两两正交且不含零向量,称为正交向量组.若向量组12,,,m ααα 满足0,(,)1,i j i ji jαα≠⎧=⎨=⎩,称12,,,m ααα 为规范(标准)正交向量组.若该向量组为向量空间的一组基,称其为规范(标准)正交基. 3.线性无关向量组的正交规范化—Schmiditt 正交化过程设向量组12,,,m ααα 线性无关.令111222111132333121122121121112211(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)m m m m m m m m m βαβαβαββββαβαβαβββββββαβαβαβαβββββββββ----==-=--=----则12,,,k ααα 与12,,,(1)k k m βββ≤≤ 等价,且12,,,m βββ 为正交向量组.4.正交矩阵及其性质 若T A A E =(1T A A -⇔=),称A 为正交矩阵.A 为正交矩阵A ⇔的行(或列)向量组为两两正交的单位向量,从而可作为n R 的一组基.若A 为正交矩阵,则1,T A A -也为正交矩阵,且1A =±若,A B 为同阶的正交矩阵,则AB 也是正交矩阵.典型例题一.向量组的线性相关性问题 例1n 维向量组12,,,(3)m m n ααα≤≤ 线性无关的充分必要条件是( D )(A)存在一组不全为零的数12,,,m k k k ,使得11220m m k k k ααα+++≠ .(B) 12,,,m ααα 中任意两个向量线性无关.(C) 12,,,m ααα 中存在某一向量不能由其余向量线性表示. (D)12,,,m ααα 中任一向量都不能由其余向量线性表示.例2 设1234,,,αααα线性无关,则( C ) (A) 12233441,,,αααααααα++++线性无关.(B) 12233441,,,αααααααα----线性无关.(C) 12233441,,,αααααααα+++-线性无关. (D)12233441,,,αααααααα++--线性无关.解 对(A):()12233441123410011100,,,(,,,)01100011αααααααααααα⎛⎫ ⎪⎪++++= ⎪ ⎪⎝⎭. 又12233441100111000(,,,)401100011R αααααααα=⇒++++<. 等等. 一般地:对n 维向量组12,,,m ααα ,令1122231,,,m m βααβααβαα=+=+=+ ,则(1)当m 为偶数时,12,,,m βββ 必线性相关;(2)当m 为奇数时,如果12,,,m ααα 线性无关,则12,,,m βββ 也线性无关;如果12,,,mααα 线性相关,则12,,,m βββ 也线性相关.例3 设三维向量组123,,ααα线性无关,则向量组122331,,k αααααα---也线性无关的充分必要条件是 .解 方法一:()()122331123101,,,,11001k k ααααααααα-⎛⎫ ⎪---=- ⎪ ⎪-⎝⎭,122331123123101,,,,110(1),,001k k kαααααααααααα----=⋅-=-≠-, 则1k ≠.方法二:()()122331123101,,,,11001k k ααααααααα-⎛⎫ ⎪---=- ⎪ ⎪-⎝⎭()123,,K ααα=.因为123,,ααα线性无关,所以()123,,3R ααα=,则122331,,k αααααα---也线性无关()122331,,3R k αααααα⇔---=()3 1.R K k ⇔=⇔≠例4 若向量组123,,ααα线性无关,向量组124,,ααα线性相关,则( C ). (A) 1α必可由234,,ααα线性表示. (B) 2α必不可由134,,ααα线性表示.(C) 4α必可由123,,ααα线性表示. (D)4α必不可由123,,ααα线性表示.解4α必可由12,αα线性表示,则4α必可由123,,ααα线性表示..例5 设n 维列向量组12,,,()m m n ααα< 线性无关,则n 维列向量组12,,,m βββ 线性无关的充分必要条件是( D ).(A) 向量组12,,,m ααα 可由向量组12,,,m βββ 线性表示.(B) 向量组12,,,m βββ 可由向量组12,,,m ααα 线性表示. (C) 向量组12,,,m ααα 与向量组12,,,m βββ 等价. (D)矩阵12(,,,)m A ααα= 与矩阵12(,,,)m B βββ= 等价.解 两个同型矩阵等价的充分必要条件是它们的秩相等. 