经管理学院线性代数总复习题(完整资料).doc
- 格式:doc
- 大小:578.50 KB
- 文档页数:9
试题类型:1单选题 难易程度:1 2 3 4 5 试题内容: 试题答案: 试题解析:第一章 行列式1.=4321( )A .-4B .-2C .2D .4难易:1 答案:B解析:2-32-41=⨯⨯2.199819992000200120022003200420052006=( ) A .-1 B .0 C .1 D .2难易:2 答案:B解析:0120051120021119991-200620052004200320022001200019991998==3.123024001-=( ) A .1 B .2 C .-1 D .-2难易:2 答案:D解析:-21042-110042-0321=⨯=4. 已知4阶行列式4D 第1行的元素依次是1,2,-1,-1,它们的余子式依次为2,-2,1,0,则4D =( ) A .-5 B .-3 C .3D .5难易:3 答案:D 解析:5011-2--22114141313121211114=+⨯⨯+⨯=-+-=)(M a M a M a M a D5. 设多项式11-1-11-11-11-1-1101-0)(xx f =,则)(x f 的常数项为( )A .-4B .-1C .1D .4难易:3 答案:D解析:42000201-1-1-1-11-11-111-1-1-1-11-1-11-11-11-1-1101-0)0(0,0)(=⨯=⨯====f x x x f 带入行列式中得到:将的常数项,则求 6. 已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=+0320320-321321321x x x ax x x x x x 有非零解,则a=( )A .-2B .-1C .2D .1难易:3答案:C 7. 已知行列式12211=b a b a ,22211=c a c a ,则=++222111c b a c b a ( )A .-3B .-1C .1D .3难易:2 答案:D 8.321=( )A .-6B .6C .7D .-7难易:1 答案:A9.齐次线性方程组只有零解当且仅当它的系数行列式|A|( ) A .|A|=0 B .|A|>0 C .|A|≤0 D .|A|≠0难易:2 答案:D10.若n 个方程的n 元线性方程组的系数行列式0≠=nij a D ,则方程有A .唯一解B .无穷解C .无解难易:2 答案:A 11.()的根是则方程设0)(f ,1312f =--=x x x ( )A .4B .-4C .5D .-5难易:2 答案:C12.二阶行列式35-42=D 的值A .26B .-26C .20D .-20难易:2 答案:A13.三阶行列式981564321=D 的值A .-28B .-30C .30D .28难易:2 答案:C14.3阶行列式222cc1b b 1a a 1的值为( )A. (b-a)(c-a)(c-b)B.(b+a)(c-a)(c-b)C.(b-a)(a-c)(c-b)D.(b-a)(a-c)(c+b) 难易:2 答案:A第二章 矩阵15.已知矩阵⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=17422365,13822103B A ,则=+B A 2( ) A.⎥⎦⎤⎢⎣⎡-112166651210 B .⎥⎦⎤⎢⎣⎡-117166651213C.⎥⎦⎤⎢⎣⎡-11116665123 D .⎥⎦⎤⎢⎣⎡-1117166651213 难易:2 答案:B16.已知()()121,102==B A T,则=AB ( )A .201402201⎛⎫ ⎪ ⎪ ⎪⎝⎭B .242000121⎛⎫ ⎪ ⎪ ⎪⎝⎭C .3D .无法计算难易:2 答案:B17.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,若存在初等矩阵P ,使得⎪⎪⎪⎭⎫⎝⎛=3332312322213313321231112-2-2-a a aa a a a a a a a a PA ,则P=( ) A .⎪⎪⎪⎭⎫ ⎝⎛102-010001 B .⎪⎪⎪⎭⎫⎝⎛1000102-01C .⎪⎪⎪⎭⎫ ⎝⎛100012-001 D .⎪⎪⎪⎭⎫⎝⎛10001002-1 难易:3 答案:B18.设n 阶矩阵ABC 满足ABC=E,则1-B =( ) A .11--C A B .11--A C C .AC D .CA难易:3 答案:D19.设AB 、为n 阶方阵,下列各形式不一定成立的是( ) A.BA AB = B .T T T A B AB =)(C .EA AE =D .BA AB = 难易:3 答案:D20.设矩阵()⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛==654321,4321,2,1C B A ,则下列矩阵运算中有意义的是( ) A.ACB B .ABC C .BAC D .CBA 难易:1 答案:B21.设A 为3阶矩阵,且2=A ,则=1-2-A ( )A.-4 B .-1 C .1 D .4 难易:3 答案:A22.设A,B 为任意n 阶矩阵,E 为n 阶单位矩阵,O 为n 阶零矩阵,则下列各式中正确的是( )A. ()()22B A B A B A -=-+ B .()222B A AB =C .()()E A E A E A -=-+2D .由AB=O 必可推出A=O 或B=O 难易:3 答案:C23.设⎪⎪⎭⎫⎝⎛-=*0320A ,则=-1A ( )A. ⎪⎪⎭⎫⎝⎛-02/13/10B .⎪⎪⎭⎫ ⎝⎛-03/12/10 C. ⎪⎪⎭⎫ ⎝⎛-03/12/10D .⎪⎪⎭⎫ ⎝⎛-02/13/10 难易:3 答案:A24.设A 为n 阶矩阵,如果E A 21=,则=A ( ) A . 21 B. 121-n C . n 21D .2难易:2 答案:C25.设A 为3阶矩阵,且0≠=a A ,将A 按列分块为),,(321ααα=A ,若矩阵),2,(3221αααα+=B ,则=B ( )A .0B .aC .a 2D .a 3 难易:3 答案:C26. ⎪⎪⎪⎪⎪⎭⎫⎝⎛=412320101-321A 的等价标准形( ) A.()0EB.()00EC.⎪⎪⎪⎭⎫⎝⎛00ED.⎪⎪⎭⎫ ⎝⎛0E难易:3 答案:D27. ⎪⎪⎪⎭⎫ ⎝⎛=1131-12021A 的逆矩阵( )A.⎪⎪⎪⎭⎫ ⎝⎛3/85/8-1/81/8-1/8-5/81/41/41/4- B.⎪⎪⎪⎭⎫ ⎝⎛3/85/8-1/81/8-1/85/81/41/41/4 C.⎪⎪⎪⎭⎫ ⎝⎛3/8-5/8-1/81/8-1/85/81/4-1/41/4 D.⎪⎪⎪⎭⎫⎝⎛3/85/8-1/8-1/81/85/81/41/41/4难易:3 答案:A28. ⎪⎪⎪⎭⎫⎝⎛=44-311-21-12013A 的秩为( )A.r(A)=1B.r(A)=2C.r(A)=3D.r(A)=0 难易:2 答案:B29. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=172543421362B A ,则AB=( ) A 、⎪⎪⎪⎭⎫⎝⎛143614161911165018B 、⎪⎪⎭⎫ ⎝⎛23274228 C 、⎪⎪⎭⎫ ⎝⎛42282372D 、⎪⎪⎭⎫ ⎝⎛42282372难易:2 答案:A30.相乘可以交换与满足什么条件时,当⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=y x B A y x 213421,A 、y=x+1B 、y=-x+1C 、y=-x-1D 、 y=x-1 难易:3 答案:A31.设n 阶矩阵A ,B ,C 满足ABC=E ,则A. 111---=C B AB. 111---=B C AC. CA B =-1D. AC B =-1 难易:3第三章 向量空间32. 当t 为何值时,向量组()()()t ,3,51-,3,10,1,1321===ααα,,线性相关( )A . 3B .1C .2D .-1难易:3 答案:B33.向量组T T T t )5,4,0(,),0,2(,)1,2,1(121-==-=ααα的秩为2,则=t ( ) A .1 B .3 C .-2 D .-1 难易:3 答案:B34.设向量组s ααα,...,,21线性无关,并且可由向量组t 21,...,,βββ线性表出,则s 与t 的大小关系是( )A. S ≤tB.S >t C .S=t D .t ≤S难易:4 答案:A35.设向量组321,,ααα线性无关,则下列向量组中线性无关的是( ) A.2121,,αααα+ B.2121,,αααα- C.133221,,αααααα--- D.133221,,αααααα+++答案:D36.设向量组()()TT,0,1000,121==αα,,,下列向量中可以由21αα,线性表出的是( )A.()T00,2,B.()T42,3-, C.()T01,1, D.()T01-,0, 难易:3 答案:A37. 设向量组s ααα,...,,21线性相关,则必可推出( ) A.s ααα,...,,21中至少有一个向量为零向量 B.s ααα,...,,21中至少有两个向量成比例C.s ααα,...,,21中至少有一个向量可由其余向量线性表出D.s ααα,...,,21中每一个向量都可由其余向量线性表出难易:3 答案:C38. 设A 是n 阶矩阵(n ≥2),0=A 则下列结论中错误的是( ) A.r(A)<nB.A 必有两行元素成比例C.A 的n 个列向量线性相关D.A 有一个行向量可由其余的n-1个行向量线性表出难易:3 答案:B39. 向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=110001-2-10642302-1-032154321ααααα,,,,的秩是( ) A.5 B.4 C.3 D.2难易:2 答案:C 40. 设向量线性无关,线性相关,则下列结论中错误的是( ) A.21,a a 线性无关B.4a 可由21,a a 线性表出C.4321,,,a a a a 线性相关D.4321,,,a a a a 线性无关难易:4 答案:D41. 设向量组)3,2,1(1=α,)2,1,0(2=α,)1,0,0(3=α,)6,3,1(=β,则( ) A.βααα,,,321线性无关B .β不能由321,,ααα线性表示C .β可由321,,ααα线性表示,且表示法惟一D .β可由321,,ααα线性表示,但表示法不惟一难易:3 答案:C42.向量组()()()3,2,12,4,21,2,1321===ααα,,的秩( )A .1B .2C .3D .0 难易:2 答案:B321,,a a a 421,,a a a43.设()()()1,0,2-,1-0,0,1,2-1-,01,1===γβα,,, 则 γβα3-2+=( ) A. ()4-,0,90,B .