线性代数期末考试复习资料
- 格式:ppt
- 大小:1.74 MB
- 文档页数:43
基本概念下方是正文1. 余子式ij M 和代数余子式ij A ,(1)i j ij ij A M +=-,(1)i j ij ij M A +=-。
2. 对称矩阵:T A A =。
3. 伴随矩阵111*1n n nn A A A A A ⎛⎫ ⎪=⎪ ⎪⎝⎭,组成元素ij A ,书写格式:行元素的代数余子式写在列。
4. 逆矩阵AB BA E ==,称A 可逆。
若A 可逆,则11AA A A E --==.5. 分块对角阵12A O A O A ⎛⎫=⎪⎝⎭,12A A A =⋅,11112A O A O A ---⎛⎫= ⎪⎝⎭。
6. 初等行(列)变换:① 对换两行或两列;② 某行或某列乘以非零常数k ;③ 某行(列)的k 倍加到另一行(列)。
7. 等价矩阵:① 初等变换得来的矩阵;② 存在可逆矩阵,P Q ,使得PAQ B =。
8. 初等矩阵:初等变换经过一次初等变换得来的矩阵,① (,)E i j ;② (())E i k ;③(,())E j i k 。
9. 矩阵的秩:最高阶非零子式的阶数。
1()0,0k k r A k D D +=⇔∃≠∀=。
10. 线性表示:存在12,,,n k k k 使得1122n n k k k βααα=+++,等价于非齐次方程组Ax β=有解12,,,n k k k 。
11. 线性相关:存在不全为0的数12,,,n k k k ,使得11220n n k k k ααα+++=,等价于齐次方程组0Ax =有非零解。
12. 线性无关:11220n n k k k ααα+++=成立120n k k k ⇒====,等价于齐次方程组0Ax =仅有零解。
13. 极大无关组:12,,,n ααα中r 个向量12,,,r βββ满足:① 线性无关;②12,,,n ααα中任意向量可由其表示或12,,,n ααα中任意1r +个向量线性相关,则称12,,,rβββ为12,,,n ααα的极大无关组。
线代复习题
1. 矩阵的基本概念
- 定义矩阵及其元素
- 矩阵的阶数
- 矩阵的表示方法
2. 矩阵的运算
- 矩阵的加法和减法
- 矩阵的数乘
- 矩阵的乘法
- 矩阵的转置
- 矩阵的逆
3. 特殊矩阵
- 零矩阵
- 单位矩阵
- 对角矩阵
- 斜对角矩阵
- 正交矩阵
4. 行列式
- 行列式的定义
- 行列式的计算方法
- 行列式的性质
5. 线性方程组
- 线性方程组的表示
- 高斯消元法
- 线性方程组的解的存在性
- 齐次线性方程组的解
6. 向量空间
- 向量空间的定义
- 基和维数
- 向量的线性组合
- 向量的线性相关性
7. 特征值和特征向量
- 特征值和特征向量的定义
- 特征值和特征向量的计算方法 - 特征多项式
8. 二次型
- 二次型的定义
- 二次型的矩阵表示
- 正定二次型
9. 线性变换
- 线性变换的定义
- 线性变换的矩阵表示
- 线性变换的性质
10. 矩阵分解
- 矩阵的对角化
- 矩阵的谱分解
- 矩阵的QR分解
11. 应用题
- 利用矩阵解决实际问题
- 矩阵在不同领域的应用案例分析
请根据以上复习题进行复习,确保掌握线性代数的基本概念和运算法则。
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1 已知,那么( )A.-24B.-12C.-6D.12 答案 B解析2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____; 213122322333a A a A a A ++=___0___.4. 行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =- (3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素a 33=1,按该行展开,D=a 33A 33,不用忘记a 33。
07-08(1) 线性代数总期末考试复习大纲及复习题: 期末考试题型:判断(约占30%)与选择(约占70%) 期末考试形式:开卷 期末复习各章重点第一章 知道行列式的定义并会用定义计算简单的行列式;熟悉并会用行列式的性 质计算行列式,掌握行列式的依行依列展开定理。
第二章掌握向量线性相关与线性无关的定义并会用定义判断向量组相关与无关;会求向量组的极大无关组以及用极大无关组表示其余的向量;熟悉线性方程组解的一般理论,掌握矩阵的初等变换并会用初等变换求解线性方程组;会用初等变换求矩阵的秩.第三章熟悉矩阵的运算性质,特别是矩阵乘法的特殊性(不满足交换律),知道分块矩阵;掌握逆矩阵的定义、伴随矩阵的概念以及关系式E A A A AA ==**,会用伴随矩阵和初等变换求矩阵的逆矩阵;了解初等矩阵及其性质,会解简单的矩阵方程。