例6 设123(1,1,1),(1,2,3),(1,3,),T T T t ααα===(1) 当t 为何值时,向量组123,,ααα线性无关; (2) 当t 为何值时,向量组123,,ααα线性相关;(3) 当向量组123,,ααα线性相关时,将3α表示为12,αα的线性组合.解 方法一:设1122330x x x ααα++=,即()112323,,0x x x ααα⎛⎫ ⎪= ⎪ ⎪⎝⎭,其系数行列式111123513D t t==-,(1)当0D ≠即5t ≠时,齐次线性方程组只有零解,此时向量组123,,ααα线性无关;(2)当5t=时,齐次线性方程组有非零解,此时向量组123,,ααα线性相关;(3) 当5t =时,系数矩阵1323111101,123012213000r x x A x x t -⎛⎫⎛⎫=-⎧ ⎪ ⎪=→⇒⎨⎪ ⎪=-⎩ ⎪ ⎪⎝⎭⎝⎭,令31x =,则121,2x x ==-,所以123312202αααααα-+=⇒=-+.方法二:123111,,123513t tααα==-,所以(1)当5t≠时,向量组123,,ααα线性无关; (2) 当5t =时, 向量组123,,ααα线性相关; (3) 当5t =时,以下同方法一.方法三:123,,ααα线性相关123(,,)3R ααα⇔<.123111111(,,)12301213005rA t t ααα⎛⎫⎛⎫ ⎪ ⎪==→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,(1) 当5t ≠时, 123(,,)3R ααα=,向量组123,,ααα线性无关;(2) 当5t=时, 123(,,)23R ααα=<,向量组123,,ααα线性相关;(3) 当5t =时,123111101(,,)012012000000rr A ααα-⎛⎫⎛⎫⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则121,2,x x =⎧⎨=-⎩所以31122122x x ααααα=+=-.例7 已知三个向量组(Ⅰ)123,,ααα;(Ⅱ)1234,,,αααα;(Ⅲ)1235,,,αααα的秩分别为()()3,()4R R R I =II =III =,证明向量组12345,,,k ααααα-的秩为4.( 0k ≠)证 方法一:()()3,R R I =II =则123,,ααα线性无关,且1234,,,αααα线性相关,故存在123,,λλλ,使得4112233αλαλαλα=++.要证12345(,,,)4R k ααααα-=,只需证12345,,,k ααααα-线性无关.设有1234,,,x x x x ,使得112233445()0x x x x k ααααα+++-=,则11412242334345()()()0x x x x x x kx λαλαλαα+++++-=.因为()4R III =,所以1235,,,αααα线性无关,则11422433440,0,0,0.x x x x x x kx λλλ+=⎧⎪+=⎪⎨+=⎪⎪-=⎩因为1231000100001000k kλλλ=-≠-,所以齐次线性方程组只有零解,即12345,,,k ααααα-线性无关,则12345(,,,)4R k ααααα-=.方法二:同一得: 4112233αλαλαλα=++,则451122335k k ααλαλαλαα-=++-,所以1212345123512353100010(,,,)(,,,)(,,,)00100k K k λλαααααααααααααλ⎛⎫⎪⎪-== ⎪ ⎪-⎝⎭. 因为1235(,,,)4,()4R R K αααα==,所以12345(,,,)4R k ααααα-=.方法三:同一得:4112233αλαλαλα=++,则4114422433123451*********()12351235(,,,)(,,,)(,,,)(,,,)c c c k c c c c k k k λλλααααααααλαλαλαααααααααα-÷----=++-→-→所以123451235(,,,)(,,,)()4R k R R ααααααααα-==III =.例8 设()m n R A n ⨯=,n 维列向量组12,,,()s s n ααα≤ 线性无关,证明向量组12,,,s A A A ααα 线性无关.证 设11220s s x A x A x A ααα+++= ,即1212(,,,)0s s x xA x ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭.因为()m n R A n ⨯=,则1212(,,,)0s s x x x ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ;又12,,,s ααα 线性无关,则120s x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,所以12,,,s A A A ααα 线性无关.