()4-,9,00,C .()4-,0,50,D .()4,0,50, 难易:2 答案:A44.已知()()为则,,αβαβα,2,1,1,2431-,23,132TT=+=+( ) A. ()T10-,5-,9-,2 B .()T 10,5-,9-,2 C .()T 10,5,9-,2 D .()T10,5,9-,2-难易:3 答案:B 45.向量组()()()3,4,6,0,1-5,0,3,2,13,0,4,1,2321===ααα,,的秩( )A.1 B .2 C .3 D .0 难易:3 答案:C46.向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛132,121,32,13a b 的秩为2,则a,b 为( )A.a=2 b=5 B .a=5 b=2 C .a=-2 b=-5 D .a=-2 b=5 难易:2 答案:A第四章 线性方程组47.设A 是n m ⨯矩阵,则方程组0=Ax 有非零解的充要条件是( ) A.n A R =)( B .n A R <)( C .m A R =)( D .m A R <)( 难易:248.已知方程组⎪⎩⎪⎨⎧=+-+=-=++0)1(020232132321kx x k x x x x kx x 有非零解,则=k ( ) B .-1 B .-1或4 C .1或4 D .4 难易:3 答案:D49.设三元线性方程组b Ax =有解,且2)(=A R ,基础解系中解向量个数为( ) A .3 B .2 C .1 D .0 难易:2 答案:C50.设A 是n m ⨯矩阵,则方程组b Ax =有唯一解的充要条件是( ) A .n b A R A R ==),()( B .n b A R A R <=),()( C .m b A R A R ==),()( D .m b A R A R <=),()( 难易:2 答案:A51.齐次线性方程组⎩⎨⎧=+=++0 032321x x x x x 的基础解系中解向量个数为( )A .3B .2C .1D .0难易:3 答案:C52.齐次线性方程组021=+++n x x x 的基础解系中解向量个数为( ) A .0 B .1 C . n D . 1-n 难易:353.设3元线性方程组b Ax =,已知2),()(==B A r A r ,其两个解21,ηη满足T T k )1,2,3(,)1,0,1(2121--=--=+ηηηη,k 为任意实数,则方程组的通解( ) A.T T k )1-,2,3()1,0,1(21-+- B. T T k )1,0,1()1,2,3(21-+-- C. T T k )1,2,3()1,0,1(--+- D. T T k )1,0,1()1,2,3(-+-- 难易:4 答案:A54.设3元非齐次线性方程组b Ax =的增广),(b A 经初等行变换可化为⎪⎪⎪⎭⎫ ⎝⎛-+---→1)2)(1(0021101301),(k k k b A若该方程无解,则数=k ( )A .2B .1C . -1D . -2 难易:4 答案:D55.设3元非齐次线性方程组12()2,(1,2,0),(1,3,1)T T Ax b r A a a ===-=满足为其两个解,则其导出组0Ax =的通解为( )A .()T1-1-2-,,=ξ B. ()为任意实数,,k k T,150=ξ C .()为任意实数,,k k T,1-1-2-=ξ D .()T150,,=ξ 难易:4 答案:C56.设A 为4×5矩阵且3)(=A r ,则齐次线性方程组0=Ax 的基础解系中所含向量的个数为( )A .1B .2C .3D .4答案:B57. 设线性方程组1231231232000x x x kx x x x x x ++=⎧⎪++=⎨⎪-+=⎩有非零解,则k 的值为( )A . -2B . -1C .1D . 2 难易:3 答案:D58. 设有非齐次线性方程组b Ax =,其中A 为n m ⨯矩阵,且1)(r A r =,2),(r b A r =,则下列结论中正确的是( )A. 若m r =1,则0=Ax 有非零解 B .若n r =1,则0=Ax 仅有零解 C. 若m r =2,则b Ax =有无穷多解 D .若n r =2,则b Ax =有唯一解 难易:3 答案:B59. 设非齐次线性方程组⎪⎩⎪⎨⎧=-+=-+=++2324321321321ax x x ax x x x x x 无解,则数=a ( ) A . -2 B . -1 C .1 D . 2 难易:2 答案:B60. 设四元线性方程组b Ax =有解,且2)(=A R ,基础解系中解向量个数为( ) A .3 B .2 C .1D .0难易:2 答案:B第五章 特征值与特征向量61.已知向量T k )0,1,(=α和T ) 1 , 2 , 1(=β正交,则=k ( ) A .2 B .3C .-2D .-3难易:2 答案:C62.设⎪⎪⎪⎭⎫ ⎝⎛--=200710342A ,则E A 2+的一个特征值为( )A .2B .4C .-2D .-1难易:4 答案:B63.设三阶方阵A 的特征值为3,2,2,则=A ( ) A .7 B .-7 C .12 D .14难易:2 答案:C64.设3阶矩阵A 的3个特征向量是1,0.-2,相应的特性向量依次为⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛011101111,,,令⎪⎪⎪⎭⎫ ⎝⎛=110101111P ,则AP P -1为( )A.⎪⎪⎪⎭⎫ ⎝⎛02-1B.⎪⎪⎪⎭⎫ ⎝⎛102-C.⎪⎪⎪⎭⎫ ⎝⎛012-D.⎪⎪⎪⎭⎫ ⎝⎛2-01难易:2 答案:B65.下列矩阵不能对角化的是( )A.⎪⎪⎭⎫ ⎝⎛0221B.⎪⎪⎭⎫ ⎝⎛0221C.⎪⎪⎭⎫ ⎝⎛1022D.⎪⎪⎭⎫⎝⎛0122 难易:4 答案:B66.设A 为可逆矩阵,则与A 有相同特征值的矩阵为( ) A.T A B.2A C.1-A D.*A 难易:3 答案:A67.设3=λ是可逆矩阵A 的一个特征值,则矩阵1-41⎪⎭⎫⎝⎛A 有一个特征值为( )A.34-B. 43-C.43D.34 难易:3 答案:D68. 设矩阵⎪⎪⎪⎭⎫⎝⎛=110101011A ,则A 的特征值为( )A.1,0,1B. 1,1,2C.-1,1,2D.-1,1,1 难易:3 答案:C69.已知三阶矩阵A 的特征值为1,1,-2,则E A A 432-+的值为( ) A.1 B. -2 C.0 D.2 难易:3 答案:C第六章 实二次型70.若()2221231231323,,2322f x x x x x x x x tx x =++-+是正定二次型,则t 满足( )A.2t ≤B.2t 2-<<C.2-t >D.2t 2-t >且< 难易:3 答案:B71.下列各式哪个是二次型( ) A.023212221=+-+x x x x x B.23222--+z y xC. 322121x x x x ++ D.xz xy y x42322+-+难易:3 答案:D72.以下关于正定矩阵叙述正确的是( )A.正定矩阵的乘积一定是正定矩阵B.正定矩阵的行列式一定小于零C.正定矩阵的行列式一定大于零D.正定矩阵的差一定是正定矩阵 难易:3 答案:C73.设二次型()2322321-,,x x x x x f =则f( )A.正定B. 不定C.负定D.半正定 难易:3答案:B74.二次型()323121321-,,x x x x x x x x x f +=的矩阵是( )A. ⎪⎪⎪⎭⎫ ⎝⎛02/12/1-2/102/1-2/12/1-0B. ⎪⎪⎪⎭⎫ ⎝⎛002/1-2/12/12/1-2/12/1-0C.⎪⎪⎪⎭⎫ ⎝⎛02/12/1-2/102/12/1-2/10 D.⎪⎪⎪⎭⎫⎝⎛02/12/12/102/12/12/10 难易:3 答案:C75.3121232221224-6-2-x x x x x x x f ++=的正定性为( ) A 、正定 B 、半正定 C 、半负定 D 、负定 难易:3 答案:D76.二次型()31212322213212462-,,x x x x x x x x x x f +-+=秩为( )A 、2B 、3C 、1D 、0 难易:2 答案:B77. 对称矩阵⎪⎪⎭⎫ ⎝⎛=0110A 对应的二次型为( )A 、212x x f =B 、2221x x f += C 、2221-x x f = D 、21x x f =难易:2 答案:A78. 已知3阶实对称矩阵A 的特征多项式)5)(2)(1(-+-=-λλλλA E ,则二次型Ax x x x x f T =),,(321的正惯性指数为( )A. 1B. 2C. 3D.0 难易:3 答案:B79.二次型212221212),(x x x x x x f +--=的规范形为( ) A. 2121-y ),(=x x f B. 2121y ),(=x x f C. 222121y y ),(+=x x f D.222121y y ),(-=x x f 难易:3 答案:A80.yz xz xy z y x f 44-2-7-222-+=的矩阵为( )A 、⎪⎪⎪⎭⎫ ⎝⎛7-22-2112-1-1B 、⎪⎪⎪⎭⎫ ⎝⎛7-2-2-2-11-2-1-1C 、⎪⎪⎪⎭⎫ ⎝⎛72-2-2-11-2-1-1D 、⎪⎪⎪⎭⎫⎝⎛7-2-2-2112-1-1难易:2 答案:B。
全国2013年10月高等教育自学考试线性代数(经管类)试题课程代码:04184请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式,r(A )表示矩阵A 的秩.选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题1分,共5分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设行列式1122a b a b =1,1122a c a c =-2,则111222a b c a b c ++=A .-3B .-1C .1D .32.设矩阵A =1001021003⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则A -1= A .001020300⎛⎫ ⎪ ⎪ ⎪⎝⎭B .100020003⎛⎫⎪ ⎪ ⎪⎝⎭C .300020001⎛⎫ ⎪ ⎪ ⎪⎝⎭D .003020100⎛⎫ ⎪ ⎪ ⎪⎝⎭3.设A 为m ×n 矩阵,A 的秩为r ,则 A .r =m 时,Ax =0必有非零解B .r =n 时,Ax =0必有非零解C .r<m 时,Ax =0必有非零解D .r<n 时,Ax =0必有非零解4.设4阶矩阵A 的元素均为3,则r(A )= A .1 B .2 C .3D .45.设1为3阶实对称矩阵A 的2重特征值,则A 的属于1的线性无关的特征向量个数为 A .0 B .1 C .2D .3非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