第四章 知道向量空间的定义,掌握基变换公式和向量坐标变换公式。
第五章 掌握矩阵的特征值与特征向量的概念以及矩阵能够对角化的条件,会判断一个矩阵能否对角化;掌握相似矩阵的概念及其性质。
第六章 掌握二次型的概念,掌握二次型与矩阵的对应关系,掌握合同矩阵的概念,会判断简单矩阵的合同,掌握二次型正定负定的条件并会判定二次型是否正定。
复习题1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 3 (对) 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=1或-2 。
(对)3.已知齐次线性方程组32023020x y x y x y z λ+=⎧⎪-=⎨⎪-+=⎩仅有零解,则λ≠ 0(对)4.已知三阶行列式D=123312231,则元素12a =2的代数余子式12A = -1 ;(错)5.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。
《线性代数》期末复习要点第一章行列式1、行列式的计算(略)2、Cramer法则:系数行列式D≠0,则方程租有唯一解。
齐次方程租有非零解,则D=0。
3、Vandermonde行列式。
(略)第二章矩阵1、矩阵的计算(略)2、对称矩阵:A∧T=A。
反称矩阵A∧T=-A。
3、矩阵可逆,则|A|≠0。
4、分块矩阵(略)5、初等变换与初等矩阵(略)6、m×n阶矩阵A,B等价,则当且仅当存在m阶可逆矩阵P和n阶可逆矩阵Q使PAQ=B。
7、(1)可逆矩阵一定满秩,即r=n。
(2)若A的一个r阶子式不等于零,则r(A)≥r,若A的r+1阶子式都为零,则r(A)≤r。
8、矩阵秩的不等式:(1)r(AB)≤min{r(A),r(B)}。
(2)A,B分别为m×n阶和n×k 阶矩阵,r(AB)≥r(A)+r(B)-n。
特别的,当AB=0时,r(A)+r(B)≤n。
(3)A,B 均为m×n阶矩阵,则r(A+B)≤r(A)+r(B)。
第三章n维向量空间1、线性相关:(1)k1,k2,kn不全为0且能使kiα1+k2α2+……+knαn=0成立,则α1,α2,……,αn线性相关。
(2)至少一个向量是其余向量的线性组合。
(3)含零向量的向量组是线性相关的。
(4)n维向量中的两个向量组T1={α1,α2,α3,……,αr},T2={β1,β2,β3,……βs},若T1可由T2线性表示,且r>s,则T1线性相关。
若T1可由T2线性表示但T1线性无关,则r≤s。
(5)n+1个n维向量一定线性相关。
2、(1)零向量自身线性相关。
非零向量自身线性无关。
(2)向量组中一部分线性相关,则整体线性相关,若向量组整体线性无关,则向量组的一部分线性无关。
3、向量组的任意极大线性无关组都与之等价,向量组的任意两个极大线性无关组都等价。
4、矩阵的秩等于其行(列)向量组的秩。
5、向量空间的基与维数,空间向量的坐标(略)6、基变换和坐标变换:{α1,α2,α3,……,αr},{β1,β2,β3,……βsr}是向量空间V的两组基,若有r维方阵C,使[β1,β2,β3,……βs]=[α1,α2,α3,……,αr]C,则称C为从基{α1,α2,α3,……,αr}到基{β1,β2,β3,……βs}的过渡矩阵(基变换矩阵)。
★ 线性代数基本内容、方法及要求第一部分 行列式【主要内容】1、行列式的定义、性质、展开定理、及其应用——克莱姆法则2、排列与逆序3、方阵的行列式4、几个重要公式:(1)T A A =; (2)AA 11=-; (3)A k kA n =; (4)1*-=n A A ; (5)B A AB =; (6)B A BA B A ==0**0; (7)⎩⎨⎧≠==∑=j i j i A A a ni ij ij ,,01 ; (8)⎩⎨⎧≠==∑=j i j i A A a n j ij ij ,,01(其中B A ,为n 阶方阵,k 为常数)5、行列式的常见计算方法:(1)利用性质化行列式为上(下)三角形;(2)利用行列式的展开定理降阶;(3)根据行列式的特点借助特殊行列式的值【要求】1、了解行列式的定义,熟记几个特殊行列式的值。
2、掌握排列与逆序的定义,会求一个排列的逆序数。
3、能熟练应用行列式的性质、展开法则准确计算3-5阶行列式的值。
4、会计算简单的n 阶行列式。
5、知道并会用克莱姆法则。
第二部分 矩阵【主要内容】1、矩阵的概念、运算性质、特殊矩阵及其性质。
2、方阵的行列式3、可逆矩阵的定义、性质、求法(公式法、初等变换法、分块对角阵求逆)。
4、n 阶矩阵A 可逆⇔0≠A ⇔A 为非奇异(非退化)的矩阵。