例9 设A为n 阶正定矩阵, 123,,ααα是非零的n 维列向量,且0()T i j A i j αα=≠,证明:123,,ααα线性无关.证 设1122330x x x ααα++=,则1122330x A x A x A ααα++=,从而111122133()()()0T T T x A x A x A αααααα++=,即111()0Tx A αα=.因为A 为正定矩阵,且10α≠,则110T A αα>,所以10x =.同理可证20x =,30x =.例10 设A 为三阶矩阵,三维列向量123,,ααα线性无关,且11232123232,,A A A αααααααααα=++=+=+,求A.解123123110(,,)(,,)211302A A A αααααα⎛⎫ ⎪=⎪ ⎪⎝⎭,即123123110(,,)(,,)211302A αααααα⎛⎫⎪= ⎪ ⎪⎝⎭,则123123123110,,,,211,,302A ααααααααα⋅=⋅=-.因为123,,ααα线性无关,则123,,0ααα≠,所以1A =-.【注意】如果已知123,,ααα,则可求出A :1123123110(,,)211(,,)302A αααααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭.例11 设A 为三阶矩阵,有三个不同的特征值123,,λλλ,对应的特征向量依次为123,,ααα.令123βααα=++,证明: 2,,A A βββ线性无关.证12311223A A A A βαααλαλαλα=++=++, 2222112233()A A A ββλαλαλα==++21122123221232331(,,)(,,)1(,,)1A A K λλβββαααλλαααλλ⎛⎫⎪== ⎪ ⎪⎝⎭因为123,,λλλ互不相同,所以123,,ααα线性无关.又21122221313223311()()()01λλλλλλλλλλλλ=---≠, 所以()3R K =,则2(,,)3R A A βββ=,即2,,A A βββ线性无关.二.线性表示问题例12 设三维列向量123211101,1,1,111λααλαβλλλ+⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭,问λ取何值时: (1) β可由123,,ααα线性表示,且表达式唯一;(2) β可由123,,ααα线性表示,但表达式不唯一;(3)β不能由123,,ααα线性表示.解 方法一:2123111,,111(3)111λαααλλλλ+=+=++,(1)当0λ≠且3λ≠-时, β可由123,,ααα线性表示,且表达式唯一;(2)当0λ=时,12311101110(,,|)1110000011100000r αααβ⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为123123(,,)(,,|)13R R ααααααβ==<,所以β可由123,,ααα线性表示,但表达式不唯一;(3)当3λ=-时, 123123(,,)2(,,|)3R R ααααααβ=≠=,所以β不能由123,,ααα线性表示.方法二:12321110(,,|)111111λαααβλλλλ+⎛⎫⎪=+ ⎪ ⎪+⎝⎭2223111000032rλλλλλλλλλλ+⎛⎫⎪→-- ⎪ ⎪----⎝⎭.(1) 当20,30λλλ≠⎧⎨--≠⎩即0λ≠且3λ≠-时, 123123(,,)(,,|)3R R ααααααβ==,所以β可由123,,ααα线性表示,且表达式唯一;(2) 当0λ=时,1231110(,,|)00000000rαααβ⎛⎫ ⎪→ ⎪ ⎪⎝⎭,因为123123(,,)(,,|)13R R ααααααβ==<,所以β可由123,,ααα线性表示,但表达式不唯一;(3) 当3λ=-时,1231129(,,|)033120006rαααβ-⎛⎫ ⎪→-- ⎪ ⎪⎝⎭,因为123123(,,)2(,,|)3R R ααααααβ=≠=,所以β不能由123,,ααα线性表示.例13 证明:12,,,s ααα (其中10α≠)线性相关⇔存在i α(1)i s <≤使得iα可由121,,,i ααα- 线性表示,且表示式是唯一的.证 必要性:其思路是求向量组的一个极大无关组的排除法. 因为10α≠,所以1α线性无关.