《线性代数》复习一:选择题a11 a12 a13 2a11 2a12 2a131.如果a21 a22 a23 = M,则2a21 2a22 2a23 = ()a31 a32 a33 2a31 2a32 2a33A. 8MB. 2MC. MD.6M2. 若 A,B 都是方阵,且 |A|=2, |B|=-1,则 |A -1B|= ()A. -2B.2C. 1/2D. –1/23. 已知可逆方阵 A 1 3 7则 A ()1 2A. 2 7B.2 7C.3 7D.3 7 1 3 1 3 1 2 1 24. 如果 n 阶方阵 A 的行列式 |A| 0 则下列正确的是()A.AOB. r(A)> 0C. r(A)< nD. r( A) 05. 设 A B 均为 n 阶矩阵 A O 且 AB O 则下列结论必成立的是()A. BA OB. B OC. (A B)( A B) A2 B2D. (A B)2 A2 BA B26. 下列各向量组线性相关的是()A. 1 (1 0 0) 2 (0 1 0) 3 (0 0 1)B. 1 (1 2 3) 2 (4 5 6) 3 (2 1 0)C. 1 (1 2 3) 2 (2 4 5)D. 1 (1 2 2) 2 (2 1 2) 3 (2 2 1)7. 设 AX b 是一非齐次线性方程组 1 2 是其任意 2 个解则下列结论错误的是()A. 1 2是 AX O 的一个解 B. 1 12是 AX b 的一个解+ 2 1 2C. 1 2是AX O 的一个解D.2 1 2是AX b 的一个解8. 设 A为 3阶方阵 A的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 3 6 9C.12 3D. 1 1/2 1/39. 设 A 是 n 阶方阵且 |A| 2 A*是 A 的伴随矩阵则 |A*| ()A. 1B. 2nC. 1D. 2n 12 2 n 11 y 210. 若 x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案 :1.A 2.D 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C1. 设30 ,则取值为()2 1A. λ=0 或λ=-1/3B. λ=3C. λ≠0 且λ≠ -3D. λ≠02. 若 A 是 3 阶方阵,且 |A|=2, A* 是 A 的伴随矩阵,则 |A A* |=()A. -8B.2C.8D. 1/23. 在下列矩阵中可逆的是()0 0 01 1 0 1 1 0 1 0 0 A. 0 1 0B.2 2 0 C. 0 1 1D. 1 1 10 0 10 0 1 1 2 11 0 14. 设 n 阶矩阵 A 满足 A 2 2A+3E O 则 A 1 ( )A. EB. 1C. 2A 3ED. A(2E A)31 a a a5. 设 Aa 1 a aa a 1 a ,若 r(A) 1, 则 a ( )aaa 1A.1B.3C.2D.46.x 1 x 2 x 3 0,若齐次线性方程组x 1 x 2x 3 0, 有非零解则常数( )x 1 x 2 x 3 0A.1B.4C.2D.1 7. 设 A B 均为 n 阶矩阵则下列结论正确的是( )A. BA ABB.(A B)2 A 2BA ABB 2C. (A B)(A B) A 2B 2D. (A B)2A 22 AB B 28. 已知 1(10 0) 2(200)3 (0 0 3) 则下列向量中可以由123 线性表示的是()A. (1 2 3)B.(12 0)C. (0 2 3)D. (3 0 5)9. n 阶方阵 A 可对角化的充分条件是()A. A 有 n 个不同的特征值B.A 的不同特征值的个数小于 nC. A 有 n 个不同的特征向量D. A 有 n 个线性相关的特征向量10. 设二次型的标准形为fy 12y 223 y 32 ,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案 : 1.A 2. C 3. D 4. B 5. A 6. A 7. B 8. D 9. A 10. A1. 设A 是4 阶方阵,且 |A|=2,则 |-2A |=( )A. 16B. -4C. -32D. 32 2. 3 4 6行列式 k 5 7 中元素 k 的余子式和代数余子式值分别为()1 2 8A. 20, -20B.20,20C. -20,20D. -20,-203. 已知可逆方阵 A2 7则 A1)1 3 (A.2 7B.2 7C.3 7 D.371 31 31 2 124. 如果 n 阶方阵 A 的行列式 |A | 0则下列正确的是()A.AOB. r (A )> 0C. r(A)< nD. r(A ) 05. 设 A B 均为 n 阶矩阵 则下列结论中正确的是()A. (A B)(A B) A2 B 2B. (AB )k A k B kC. |kAB | k|A | |B |D. |(AB )k| |A |k |B|k6. 设矩阵 A n n的秩 r(A ) n 则非齐次线性方程组 AX b()A. 无解B. 可能有解C. 有唯一解D. 有无穷多个解7. 设 A 为 n 阶方阵 A 的秩 r(A) r n 那么在 A 的 n 个列向量中()A.必有 r 个列向量线性无关B.任意 r 个列向量线性无关C. 任意 r 个列向量都构成最大线性无关组D. 任何一个列向量都可以由其它r 个列向量线性表出8.已知矩阵 A4 4的四个特征值为 4, 2, 3, 1,则 A =()A.2B.3C.4D.249. n 阶方阵 A 可对角化的充分必要条件是()A. A 有 n 个不同的特征值B. A 为实对称矩阵C. A 有 n 个不同的特征向量D. A 有 n 个线性无关的特征向量10. n 阶对称矩阵 A 为正定矩阵的充要条件是()A. A 的秩为 nB. |A| 0C. A 的特征值都不等于零D. A 的特征值都大于零参考答案 : 1.D 2. A 3. D 4.C 5.D 6.C 7.A 8.D 9.D 10.D3 4 61. 行列式 2 5 7 中元素y的余子式和代数余子式值分别为()y x 8A. 2,-2B. –2, 2C. 2,2D. -2, -22. 设 A B 均为 n(n 2)阶方阵则下列成立是()A. |A+B| |A |+|B|B. AB BAC. |AB | |BA |D. (A+B) 1 B 1+A 13. 设 n 阶矩阵 A 满足 A2 2A E 则(A-2E ) 1 ()A. AB. 2 AC. A+2ED. A-2E4. 矩阵A 1 1 1 12 2 2 2 的秩为()3 3 3 3A.1B.3C.2D.45. 设 n 元齐次线性方程组AX O 的系数矩阵 A 的秩为 r 则方程组 AX 0 的基础解系中向量个数为()A. rB. n- rC. nD. 不确定6. 若线性方程组x1 x2 2x3 1无解则等于()x1 x2 x3 2A.2B.1C.0D. 17. n 阶实方阵 A 的 n 个行向量构成一组标准正交向量组,则 A 是()A. 对称矩阵B. 正交矩阵C. 反对称矩阵D.| A |= n8. n 阶矩阵 A 是可逆矩阵的充要条件是()A. A 的秩小于 nB. A 的特征值至少有一个等于零C. A 的特征值都等于零D. A 的特征值都不等于零9. 设 1 2 是非齐次线性方程组Ax=b 的任意 2 个解则下列结论错误的是()A.1+ 2 是 Ax =0 的一个解 B. 1 η1η2 1 2 2是 Ax =b 的一个解C.12 是 Ax =0 的一个解D. 2 1 2 是Ax=b的一个解10.设二次型的标准形为f y12y223y32,则二次型的秩为()A.2B.-1C.1D.3参考答案 : 1. D 2.C 3.A 4.A 5.B 6.A 7.B 8.D 9.A10.D1.a b 0设 D b a 0 0 ,则 a, b 取值为()1 0 1A. a=0, b≠ 0B. a=b=0C. a≠ 0, b=0D. a≠0, b≠ 02. 若 A 、B 为 n 阶方阵且AB=O 则下列正确的是()A. BA OB. |B | 0 或|A| 0C.B O或A OD. (A B)2 A2 B23. 设A是3 阶方阵,且 | A | 2,则|A 1|等于()A. 2B. 1C.2D.1 2 24. 设矩阵 A B C满足AB AC 则 B C 成立的一个充分条件是()A. A 为方阵B. A 为非零矩阵C. A 为可逆方阵D. A 为对角阵5. 如果 n 阶方阵 A O 且行列式 |A| 0 则下列正确的是()A. 0<r( A) < nB. 0 r(A) nC. r(A )= nD. r(A) 07 x1 8x2 9x3 06. 若方程组x2 2 x3 0 存在非零解则常数 b ()2 x2 bx3 0A.2B.4C.-2D.-47. 设 A 为 n 阶方阵且 |A| 0 则()A.A 中必有两行 (列 )的元素对应成比例B.A 中任意一行 (列 )向量是其余各行 (列) 向量的线性组合C.A 中必有一行 (列 )向量是其余各行 (列 )向量的线性组合D.A 中至少有一行 (列 ) 的元素全为零8. 设A为 3阶方阵 A 的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 369C.123D. 1 1/2 1/39. 如果 3阶矩阵 A 的特征值为 -1,1,2 ,则下列命题正确的是()A. A 不能对角化B. A 0C. A 的特征向量线性相关D. A 可对角化10. 设二次型的标准形为 f y12 y22 3 y32,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案:1.B 2.B 3. B 4. C 5.A 6.D 7.C 8.B 9.D10.Ca11 a12a13 4a a a a11 11 12 131. 如果 a21 a22a23 =M,则 4a21 a21 a22 a23 =()a31 a32a33 4a31a31a32a33A. -4MB. 0C. -2 MD. M2. 设 A ij 是 n 阶行列式 D |a ij |中元素 a ij的代数余子式则下列各式中正确的是()nB. n nD.nA. a ij A ij 0 a ij A ij 0 C. a ij A ij D a i1A i 2 Di 1 j 1 j 1 i 11 0 02 0 03. 已知A 0 1 0 ,B 2 2 1 ,则 |AB |=()3 0 1 3 3 3A.18B.12C.6D.364. 方阵 A 可逆的充要条件是()A.AOB. |A| 0C. A* OD. |A| 15. 若 A 、B 为 n 阶方阵 A 为可逆矩阵且 AB O 则()A. B O 但 r( B) nB. B O 但 r(A) n, r (B ) nC. B OD. B O 但 r(A) n, r(B) n6. 设 1 2 是非齐次线性方程组AX b 的两个解则下列向量中仍为方程组解的是()A. 1 2B. 1 2C. 1D.