⇔n A R =)(⇔A 为满秩矩阵。
⇔0=AX 只有零解⇔b AX =有唯一解⇔A 的行(列)向量组线性无关 ⇔A 的特征值全不为零。
⇔A 可以经过初等变换化为单位矩阵。
⇔A 可以表示成一系列初等矩阵的乘积。
5、矩阵的初等变换与初等矩阵的定义、性质及其二者之间的关系。
6、矩阵秩的概念及其求法((1)定义法;(2)初等变换法)。
7、矩阵的分块,分块矩阵的运算:加法,数乘,乘法以及分块矩阵求逆。
【要求】1、 了解矩阵的定义,熟悉几类特殊矩阵(单位矩阵,对角矩阵,上、下三角形矩阵,对称矩阵,可逆矩阵,伴随矩阵,正交矩阵)的特殊性质。
线性代数期末复习一、 填空题1. 设n 阶方阵A 满足A 2-A-2E=0,且︱A ︱=2,则︱A-E ︱=___2. 设A=⎪⎪⎪⎭⎫ ⎝⎛543022001,其伴随矩阵A *,则(A *)-1=___3. 矩阵A 经有限次初等行变换得到矩阵B ,则方程组AX=0与方程组BX=0的关系是___4. 设a 1a 2a 3线性无关,若是a 2-a 1,ka 2-a 3,a 1-a 3也线性无关,则k 应满足的条件为___5. 在秩为r 的矩阵中,是否有等于0的阶r-1子式___6. 设A=⎪⎪⎪⎭⎫ ⎝⎛300044003,E=⎪⎪⎪⎭⎫⎝⎛111,则(A-2E )-1=___ 7. 设A=(a 1,a 2,…,a n )B=(b 1,b 2,…,b n ),其中a 1不全为零,b 1不全为零,则A 的秩R (A )=___8. 设A 、B 都是n 阶菲零方阵,且R (A )=r ,若AB=0,则R (B )应满足的条件为___ 二、 选择题1、设A 为m 阶方阵,B 为n 阶方阵,C=⎪⎪⎭⎫⎝⎛00BA ,则C =___ A 、B A B 、-B AC 、(-1)nm B AD 、(-1)n (n-1)/2B A 2、设A 、B 为n 阶方阵,则必有___A 、B A B A +=+ B 、AB=BAC 、BA AB =D 、(A+B )-1=A -1+B -13、设A 为m*n 矩阵,齐次线性方程组Ax=0仅有零解的充分必要条件是___A、A的列向量组线性无关B、A的列向量组线性相关C、A的行向量组线性无关D、A的行向量组线性相关4、设a1a2…a n为n维向量,则下列结论正确的是___A、k1a1+k2a2+…+k n a n=0,则a1a2…a n线性相关B、对任何一组不全为零的数k1k2…k m都有k1a1+k2a2+…+k n a n≠0,则a1a2…a n线性无关C、a1a2…a n线性相关,则对任何一组不全为零的数k1k2…k m都有k1a1+k2a2+…+k n a n=0成立D、若0a1+0a2+…+0a n=0,则a1a2…a n线性无关5、设η1与η2是非其次线性方程组Ax=β的两个不同的解,ξ1与ξ2时对应的其次线性方程组Ax=0的基础解系,k1与k2是任意实数,则Ax=β的通解为___A、221ηη-+k1ξ1+k2(ξ1+ξ2) B、221ηη++k1ξ1+k2(ξ1-ξ2)C、221ηη-+k1ξ1+k2(η1+η2) D、221ηη++k1ξ1+k2(η1-η2)6、设A为n阶可逆阵(n≥2),A*为A的伴随矩阵,则___A、(A*)*=A n-1AB、(A*)*=A n+1AC、(A*)*=A n-2AD、(A*)*=A n+2A7、设A、B、C是n阶方阵,E为n阶单位阵,若ABC=E,则必有__A、ACB=EB、CBA=EC、BAC=ED、BCA=E8、设n阶方阵A与B等价,则___A 、A =B B 、A ≠BC 、若A ≠0,则必有B ≠0D 、A =-B 三、计算1、计算下列行列式(1)n001030100211111⋯⋯⋯⋯⋯⋯⋯⋯⋯(2)1111111111111111---+---+--x x x x(3)D=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0111110111110111110111110 2、已知A=⎪⎪⎪⎭⎫ ⎝⎛---433312120,B=⎪⎪⎭⎫⎝⎛-132321,求X 使得XA=B3、解方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 4、(1)设n 阶方阵满足A+B=AB ,证明:A-E 可逆,并求(A-E )-1 (2)证明:m 个n 维向量,当m 〉n 时,它们线性相关 5、设E+AB 可逆,证明E+BA 也可逆,且(E+BA )-1=E-B (E+BA )-1A6、设A=⎪⎪⎭⎫⎝⎛--82593122,求一个4*2矩阵B ,使得AB=0,且R (B )=27、求下列向量组的一个最大无关组,并以此最大无关组将其余向量线性表示出。