考虑12,αα:若12,αα线性相关,则2α可由1α线性表示,且表示式唯一; 若12,αα线性无关,考虑123,,ααα:若123,,ααα线性相关,则3α可由12,αα线性表示,且表示式唯一; 若123,,ααα线性无关,考虑1234,,,αααα: 依次类推,得因为12,,,s ααα 线性相关,类似可得存在i α,使得121,,,i ααα- 线性无关,而12,,,i ααα 线性相关,所以i α可由121,,,i ααα- 线性表示,且表示式是唯一. 充分性:设i α可由121,,,i ααα- 线性表示,则12,,,i ααα 线性相关,所以12,,,s ααα 线性相关.三.向量组的秩与向量组的极大无关组有关问题例14 求向量组123451124313612,,,,1510613110a c ααααα--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪---⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的秩和一个极大无关组.解1234511243112431361202431(,,,,)15106100011311000203r A a c a c ααααα----⎛⎫⎛⎫⎪ ⎪---⎪ ⎪==→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭,(1)当2,3a c ==时, 12345(,,,,)3R ααααα=,一个极大无关组为: 124,,ααα;(2)当2a ≠时, 12345(,,,,)4R ααααα=,一个极大无关组为: 1234,,,αααα; (3)当3c≠时, 12345(,,,,)4R ααααα=,一个极大无关组为: 1245,,,αααα.进一步, 当2,3a c ==时,把其余向量用该极大无关组线性表示:123451000201201(,,,,)0001100000r A ααααα-⎛⎫⎪-⎪=→← ⎪⎪⎝⎭行最简形则322αα=, 51242αααα=--+.例15 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,证明:(1)若()R A n =,则()()R AB R B =; (2)若()R B n =,则()()R AB R A =.(即左乘列满秩矩阵或右乘行满秩矩阵,则矩阵的秩不变)证 (1)方法一:()R A n =,则存在m 阶可逆矩阵P ,使得1A PA O ⎛⎫= ⎪⎝⎭,其中1A 为n 阶可逆矩阵,则11A A B PABB O O ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以1()()()()R AB R PAB R A B R B ===.方法二:因为()()()min{(),()}R A R B n R AB R A R B +-≤≤,所以()()()n R B n R AB R B +-≤≤, 即()()R AB R B =.方法三:因为()R A n =,所以线性方程组0ABx =与0Bx =同解,(事实上:(1) 0Bx =,则()00ABx A Bx A ===;(2)0ABx =,即()0A Bx =,因为()R A n =,则0Bx =.)所以()()m R AB m R B -=-, 得()()R AB R B =.同理可证(2).例16 设111212122212,0,0,1,2,,.n n i i n n n n a b a b a b a b a b a b A a b i n a b a b a b ⎛⎫⎪⎪=≠≠= ⎪⎪⎝⎭(1)求()R A ;(2)证明:存在数λ,使得A A k k 1-=λ.解 令()()1212,,,,,,,TTn n a a a b b b αβ== ,则T A αβ=.(1)A O ≠,则1()min{(),()}1()1R A R R R A αβ≤≤≤⇒=;(2)11()()()k T k T T k A A βααββα--==,令T λβα=即可.四.向量空间的有关问题(数学二、三、四不做要求)例17 设V 是向量组123(1,1,2,3),(1,1,4,1),(5,1,8,9)T T Tααα==--=--所生成的向量空间,求dim V 及V 的一个规范正交基.解123115115111013(,,)24800031900r A ααα--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪==→ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭,则()2dim 2R A V =⇒=,且12,αα为V的一个基.