+2(β1 2β2)7. n 维向量组 1 2 s线性无关为一 n 维向量则()A. 12 s 线性相关B. 一定能被12C. 一定不能被12 s 线性表出D. 当 s n 时一定能被8. 设 A 为三阶矩阵 A 的特征值为 2 1 2 则A 2E 的特征值为(3β2β1 25s线性表出12s 线性表出)A. 212B.-4-10C.124D.41-49.若向量α=( 1, -2,1)与β=( 2, 3, t)正交,则 t=()A.-2B.0C.2D.41 y 210. 若x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案:1.A 2.C 3.C 4.B 5.C 6.D 7.D 8.B 9.D 10.C3 4 6中元素 x 的余子式和代数余子式值分别为(1. 行列式 2 5 7 )y x 8A. –9, -9B. –9,9C. 9, -9D. 9,91 1 1 12.2 3 4 53 3 3 3 =( )4 3 4 4A.2B.4C.0D.1 3. 设A 为4 阶矩阵 |A | 3 则其伴随矩阵A *的行列式 |A *| ()A.3B.81C.27D.9 4. 设 A B 均为 n 阶可逆矩阵则下列各式中不正确的是()A. (A+B)T A T +B TB.(A +B) 1 A 1+B 1C.(AB)1B 1A 1D. (AB )T B T A T 5. 设 n 阶矩阵 A 满足 A 2 +A +EO 则(A+E ) 1( )A. AB. -(A+E )C. –AD. -(A 2+A )6. 设 n 阶方阵 A B 则下列不正确的是( )A. r(AB )r(A)B. r(AB )r(B)C. r( AB ) min{ r(A ), r(B )}D. r(AB )>r (A )7. 已知方程组 AX b 对应的齐次方程组为 AX O , 则下列命题正确的是()A. 若AX O 只有零解 则 AX b 有无穷多个解B. 若AX O 有非零解 则 AX b 一定有无穷多个解C. 若AX b 有无穷解 则 AX O 一定有非零解D. 若AXb 有无穷解 则 AXO 一定只有零解8.10 1已知矩阵 A 02 0 的一个特征值是 0 则 x ( )1 0 xA.1B.2C.0D.31 09.与A02 1 相似的对角阵是()0 1 21111A.Λ1B.Λ2C. Λ1 D. Λ 1 333 410. 设 A 为 3 阶方阵 A 的特征值为 1 0 3则A 是()A. 正定B.半正定C.负定D. 半负定参考答案 : 1. C 2. C3. C4. B5. C6. D7. C8.A 9.A 10.B1. 设 A B 都是 n 阶方阵A. 若|A| 0 则A Ok 是一个数 B. |kA|则下列(|k| |A |)是正确的。
《线性代数(经管类)》综合测验题库一、单项选择题1.下列条件不能保证n阶实对称阵A为正定的是( )A.A-1正定B.A没有负的特征值C.A的正惯性指数等于nD.A合同于单位阵2.二次型f(x1,x2,x3)= x12+ x22+x32+2x1x2+2x1x3+2x2x3,下列说确的是( )A.是正定的B.其矩阵可逆C.其秩为1D.其秩为23.设f=X T AX,g=X T BX是两个n元正定二次型,则( )未必是正定二次型。
A.X T(A+B)XB.X T A-1XC.X T B-1XD.X T ABX4.设A,B为正定阵,则( )A.AB,A+B都正定B.AB正定,A+B非正定C.AB非正定,A+B正定D.AB不一定正定,A+B正定5.二次型f=x T Ax经过满秩线性变换x=Py可化为二次型y T By,则矩阵A与B( )A.一定合同B.一定相似C.即相似又合同D.即不相似也不合同6.实对称矩阵A的秩等于r,又它有t个正特征值,则它的符号差为( )A.rB.t-rC.2t-rD.r-t7.设8.f(x1,x2,x3)= x12-2x1x2+4x32对应的矩阵是( )9.设A是n阶矩阵,C是n阶正交阵,且B=C T AC,则下述结论( )不成立。
A.A与B相似B.A与B等价C.A与B有相同的特征值D.A与B有相同的特征向量10.下列命题错误的是( )A.属于不同特征值的特征向量必线性无关B.属于同一特征值的特征向量必线性相关C.相似矩阵必有相同的特征值D.特征值相同的矩阵未必相似11.下列矩阵必相似于对角矩阵的是( )12.已知矩阵有一个特征值为0,则( )A.x=2.5B.x=1C.x=-2.5D.x=013.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=( )A.2B.-6C.6D.2414.已知f(x)=x2+x+1方阵A的特征值1,0,-1,则f(A)的特征值为( )A.3,1,1B.2,-1,-2C.3,1,-1D.3,0,115.设A的特征值为1,-1,向量α是属于1的特征向量,β是属于-1的特征向量,则下列论断正确的是( )A.α和β线性无关B.α+β是A的特征向量C.α与β线性相关D.α与β必正交16.设α是矩阵A对应于特征值λ的特征向量,P为可逆矩阵,则下列向量中( )是P-1AP对应于λ的特征向量。
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.3阶行列式011101110||---=ij a 中元素21a 的代数余子式=21A ( C )A .2-B .1-C .1D .22.设矩阵⎪⎪⎭⎫ ⎝⎛=22211211a aa a A ,⎪⎪⎭⎫ ⎝⎛++=121112221121a a a a a a B ,⎪⎪⎭⎫ ⎝⎛=01101P ,⎪⎪⎭⎫⎝⎛=11012P ,则必有( A ) A .B A P P =21B .B A P P =12C .B P AP =21D .B P AP =123.设n 阶可逆矩阵A 、B 、C 满足E ABC =,则=B ( D )A .11--C AB .11--A CC .ACD .CA4.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛=000100A ,则2A 的秩为(B )A .0B .1C .2D .343214321法惟一,则向量组4321,,,αααα的秩为( C ) A .1B .2C .3D .44321A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合7.设321,,ααα是齐次线性方程组0=Ax 的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是( B ) A .2121,,αααα+ B .133221,,αααααα+++ C .2121,,αααα-D .133221,,αααααα---8.若2阶矩阵A 相似于矩阵⎪⎪⎭⎫⎝⎛-=3202B ,E 为2阶单位矩阵,则与矩阵A E -相似的矩阵是( C )A .⎪⎪⎭⎫⎝⎛4101B .⎪⎪⎭⎫⎝⎛--4101C .⎪⎪⎭⎫⎝⎛--4201D .⎪⎪⎭⎫⎝⎛---42019.设实对称矩阵⎪⎪⎪⎭⎝--=120240A ,则3元二次型Ax x x x x f T =),,(321的规范形为( D )A .232221z z z ++B .232221z z z -+C .2221z z +D .2221z z -ij A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)11.已知3阶行列式696364232333231232221131211=a a a a a a a a a ,则=333231232221131211a a a a a a a a a _______________.3=3D _______________.13.设⎪⎪⎭⎫ ⎝⎛-=01A ,则=+-E A A 22_______________.14.设A 为2阶矩阵,将A 的第2列的(2-)倍加到第1列得到矩阵B .若⎪⎪⎭⎫⎝⎛=4321B ,则=A _______________.15.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛=333220A ,则=-1A _______________.16.设向量组)1,1,(1a =α,)1,2,1(2-=α,)2,1,1(3-=α线性相关,则数=a ___________.17.已知x )1,0,1(1-=,x )5,4,3(2=是3元非齐次线性方程组b Ax =的两个解向量,则对应齐次线性方程组0=Ax 有一个非零解向量=ξ_______________. 18.设2阶实对称矩阵A 的特征值为2,1,它们对应的特征向量分别为)1,1(1=α,T k ),1(2=α,则数=k ______________.20.二次型3221321)()(),,(x x x x x x x f -+-=的矩阵=A _______________.21.已知3阶行列式=||ij a 4150231-x x 中元素12a 的代数余子式812=A ,求元素21a 的代数余子式21A 的值. 解:由8445012=-=-=x x A ,得2-=x ,所以5)38(413221=+--=---=A .22.已知矩阵⎪⎪⎭⎫ ⎝⎛--=0111A ,⎪⎪⎭⎫⎝⎛-=2011B ,矩阵X 满足X B AX =+,求X .解:由X B AX =+,得B X A E =-)(,于是⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-=--13/113/1313131201121113120111112)(11B A E X .23.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛-------0700070041202311 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0000070041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0000010041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000010040202011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000010020102011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000001002010001, 321,,ααα是一个极大线性无关组,=4α321020ααα⋅++⋅.24.设3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321ax x x x ax x x x ax ,(1)确定当a 为何值时,方程组有非零解;(2)当方程组有非零解时,求出它的基础解系和全部解.解:(1)100010111)2(1111111)2(1212112111111||--+=+=+++==a a a a a a a a a a a a a a A2)1)(2(-+=a a ,2-=a 或1=a 时,方程组有非零解;(2)2-=a 时,⎪⎪⎪⎭⎫ ⎝⎛--→000330211A ⎪⎪⎪⎭⎫ ⎝⎛--→000110211⎪⎪⎪⎭⎫ ⎝⎛--→000110101,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛111,全部解为⎪⎪⎪⎭⎫⎝⎛111k ,k 为任意实数;1=a 时,⎪⎪⎪⎭⎫ ⎝⎛→000000111A ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-011,⎪⎪⎪⎭⎫⎝⎛-101,全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101121k k ,21,k k 为任意实数. 25.设矩阵⎪⎪⎪⎭⎫⎝⎛=504313102B ,(1)判定B 是否可与对角矩阵相似,说明理由;(2)若B 可与对角矩阵相似,求对角矩阵Λ和可逆矩阵P ,使Λ=-BP P 1.解:(1))67)(1(5412)1(504313102||2+--=-----=-------=-λλλλλλλλλλB E)6()1(2--=λλ,特征值121==λλ,63=λ.对于121==λλ,解齐次线性方程组0)(=-x B E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛------=-000000101404303101B E λ,⎪⎩⎪⎨⎧==-=332231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=0101p ,⎪⎪⎪⎭⎫⎝⎛-=1012p ;对于63=λ,解齐次线性方程组0)(=-x B E λ:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----=-0004/3104/101104353104B E λ,⎪⎪⎪⎩⎪⎪⎪⎨⎧===3332314341x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=14/34/13p .3阶矩阵B 有3个线性无关的特征向量,所以B 相似于对角阵;(2)令⎪⎪⎪⎭⎫ ⎝⎛=Λ600010001,⎪⎪⎪⎭⎫ ⎝⎛-=1104/3014/110P ,则P 是可逆矩阵,使得Λ=-BP P 1.26.设3元二次型3221232221321222),,(x x x x x x x x x x f --++=,求正交变换Py x =,将二次型化为标准形.解:二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛----=110121011A .111121011111201110121011||--=--=---=-λλλλλλλλλλλλA E )3)(1(1101)3(101131001--=--=--=λλλλλλλλλ,特征值01=λ,12=λ,33=λ.对于01=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---=-000110101110121011A E λ,⎪⎩⎪⎨⎧===333231x x x x x x ,⎪⎪⎪⎭⎫ ⎝⎛=1111α,单位化为⎪⎪⎪⎪⎭⎫ ⎝⎛=3/13/13/11p ; 对于12=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-=-000010101010111010A E λ,⎪⎩⎪⎨⎧==-=332310x x x x x ,⎪⎪⎪⎭⎫ ⎝⎛-=1012α,单位化为⎪⎪⎪⎪⎭⎫ ⎝⎛-=2/102/12p ; 对于33=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛=-000210101210111012A E λ,⎪⎩⎪⎨⎧=-==3332312x x x x x x ,⎪⎪⎪⎭⎫⎝⎛-=1213α,单位化为⎪⎪⎪⎪⎭⎫⎝⎛-=6/16/26/13p .令⎪⎪⎪⎪⎭⎫⎝⎛--=6/12/13/16/203/16/12/13/1P ,则P 是正交矩阵,使得=AP P T ⎪⎪⎪⎭⎫ ⎝⎛300010000,经正交变换Py x =后,原二次型化为标准形23222130y y y f ++⋅=. 四、证明题(本题6分)27.已知A 是n 阶矩阵,且满足方程022=+A A ,证明A 的特征值只能是0或2-. 证:设λ是A 的特征值,则满足方程022=+λλ,只能是0=λ或2-=λ.。
20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。
《线性代数(经管类)》期末考试试题第一大题:单项选择题1、设行列式=1 , =2, 则= ( )A.—3B.—1C.1D.32、设A为3阶方阵,且已知|-2A|=2,则|A|=()A.—1B.C.D.13、设矩阵A,B,C为同阶方阵,则=____A.B.C.D.4、设A为2阶可逆矩阵,且已知= ,则A=()A.B.C.D.5、设A为m×n矩阵,则齐次线性方程组=0仅有零解的充分必要条件是( A )A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关6、已知,是非齐次线性方程组=b的两个不同的解,,是其导出组=0的一个基础解系,,为任意常数,则方程组=b的通解可以表为()A.B.C.D.7、设3阶矩阵A与B相似,且已知A的特征值为2,2,3 则 | |= ( )A.B.C.7D.128、设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为()A.B.C.D.9、二次型的矩阵为()A.B.C.D.10、设A为三阶方阵且|A|=-2,则()A.—108B.—12C.12D.10811、如果方程组有非零解,则 k=()A.—2B.—1C.1D.212、设A、B为同阶方阵,下列等式中恒正确的是()A.AB=BAB.C.D.13、设A为四阶矩阵,且 |A|=2 则()A.2B.4C.8D.1214、设可由向量 =(1,0,0)=(0,0,1)线性表示,则下列向量中只能是( )A.(2,1,1)B.(—3,0,2)C.(1,1,0)D.(0, —1,0)15、向量组的秩不为S()的充分必要条件是()A.全是非零向量B.全是零向量C.中至少有一个向量可以由其它向量线性表出D.中至少有一个零向量16、设A为矩阵,方程=0仅有零解的充分必要条件是()A.的行向量组线性无关B.A的行向量组线性相关C.A的列向量组线性无关D.A的列向量组线性相关17、设A与B是两个相似 n 阶矩阵,则下列说法错误的是()A.|A|=|B|B.秩(A)=秩(B)C.存在可逆阵P,使P—1AP=BD.E-A = E- B18、与矩阵A= 相似的是()A.B.C.D.19、设有二次型则()A.正定B.负定C.不定D.半正定20、设行列式D= =3,D1=,则D1的值为()A.—15B.—6C.6D.1521、设矩阵 = ,则()A.a=3,b= -1,c=1,d=3B.a= -1,b=3,c=1,d=3C.a=3,b= -1,c=0,d=3D.a= -1,b=3,c=0,d=322、设3阶方阵A的秩为2,则与A等价的矩阵为()A.B.C.D.23、设A为n阶方阵,n≥2,则 |-5A| =()A.B.-5|A|C.5|A|D.24、设A=,则=( )A.-4B.-2C.2D.425、向量组,(S>2)线性无关的充分必要条件是( )A.均不为零向量B.中任意两个向量不成比例C.中任意s-1个向量线性无关D.中任意一个向量均不能由其余s-1个向量线性表示26、A.B.C.D.27、设3 阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是()A.E-AB.-E-AC.2E-AD.-2E-A28、设=2是可逆矩阵A的一个特征值,则矩阵必有一个特征值等于()A.B.C.2D.429、二次型的秩为()A.1B.2C.3D.430、设3 阶方阵A=[ ,,],其中(=1, 2, 3)为A的列向量,且|A|=2,则|B|=|[+, ,]|=()A.-2B.0C.2D.631、若方程组有非零解,则k=()A.-1B.0C.1D.232、设A,B为同阶可逆方阵,则下列等式中错误的是()A.|AB|=|A| |B|B.(AB)-1=B-1A-1C.(A+B)-1=A-1+B-1D.(AB)T=BTAT33、设A为三阶矩阵,且|A|=2,则|(A*)-1|=( D )A.B.1C.2D.434、已知向量组A:中线性相关,那么()A.线性无关B.线性相关C.可由线性表示D.线性无关35、向量组的秩为r,且r<s,则()A.线性无关B.中任意r个向量线性无关C.中任意r+1个向量线性相关D.中任意r-1个向量线性无关36、若A与B相似,则()A.A,B都和同一对角矩阵相似B.A,B有相同的特征向量C.A-λE=B-λED.|A|=|B|37、设,是=b的解,η是对应齐次方程=0的解,则()A.B.C.D.38、下列向量中与=(1,1,-1)正交的向量是()A.B.C.D.39、设A= ,则二次型f(x1,x2)=xTAx是()A.正定B.负定C.半正定D.不定40、3 阶行列式 =中元素的代数余了式 =( C )A.-2B.-1C.1D.241、A.B.C.D.42、A.B.C.D.43、设3阶矩阵A=,则的秩为()A.0B.1C.2D.344、设,,,是一个4维向量组,若已知可以表为,,的线性组合,且表示法惟一,则向量组,,,的秩为()A.1B.2C.3D.445、设向量组线性相关,则向量组中()A.必有一个向量可以表为其余向量的线性组合B.必有两个向量可以表为其余向量的线性组合C.必有三个向量可以表为其余向量的线性组合D.每一个向量都可以表为其余向量的线性组合46、设是齐次线性方程组=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是()A.B.C.D.47、若2 阶矩阵A 相似于矩阵B= ,E为2 阶单位矩阵,则与矩阵 E-A 相似的矩阵是A.B.C.D.48、A.B.C.D.49、若3阶实对称矩阵A=()是正定矩阵,则A的正惯性指数为()A.0B.1C.2D.350、设A,B,C为同阶方阵,下面矩阵的运算中不成立的是( )A.B.C.D.51、已知=3,那么 =( )A.-24B.-12C.-6D.1252、若矩阵A可逆,则下列等式成立的是( )A.B.C.D.53、A.B.C.D.54、A.B.C.D.55、若四阶方阵的秩为3,则( )A.A为可逆阵B.齐次方程组Ax=0有非零解C.齐次方程组Ax=0只有零解D.非齐次方程组Ax=b必有解56、设A为m×n 矩阵,则n 元齐次线性方程=0存在非零解的充要条件是( )A.A的行向量组线性相关B.A的列向量组线性相关C.A的行向量组线性无关D.A的列向量组线性无关57、下列矩阵是正交矩阵的是( )A.B.C.D.58、二次型A.A可逆B.