将12,αα正交单位化得V 的一个规范正交基:12,2,1,5,3)T T εε==--.例18 向量空间V 的两个基分别为12341123223433444(),,,;(),,,ααααβαααβαααβααβαI II =++=++=+=.(1)由基()II 到基()I 的过渡矩阵B ;(2)在基()I 与基()II 下有相同坐标的全体向量.解 (1)12341234123410001100(,,,)(,,,)(,,,)11100111P ββββαααααααα⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,则112341234(,,,)(,,,)P ααααββββ-=, 所以11000110001101011B P -⎛⎫⎪-⎪== ⎪-⎪-⎝⎭.(2)设向量1211223344123434(,,,)x x x x x x x x ξαααααααα⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭,则ξ在基()I 下的坐标为1234x x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,所以1234()00,x Px P E x x x x x k =⇒-=⇒====,则 12344000,k k k R ξααααα=⋅+⋅+⋅+=∈.例19 求向量(1,2,1,1)T ξ=在基底1234(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1)T T T T ηηηη==--=--=--下的坐标.解 方法一:设ξ的坐标为1234x x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,则1234(,,,)x ξηηηη=,所以112345111(,,,)(,,,)4444T x ηηηηξ-==--. 方法二:注意到1234,,,ηηηη为正交基.设11223344x x x x ξηηηη=+++,则11111111(,)5(,)(,)(,)4x x ξηξηηηηη=⇒==,同理:324234223344(,)(,)(,)111,,(,)4(,)4(,)4x x x ξηξηξηηηηηηη====-==-.【注意】若1234,,,ηηηη为正交规范基,则ξ在1234,,,ηηηη的坐标为(,),1,2,3,4.j j x j ξη==例20 设12,αα线性无关, 12,ββ线性无关,且12,αα分别与12,ββ正交,证明: 12,αα,12,ββ线性无关.证 令112211220x x y y ααββ+++=,因为12,αα分别与12,ββ正交,则111212121222(,)(,)0,(,)(,)0.x x x x αααααααα+=⎧⎨+=⎩ 又12,αα线性无关,,所以11122122(,)(,)0(,)(,)αααααααα≠,则120x x ==.同理可证:120y y ==.所以12,αα,12,ββ线性无关.。
线性代数复习讲义
第一讲 行列式
一 排列与逆序数(P4)
级排列,逆序,逆序数的概念;
二 行列式概念(P4)
定义
三 余子式,代数余子式的概念;(P15)
三 行列式的性质(P7-9)
计算行列式的理论依据。
四 展开定理(P15)
五 方阵的行列式(P48)
设A,B 是阶n 方阵,k 为实数,则有下列结论:
六 行列式的计算
计算依据:
1.行列式性质
2.展开定理
注意事项:
要在审题方面多花工夫,根据行列式元素的规律确定计算方法,切忌拿到题匆匆忙忙地盲目计算。
第二讲 矩阵
一 矩阵的概念
矩阵的概念,以及三角矩阵,对角矩阵,数量矩阵,单位矩阵,,对称矩阵 ,反对称阵 ,正交矩阵 ,伴随矩阵,分块矩阵等
n n n np p p p p p p p p nn n n n n
a a a a a a a a a a a a 21212121)(212222111211)1(∑-=τ⎪⎩⎪⎨⎧≠==+++j i j i D A a A a A a jn in j i j i ,0,2211 ⎪⎩⎪⎨⎧≠==+++j i j i D A a A a A a jn in j i j i ,0,2211 ||||A k kA n =1
||||-*=n A A ||||||B A AB ⋅=A A T =A A T -=E A A T =
特殊矩阵的概念。
相关结论:
1.对称矩阵的行列式等于其转置矩阵的行列式。
2.奇数阶反对称矩阵的行列式为零。
(P12之例2)
二 矩阵的运算
加法,减法,数乘,乘法,转置
三 运算律:散见于P38-45.重点记忆以下算律
1.
2.
3.