|A|>0C.A的特征值之和大于0D.A的特征值全部大于059、设矩阵A= 正定,则( )A.k>0B.K0C.k>1D.K 1第二大题:填空题1、设A为m×n 矩阵,C是n 阶可逆矩阵,矩阵A的秩为 r,则矩阵B=AC的秩为_________.2、设向量,,,则由线性表出的表示为______3、已知3元齐次线性方程组有非零解,则=_____4、设A为n 阶可逆矩阵,已知 A 有一全特征为2,则必有一个特征值为______5、二次型的秩为_________6、若则 K = _________7、设A为矩阵,且方程组=0 的基础解系含有两个解向量,则秩(A)= ____8、已知A有一个特征值-2,则B=+ 2E 必有一个征值_______9、向量组=(1,0,0) =(1,1,0) = (-5,2,0) 的秩是_______10、设三阶方阵A的特征值分别为-2,1,1 , 且B与A相似,则|2B | =_________11、行列式 = ___________12、设矩阵A= , 若齐次线性方程组=0 有非零解,则数 t= ________13、已知向量组=,=,=的秩为2,则数t=______14、已知向量=, 与的内积为2,则数K=________15、设向量为单位向量,则数b=______16、已知=0 为矩阵 A= 的2重特征值,则A的另一特征值为________17、已知二次型正定,则数 k 的取值范围为_______18、设A为三阶方阵且|A|=3 则 |2A| = _____19、已知=(1,2,3),则 |T| = ______20、设A为4×5的矩阵,且秩(A)=2,则齐次方程=0的基础解系所含向量的个数是____21、设有向量=(1,0,—2),=(3,0,7),=(2,0,6),则,,的秩是 ______22、设三阶方阵A的三个特征值为1,2,3. 则 |A+E| = ____23、设与的内积(,)=2 ,‖‖=2 ,则内积(2+,—)= ______24、已知3阶行列式=6 ,= _____25、设3阶行列式的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则=_____26、设向量组=(,1,1), =(1,—2,1) , =(1,1,—2)线性相关,则数=_____27、设2阶实对称矩阵A的特征值为1,2,它们对应的特征向量分别为,,则数 K =_____28、已知3阶矩阵A的特征值为0,-2,3,且矩阵B与A相似,则 |B+E|=____29、若_______30、向量组____31、向量正交,则 t=_____32、若矩阵A= 与矩阵B= 相似,则 x = _____33、20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为______.第一大题:单项选择题1:D2:B3:B4:D5:A6:A7:A8:A9:C10:D11:B12:D13:C14:B15:C16:C17:D18:A19:C20:C21:C22:B23:A24:B25:D26:D27:D28:A29:D30:C31:A32:C33:C34:B35:C36:D37:B38:D40:C41:A42:D43:B44:C45:A46:B47:C48:D第二大题:填空题1:r2:3: 24:1/45: 26:1/27:18:69: 210:—1611:012: 213:—214:2/315:017:K > 2 18:24 19:0 20:3 21:2 22:24 23:—8 24:1/6 25:—4 26:—2 27:—1。
线性代数(经管类)试题一. 单项选择题(本大题共10小题,每小题2分,共20分)2. 设/I, B , C 均为〃阶方阵,AB = BA, AC = CA f 贝 ij ABC = ( D ) A. ACBB. CABC. CBAD. BCAABC = (AB)C = (BA)C = B(AC) = B(CA) = BCA .3. 设/为3阶方阵,〃为4阶方阵,且|A|=1, |B|=-2,则行列式\\B\A\之值为(A ) A. -8B. -2C. 2D. 8||B|AH-2A|=(-2)3|A|=-8.%1I a \2°13、<a\\ %]2a\3仃0 0、‘1 0 o'4. A = 。
21 ^22 。
23 ,B =Cl2\% 22 a 23,P 二 0 3 0 ,Q = 3 1 0,则B= ( B )卫31 °32 °33/Z 31彳皎 C/33丿<0 0 b<o o i 丿A. PAB. APC. Q/\D. AQ(a \\%如、<1 0 0、仙1 3如 a \3'AP = a 2\ a 22 a 230 3 0 = a 2\ 3^22 a 23 =B.\a 3\ a n 。
33 >0 bk^31 3畋 。
33丿5. 已知力是一个3x4矩阵,下列命题中正确的是(C )A. 若矩阵力中所有3阶子式都为0,则秩G4)二2B. 若〃中存在2阶子式不为0,则秩(力)二2C. 若秩04)二2,则/I 中所有3阶子式都为0D. 若秩U )=2,则M 中所有2阶子式都不为0 6. 下列命题中错误的是(C )• • A.只含有1个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由1个非零向量组成的向量组线性相关D. 2个成比例的向量组成的向量组线性相关7・已知向量组a^a 2.a 3线性无关,0线性相关,则(D )1.已知2阶行列式 A. m — nb\ + C]“2 a 2 +c 2a \ a2S b 2 B. n — mb 2b\D. - (m + /?)b\a2b\C ]C. m + nb2a 2 + c 2A. 必能由a2,a3,f3线性表出B. a2必能由a x.a3.0线性表出注:0]心2,%3是4|,02,%3,0的一个极大无关组.8. 设/!为加XH 矩阵,则方程组月尸0只有零解的充分必要条件是力的秩(D ) A.小于刃B.等于刃C.小于刀D.等于刀注:方程组Ax=O 有n 个未知量.9. 设力为可逆矩阵,则与力必有相同特征值的矩阵为(A ) A. "B. A 2C. A _,D. A*| AE-A 7H (AE-A)T \=\AE-A\f 所以力与屮有相同的特征值. 10. 二次型/(x p x 2,x 3) = x^ +X2 +X3 +2x^2的正惯性指数为(C ) A. 0B. 1C. 2D. 3/(x 1,x 2,x 3) = (x l +x 2)2+X3 =yf + 迟,正惯性指数为 2.二、填空题(本大题共10小题,每小题2分,共20分)了 = 30 — 24 = (9,3,—3,12)' -(6-2,0,4) =(3,5-3,8)7 . 14.设力为〃阶可逆矩阵,且\A\=-~,则| | A'1 |= n15.设力为〃阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax=0的解,则11 •行列式的值为 _____________13.设a = (3,—l,0,2)T, 0 = (3,1,-1,4)7',若向量了 满足2a + y = 30,则卩二 2007 2008 2009 201016. _________________________________________________________________ 齐次线性方程组+兀2 +兀3 =°的基础解系所含解向量的个数为 ________________________________________12X| - x 2 + 3兀3 = 0基础解系所含解向量的个数为« - r = 3 - 2 = 1.17. ___________________________________________________________________ 设〃阶可逆矩阵力的一个特征值是-3,则矩阵必有一个特征值为 __________________________________________-2、0的特征值为4,1,-2 ,则数兀二0」20.二次型 /(X ),x 2,x 3) = -4x }x 2 +2兀]£ + 6X 2X 3的矩阵是 _______________-2 r 0 33 0,三、计算题(本大题共6小题,每小题9分,共54分)ab c 21.计算行列式a 2b 2c 2的值. a + a 3h + b 3c + c 3甘町有特征畤"1 -2 18.设矩阵-2 x、一2 0 由第1. 2列正交, 即它们的内积(d + b) = 0 ,-21 b c 解:D =a2b2c2a + cdb + b3c + c31 1 1=abc0 b-a c-a0 b2-a2 c2-a2a b c 1 1 1 a2 b2 c2= abc a b c a3b3 c39 cr b2 c2= abc b-a c-b2-a2c2-•a■a2=abc(b 一 a)(c - a)(c — b) •(2)注意到CB T = (1,2,3) 1 =13,所以34A 2= (B rC)(B rC) = B r(CB T )C = \3B T C = \3A = \3 1 2线性无关组,并用该极人线性无关组表示向量组屮的其余向量•<2>‘2 4 6、 解:(1) A = B rC =1 (1,2,3)= 12 32丿<3 6 9,己知矩阵 B = (2,1,3), C = (123),22. "2 1-1 1、<1 10 r<1 1 0 1 、 1 2 1 1 T1 211T0 1103 0 -3 13 0 -3 10 -3 -3 -210 1J<2 1 -1 1丿k 0 -1 -1 一1丿解:A = (a|,(^2 9 oc^, )—<1 1 0 1、<1 1 0 1、<1 0 -1 n0 1 1 00 1 1 00 1 1 0 0 0 0-20 0 0 10 0 0 10 0 一1丿<0 0 0 0丿<0 00 0>,向量组的秩为 关组,旳=-Q| +a 2 •3, a }.a 2,a 4是一个极大无"12 3、<-14 ] 24.已知矩阵人=0 1 2 ,B = 25<0 ° bU 一3丿(1) 求A"1; (2)解矩阵方程AX = B.=abc(b 一 d)(c — a) 求(1) A = B T C ; (2)23. 设向量组內=(2」,3」几勺=(120」几&3=(—1」厂3,0八勺=(1」丄1卩求向量组的秩及一个极人2 31 0 0、2 0 1 0 -3、 解:(1)(A,E) = 0 1 20 1 00 1 0 0 1 -2<00 10 010 0 1 0 0 1」Z\ /<1 0 0 1 -21、1 -21、0 1 0 0 1 -2 /T0 1-2■ 9<0 0 1 0 01丿0 01 ZX] + 2 兀2 + 3 兀3 = 42X 2 4- ax 3 = 2有惟一解?有无穷多解?