四 逆矩阵
1.定义(P50)
2.性质(P50-51):
3.计算方法:
(1)初等变换法: (2)公式法:
(3)定义法:对于矩阵A,寻找矩阵B,使得
AB=E 或BA=E
五 矩阵的初等变换与初等矩阵
1.初等变换(三类):P53定义1
2.初等矩阵(三类):P54定义2
3.初等矩阵与初等变换之间的关系:P55定理1
典型例题:P64作业1
第三讲 向量组
一 若干概念
1.n 维行向量, n 维列向量。
2.向量内积:
3.向量长度
4.向量正交 :
BA AB ≠)B A B A B A -+≠-)((22n
n n B A AB ≠)(2
222B AB A B A +±≠±)(0
00===B A AB 或不能推出T
T T A B AB =)(1
11)(---=A B AB )
(行初等变换1)(-−−−→−A E E A *-=A A A ||11n
n T b a b a b a +++= 2211βα2
2221||n T a a a +++== ααα0
=βαT
5.正交向量组和规范正交向量组
6.Schmidt 正交化方法:P140
二 向量组线性相关性的概念与原理
1.线性相关和线性无关的定义:P84
2.线性组合或线性表示的定义:P86
3.判断 是否线性相关的方法: (1) 最简梯矩阵 (2)若 线性相关(无关),则 也线性相关(无关)。
4.向量组线性相关性的若干结论:P87-91;定理1-4及其推论。
例如:
⑴包含零向量的向量组线性相关;
⑵线性无关向量组的扩展组线性无关;
⑶分量对应成比例的两个向量线性相关;
三 向量组的极大无关组和秩
1.极大无关组和秩的概念(P93和P95)
2.求极大无关组和秩的方法:
(1)
最简梯矩阵
(2) 的极大无关组所对应的
的部分组即为 的极大无关组。
(3)极大无关组所包含的向量个数即为向量组的秩。
典型例题:P94例1
第四讲 线性方程组
一 线性方程组的解的判定
1.对于齐次方程组 ,有
当 时,方程组仅有零解。
当 时,方程组有非零解。
2.对于非齐次方程组 ,有
当 时,方程组有解。
当 时,方程组无解。
二 线性方程组解的性质
P112之命题1;P120之命题1;
三 线性方程组解的结构
P114之定理1;P120之定理1,2;
第五讲 方阵的对角化
一 矩阵的特征值和特征向量
1.特征值和特征向量的定义(P127)
2.特征值和特征向量的求法:
(1)解特征方程 ,得到 的全部特征根。
(2)解方程组 ,得到其基础解系,即为A
的属于 的线性无关特征向量,而它们的线性组合即为 的属于
的全部特征向量。
3.结论:设 , 为其特征根,则 s ααα,,,
21 )
()(行s s βββααα,,,,,,2121 −→−s βββ,,,21 s ααα,,,21 )(
)(行s s βββααα,,,,,,2121
−→−s βββ,,,21 s ααα,,,21 s ααα,,,21 01=⨯⨯n n m X A n A R n m =⨯)(n A R n m <⨯)(b X A n n m =⨯⨯1)((b A R A R =))((b A R A R ≠)0||=-A E λ0)(=-X A E i λi λn n ij a A ⨯=)(n λλλ,,,21
二 相似矩阵
1.定义(P132)
2.性质(P132命题2)
三 方阵可对角化的条件:
P132定理1,P133推论,P135定理2.
四 一般矩阵 A 对角化的方法:
(1)求出 A 的全部特征根和全部线性无关的 特征向量。
(2)以全部线性无关特征向量为列向量构造可逆矩阵 P ,以全部特征值为主对角元构造
对角阵 ,则
五 实对称矩阵的对角化方法
(1)求出 A 的全部特征根和全部线性无关的特征向量。
(2)把特征向量分别规范正交化。
(3)以全部规范正交化过的线性无关特征向量为列向量构造正交矩阵 P ,以全部特征值为主对角元构造对角阵 ,则
第六讲 二次型
一 二次型
1.二次型与其系数矩阵:P153
2.线性变换:P154
二 化二次型为标准形的方法
1.找到正交矩阵 P 和对角阵 ,使得
2.令正交变换 ,则二次型 在此变换下化为标准型
三 正定二次型与正定阵
1.概念:P150和P157.
2.判定方法:
(1)P151定理1.
(2)P150定义1.
)(221121A tr nn n =++=+++αααλλλ |
|21A n =λλλ ΛΛ
=-AP P 1ΛΛ==-AP P AP P T 1ΛΛ==-AP P AP P T 1PY X =AX X X f T =
)(2222211)(n n T y y y Y Y Y f λλλ+++=Λ=。