并在有解时求出其解(在有2x t + 2X 2 + 3X 3 = 6"2 3 4、"2 0 4、 工3时,r(A,ft) = r(A) = 3,有惟一解,此时(A,b)->0 2 a 20 2 0 2<0 0 10; \<0 0 10; \ /0、a 的三个特征值分别为1,2,5,求正的常数曰的值及可逆矩阵",使 3丿‘1 0 0、P'XAP= 0 2 00 0 5丿2 0 03 a解:由 |A|= 0 3 67 =2=2(9-/)= ix2x5,得宀 4, a = 2.a 30 a 3<1 -2 1、<-1 4>‘-4 - 9)X=A~}B = 0 1 -225 =0 11<0 ° 1 丿<1 一3丿、1 -3,(2)2 3 4、有无穷多解,此时0 2 3 2<o 0 0 o>G = 3 时,r(A,b) = r(A) = 2< /?,‘1 0 0 2>‘1 00 2、0 2 3 20 1 3/2 1 <0 0 0 0丿<0 0 0 0? Z〔2厂0、通解为 1 + k -3/2< 1 >其中R 为任意常数.25•问日为何值时,线性方程组解:<1 2 3 4、234、<1 234(必)= 0 2 a 20 2a 20 2a 2<2 2 3 6丿-2 -3 -2丿\ 0 ci _ 3 0 丿‘1 0 0 2>‘1 0 0 2、0 2 0 20 1 0 1,0 0 1 0丿,0 0 1 0丿‘2 0 26.设矩阵0 3 (0 a无穷多解时,要求用一个特解和导出组的基础解系表示全部解)./° = 1 ;兀3 = °2 0 0、AE-A= 0 2-3 -2 ..0 -2 2-3丿对于人=1,解(/IE —A)兀=0:"-1 0 0、"1 0 0、%! =0 <0、AE-A =0 -2 -2 0 1 1 9 v x2 =-x3 ,取门=-1<0 -2 一2丿<0 0 ° 丿无3 = 兀3对于兄2=2,解(/i£—A)兀=0:r0 0 0、‘0 1 0、x\ =x\TAE-A =0-1-2 T0 0 1 X2 = 0 ,取#2 = 0<0 -2 -1;0 0, 兀3 =0O对于几3=5,解(征一心=0:厂3 00、厂1 0X| =0 ◎九E —A =0 2-2 —> 0 1 -1 兀2 =兀3,P3 = 1,0-2 2 丿<0 0 0 ;\X3 = X3<1>'0 10、"0 0、令P =("|, “2 ' “3)= -1 0 1 ,则P是可逆矩阵,使P~'AP =0 2 0<10 1; <0 0 5丿四、证明题(本题6分)27.设昇,B, A+B均为〃阶正交矩阵,证明(4 + 3)7 =4一】+3".证:J, B, A + B均为/?阶正交阵,则A r=A-!, B T =B~\ (4+B)7 =(A + B)T,所以(A + B)T =(A + B)T = A1^ + B T = A~l + B~l・。
《线性代数(理)》综合复习资料填空题a x 1入 C]2冏 b 、 c x +勺1、已知行列式 a 2 b 2 c 2=4,则 2a 2 b 2 c 2 + b 2a 3b 3c 32a 3 伙 c 3 + h 3(1 1、2、2阶方阵力=的逆矩阵为A"二 ______________匕3丿4、行列式D =<0>々)、0 ,&2 = 20 ,则Q =1 9<o >1用线性表示的表达式 5=2,/表示B 的转置,贝卜Q 2 6、已知4= 0 3 J °0、2 ,齐次方程组Ar = 0有非零解,贝畀=a tb 、c }4舛 2$ - q C]7、若 a 2 b 2 c 2—1 ,则 4a 22b 2 一 c 2 c 2a3 ”3 C34曲 2b 3 — c 3 C3兀-10 x 行列式0 0a b0 -1 Xc的第4行第3列元素C 的代数余子式-1439、若徐冬是线性方程组Ax = b的两个解,则A(5+$2)= ______________alb\q2a {2b { 2q 10、设 a 2 b 2C2=a ,则 2a 22b 2 2c 2a3 /?32禺 2优 2C 3二.选择题<1 1 1 )/ 、 (1 >1、要使非齐次方程组 0 11 兀2 — 1 有无穷多个解,必须<0 0<7-2, /丿3一3丿A. a = 2, b = 3B. a = 2, b 主3C. a H 2, b = 3D. d H 2,b 壬 32、假设人B 皆为〃阶可逆方阵,则卜•列式子不成立的是 ______ A. (AB )'1=8 ^~]B. (仙尸=川矿】 c. \AB \ = \A \\B D. \AB\^O3、设4阶方阵A 的秩为3,则下列说法正确的是 _________ A. A 的所有3阶子式都为零 B. A 的所有3阶子式都不为零 c. |A |HO% 11、设 a 2a. b 、 b 22a1 1 1<1 0 -n / 、12、齐次方程组0 1i 兀2<o 0 o 丿0 的通解(即所有解)可表示*b2$a3为 _________________D・|A|= O,但至少有一个3阶子式不为零4、设A为“阶可逆方阵,则A的秩厂必定满足_________ ;A.r = nB.r = n-lC.r <nD.r <n-\5、设为农阶方阵,则下列等式成立的是______________ ;A.AB — BAB.\A + B\=\A\+\B\C.若AB = 0则A = 0或B = 0D.若\AB\ = 0则|A| = 0或0| = 06、设3维向量ma j9a2,a3线性相关,则下列说法不正确的是______________A.其中的任意两个向量都线性相关B.对于任意一个3维向量0,向量组0,少,42,^3必线性相关C.6^,03小必有一个向量可以用其余两个线性表示D.存在不全为零的你込,心,使得k{a{ + k2a2 + k3a3 = 07、设A,B为同阶方阵,则必有_______ :A.\A + B\=\A\+\BB.AB = BAC.\AB\=\A\\BD.(A + B)-1 = A_1+5_,8、若A为”阶方阵,且同乂0,贝ij非齐次方程组Ax = b的解的情况为—A.无解B.不能断定冇解C.有唯一解D.有无穷多个解r l 1 1 r9、矩阵 2 2 2 2 的秩为<3 3 3 3/A. 1B. 2C. 3D. 41()、设A为加x n阶矩阵,则线性方程组Ax = b有解的充分必要条件为 _______ ;A.7?(A) = mB./?(A) = nC.R(A,b) = mD.R(A,b) = R(A)这里R(A), R(A,b)分别表示矩阵A,增广矩阵(A,b)的秩11、___________________________________________________________ 设4是斤阶可逆矩阵,4*是伴随矩阵,则下列等式成立的是_____________________ ;A.\A\ = A*B.|矿c. |A|H=A*D. WW12、设A是斤阶方阵,则它的〃个列向量匕,也,・・・,色线性无关的充分必要条件为_______ :A.列向量组中任何一个向量都不能由其余的兀一1个向量线性表示B.a v a2,...,a n均不为零向量C.列向量组中任何两个向量的对应分量不成比例D.|A| = 0三、计算题2 4 11 4 3-11 1、计算行列式D =0 02 40 013<1 1 P3、已知A = 1 2 1<1 1 3丿<-4 -1() ()、了-2、 2>已知A =1 30 '*51 --1'§2 - 1<36 1;k _3><0>(1)求码,街2<r©了3、已知向最组© =-i ,也=30 ,&4 =-i/丿<0>(1)求向量组的秩;(2)给出分别与爲,§2对应的特征值人,人;求矩阵X ,使得4(E + X ) = E ;4、3 3 3 02 2 0 2 5、计算行列式D = 10 110 111‘1 -1 7、已知4= 2 -1<-3 4‘1〕〔1)8、已知向量组Q]= 1 ,也=-1 心=3 ,夠=-1 ,(1)求向量组的秩;(2)求向量组的一个授大无关组; -1 -1 -1 -11 -1 -1 1-1)-3 ,求-1 -1< 1 -1 —1 16、已知A = 求屮;2 10 00 2 10 9、计算行列式0=“0 0 2 1 10 0/1<1 2、'a b'10、己知矩阵A =与3 =可交换,即AB = BA,求a, b ;L 1 -1; 3 2;\1 -n11、已知A = 0 1 1,且满足 A~ + AX — E = 0 ,<0 ()—i丿(1)求A -1;(2) 求矩阵X ;<1 -1 1 -1、12、已知矩阵人= 1 2 3 1<3 3 7 1 )7(1)求A 的秩;(2) 求A 的列向最组的一个最人无关组;1 0 0— 0 2 013、已知£)=0 0 3 1 2 3求其第4行元素的代数余了式Z 和,即求A 41 + A 42 + A43 + A44 ;<01 0、14、已知人= -11 ,求从屮+2A :<0 -1 0><0 1 2、15、已知A = 1 1 4 , 求4二<2 -1°丿‘1 -13 1 -32 16、已知矩阵人=-1 0 -1 4-2、 -61()21 5 -1《线性代数(理)》综合复习资料参考答案填空题1、8(3 —1)2、1-2 14、-245、486、——37、88、X29、2b10> Sa11、-2a212、Jt(l,-l,l)r选择题题目 1 ? 3 4 5 6 答案 A B D A D A 题目7 8 9 1() 11 12 答案 C C A D B A 三、计算题2 44 3 1、计算行列式D =0 00 01-12111431 12 4 4 13 -解:D =0 0 20 0 1 1 2 41 0 -54 ~ 0 03 0 01-3211-5-3 -12 4 =-201 3一0、解:(1)対=23丿'-2、<-4 -10 ()、<5> 了-2、2、己知人= 1 3 0 -1 '§2 - 1<3 6 1丿<_3> <0>(1)求码,街2(2)给出分别与§2对应的特征值人,人;(1 1 3、已知A= 1 2J 1 1)1 ,求矩阵X ,使得A(E + X) = E;3;/解:X =A~[-E⑵码=—2鼻% 1(A£) =(11所以 X =A^]-E5 2 -1 ~2 '3 2 :-1-1-1 7~2 0 1 2)_n ~2_丄~2>< 1、 (0)r 、已知向量组© =-1= 3 s =,&4 =-i/丿<0>0 ~2a0 31、<1 0 3 1 ) 解:3 0 -1 T0 3 3 0<42 14 0丿<0 2 2 一4丿‘1 0 3 1、 t 01 1 0 ()00 —2,\7所以,(1)向量纟R 的秩为3(2) a ly a 2,a 4 (或)为其一个最大无关组 3 3 3 02 2 0 2 5、计算行列式D = 10 11 0 111解:对行列式进行初等变换,然后展开化为3阶行列式所以,A 10=(A 2)5=210E(1 -1 -1]7 > 已知A= 2 —1 -3曰44丿3 3 2 2 D = 1 00 11 0110 2 -2 00 3 0 -30 1 113 0 1 12 =-3 1 -2 0 0 -3 =-181 16、 -1 -1-1 -1 -1-1 1 -1 -1 1< 1 -1—1 1已知A =求屮;<1-1 解:A 2=-1 1 _1-1<-1-1-1 _1)-1 -1 -1 -1 1 1 -1 -1-1-1 1丿 —-1-1 -1 1 -1—1、-1 -10、 0 =4E求川;< 1 -1 -1 1 0 0><1 -1 -1 1 0 ()) 解:(A,E) =2 -1 -3 0 1 00 1 -1 -2 1 0<-344 0 0 1丿<0 113 00 1i_ 丄2 2 j_ 1 ~2 Lp 0所以丄11 2(5 _1丁<1><08、已知向量组e = 1 ,&2 =-1 S =3 ,也= -1 ,丄<1;.-1 \ 7(1)求向量组的秩;(2)求向量组的一个最大无关组,并将其余向量用这个最大无关组线性表示;仃 1 1 1、< 1 0 2 0>继续初等行变换得1-13-1—>0 1-1()J 1 1 T 丿J) 00 1丿由此,= 2a x - a 22 01 2 0 1 0 09、计算行列式D =•0 0 A 1<1 1 1 1、q1 1 1 ) 解: 1 -13 -10 -2 2 -2J 11 -1<0 0 0 -2/所以,向量组的秩为3a^a 2.a 4为其一个最大无关组2、 11 0 0 2解:利用性质进行行变换后再展开,化为3阶行列式(a + 6 b + 4、解:AB =— 3 b _ 2丿(a + b 2a-b\ BA =54比较,得a-3 = 5./?-2 = 4,所以Q=&b = 611、已知A -1]1 , FL满足+ AX — E = O , (1)求A 1;-I求矩解:(1) (A,E) =<1 0 <0 -1-1—2、所以,A-1r l<0‘0T丿-2-roo>2 10 A D =0 01 0 0 0 01 0 _ 0A 1 - 00 A 110 -才2 1 00 2 10 0 210 -才2 1 0 =A4-1 0 2 1(\ 1()、已知矩阵4 =11 b\可交换,即AB = BA f求Q, b 2丿p -1 1 -1] 12、已知矩阵A = 12 3 1、3 3 7 1 丿<1 一1 1 -1、<1 -1 1 -1]解:A:二 1 2 3 1 T 0 3 2 23 7 1 <0 64 4丿7 \7<1 —--1 1 -1、T 0 3 2 2<o 0 0 0丿(1)求A的秩; (2)求A的列向量组的一个授大无关组;所以,A的秩为2A的任意两列都是列向量组的一个最大无关组10 0-10 2 0 013、已知/)=0 0 3 -112 3 4求其第4行元素的代数余子式之和, 即求A4I + A42 + A43 + A44;1 0 02 解:A41 + A42 + A43 + = 0 -1 0 0 3 -1 1 11 11 0 按第2行展开= 20 31 1 -1 -1 1<0 1 014、已知A = -1 0 1<0 -1 0 求A?, A’ +24 ;=14了0 1 0、厂0 1 0、<-l 0 解:A2 =-1 0 1 -1 0 1 =0 -2 0 <o -1 0> -1 0丿<1 0 -b15、已知A -1 (3 (1)求A 的秩;(2)求A 的列向量组的一个最大无关组; <1 -1 3 -2、 <1 -1 3 -2、1 -32 -6 0 -2 -1 -4解:A = 1 5 -I 10 0 6 -4 12<3 1 4 2丿<0 4 -5 8丿 ’ 0 1 ()、(-1 0 1 、 ‘0-2 0、 川= -1 0 10-2 0 = 2 0-2<0 -1 」 o i 丿<0 2 0 , -2A 所以 A 3+2A = O O'所以,A"1 12><1—2、 已知矩阵4=10 解:(A,E)=-1-1-1-1-212>‘1-1 3 0-2 -1 T 00 1 、0 0 0 所以,(1) A 的秩为3 (2)第1,2,3列(或第1,3,4列)为列向量组的一个最大无关组 -2、 -4 0。
《线性代数(经)》综合复习资料第一章 n 阶行列式一、判断题 1.1122121233443434a b a b a a b b a b a b a a b b ++=+++ ). ( ) 3、如果行列式0=D ,则D 中必有一行为零。
4. 设A 为n 级方阵:|A|=2 ,则|-3A|= -6 ( ) 5.ij ijA a D ,33⨯=为ij a 的代数余子式,则0231322122111=++A a A a A a . ( )二.填空题:2、设行列式1112132122233132333a a a a a a a a a =,则313233213122322333111213222222222222a a a a a a a a a a a a +++= 。
3、n 个方程、n 个未知量的齐次线性方程组0Ax =有非零解的充要条件是 。
4、设,A B 均为3阶方阵,且2,3A B ==-,则13A B *-= 。
5.设行列式30402222075322D =--,则41424344A A A A +++=____________.三.选择题1、设A 为3阶矩阵且行列式0A =,则下列说法正确的是( ) (A )矩阵A 中元素都等于0;(B )矩阵A 中必有两列元素对应成比例;(C )矩阵A 中必有一列向量是其余列向量的线性组合; (D )矩阵A 中任一列向量是其余列向量的线性组合。
2、一个n 级方阵的行列式的值不为零,经若干次初等变换后,其行列式的值( )(A) 保持不变; (B ) 保持不为零; (C) 可变成任何值; ( D)保持相同的符号。
4. 已知4阶行列式D 的第三行元素分别是1,0,2,-3;第四行元素对应的代数余子式依次是5,10,t ,5,则t=( )(A) 3 (B) 4 (C)5 (D) 65.下列说法错误的是( )(A )若n 阶线性方程组Ax b =的系数矩阵行列式0A ≠,则该方程组存在唯一解; (B )若n 阶线性方程组0Ax =的系数矩阵行列式0A ≠,则该方程组只有零解; (C )一个行列式交换两列,行列式值不变;(D )若一个行列式的一列全为零,则该行列式的值为零。
全国高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A T 表示方阵A 的转置钜阵,A *表示矩阵A 的伴随矩阵,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设101350041A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则T AA =( ) A .-49B .-7C .7D .492.设A 为3阶方阵,且4A =,则2A -=( )A .-32B .-8C .8D .323.设A ,B 为n 阶方阵,且A T =-A ,B T =B ,则下列命题正确的是( )A .(A +B )T =A +BB .(AB )T =-ABC .A 2是对称矩阵D .B 2+A 是对称阵4.设A ,B ,X ,Y 都是n 阶方阵,则下面等式正确的是( )A .若A 2=0,则A =0B .(AB )2=A 2B 2C .若AX =AY ,则X =YD .若A +X =B ,则X =B -A5.设矩阵A =1131021400050000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,则秩(A )=( ) A .1B .2C .3D .4 6.若方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩仅有零解,则k =( )A .-2B .-1C .0D .27.实数向量空间V={(x 1,x 2,x 3)|x 1 +x 3=0}的维数是( )A .0B .1C .2D .38.若方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=( ) A .1B .2C .3D .49.设A =100010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则下列矩阵中与A 相似的是( ) A .100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B .110010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .100011002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D .101020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦10.设实二次型2212323(,,)f x x x x x =-,则f ( )A .正定B .不定C .负定D .半正定二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。
线性代数(经管类)综合习题集(精心整理)线性代数(经管类)综合试题一一、单项选择题(本大题共10小题,每小题2分,共20分)1.设D=M≠0,则D^-1=(B).A.-2MB.2MC.-6MD.6M2.设A、B、C为同阶方阵,若由AB=AC必能推出B=C,则A应为(|A|≠).A.A≠OB.A=OCC.|A|=0D.|A|≠03.设A,B均为n阶方阵,则(A).A.|A+AB|=0,则|A|=0或|E+B|=0B.(A+B)^2=A^2+2AB+B^2C.当AB=O时,有A=O或B=OD.(AB)^-1=B^-1A^-14.二阶矩阵A=[a b。
c d],|A|=1,则A^-1=(B).A.[-d b。
c -a]B.[d -b。
-c a]C.[-d -b。
-c -a]D.[d b。
c a]5.已知向量组{α1.α2.α3}与{β1.β2.β3}等价,则下列说法正确的是(B).A.若两向量组等价,则s = t.B.若两向量组等价,则r(α1.α2) = r(β1.β2).C.若s = t,则两向量组等价.D.若r(α1.α2) =r(β1.β2),则两向量组等价.6.向量组{α1.α2.α3}中,若有向量能由其余向量线性表示,则该向量组(B).A.线性无关B.线性相关C.无法确定D.以上都不对7.设向量组{α1.α2.α3}与{β1.β2.β3}都是n维向量组,且r(α1.α2) = r(β1.β2),则下列成立的是(C).A.r与s未必相等B.r+s=mC.r=sD.r+s<n8.对方程组Ax=b与其导出组Ax=0,下列命题正确的是(D).A.Ax = 0有解时,Ax = b必有解.B.Ax = 0有无穷多解时,Ax = b有无穷多解.C.Ax = b无解时,Ax = 0也无解.D.Ax = b有惟一解时,Ax = 0只有零解.9.设方程组Ax=b有非零解,则k=(D).A.2B.3C.-1D.110.n阶对称矩阵A正定的充分必要条件是(D).A.|A|>0B.存在n阶方阵C使A=CTCC.负惯性指标为零D.各阶顺序主子式均为正数二、填空题(本大题共10小题,每小题2分,共20分)1.设向量组{α1.α2.α3}线性无关,向量β可由α1,α2,α3线性表示,则β的表示式中,α1,α2,α3的系数不能全为__________。
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。