工程数学(线性代数)复习资料一、矩阵和行列式1、了解矩阵的相关概念;矩阵的加、减、数乘以矩阵和矩阵的乘法;会求逆矩阵;2、了解行列式相关性质及利用行列式的性质进行运算;3、理解n 级排列的定义,会求排列的逆序数并判断是奇排列还是偶排列;4、会利用克莱姆法则判断方程组的解并解方程。
二、向量空间1、了解向量的相关概念;熟悉向量的运算;2、理解向量组线性相关和线性无关的定义;并能判断向量组线性相关和线性无关;3、了解向量组秩的概念并能求出其秩。
三、矩阵的秩与线性方程组1、了解矩阵秩的概念并能利用矩阵的初等行变换求矩阵秩;2、利用高斯消元法解线性方程组;3、利用矩阵的秩来判断齐次解线性方程组和非齐次解线性方程组解的结构。
四、特征值与特征向量1、熟悉特征值与特征向量的基本概念、性质及运算;2、了解相似矩阵的概念、方阵可对角化的充要条件;3、了解内积、正交向量组与正交矩阵的概念;能利用施密特正交化方法把向量组化成正交单位向量组。
附复习题一、单项选择题1.设A 为3阶方阵,且|A |=2,则|2A -1|=( D ) A .-4 B .-1 C .1D .42.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A3.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫⎝⎛-13110 D .⎪⎪⎪⎭⎫ ⎝⎛-01311 4.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D )A .-3B .-1C .1D .35.设矩阵A ,B ,C 为同阶方阵,则(ABC )T =( B ) A .A T B T C T B .C T B T A T C .C T A T B T D .A T C T B T6.设向量组α1,α2,…,αs 线性相关,则必可推出( D ) A .α1,α2,…,αs 中至少有一个向量为零向量 B .α1,α2,…,αs 中至少有两个向量成比例C .α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合D .α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合7.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( C ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关 D .A 的行向量组线性相关8.设⎪⎪⎪⎪⎪⎭⎫⎝⎛=3500030000200041A ,则A 的特征值是( C ) A .2,2,1,1 B .3,2,1,1 C .3,3,2,1 D .3,2,2,1 9.设行列式D=333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( C ) A .-15 B .-6 C .6 D .1510.设3阶方阵A 的秩为2,则与A 等价的矩阵为( B) A .⎪⎪⎪⎭⎫ ⎝⎛000000111 B .⎪⎪⎪⎭⎫ ⎝⎛000110111 C .⎪⎪⎪⎭⎫ ⎝⎛000222111 D .⎪⎪⎪⎭⎫ ⎝⎛333222111 11.向量组α1,α2,…αs ,(s >2)线性无关的充分必要条件是( D ) A .α1,α2,…,αs 均不为零向量B .α1,α2,…,αs 中任意两个向量不成比例C .α1,α2,…,αs 中任意s-1个向量线性无关D .α1,α2,…,αs 中任意一个向量均不能由其余s-1个向量线性表示 12.设A ,B 为可逆矩阵,则分块矩阵00A B ⎛⎫⎪⎝⎭的逆矩阵为( A ). A .1100A B --⎛⎫⎪⎝⎭ B .1100B A --⎛⎫⎪⎝⎭ C 1100A B --⎛⎫ ⎪⎝⎭ D .1100B A--⎛⎫ ⎪⎝⎭ 13.设A ,B 均为方阵且可逆,满足AXB C =则下列命题中正确是( C ) A .11X A B C --= B .11X CA B --= C .11X A CB --=D .11X B CA --=14.设A ,B 均为n 阶方阵且可逆,A 为A 的行列式,则下列命题中不正确是( B )A .TA A =B .A A λλ= C .AB A B = D .11AA-=15.设A 、B 、C 均为n 阶方阵,则下列命题中不正确是( C ) A .()()A B C A B C ++=++ B .()()AB C A BC = C .AB BA = D .()A B C AB AC +=+ 16.设A 、B 为n 阶方阵,满足0AB =,则必有( B )A .0A =或0B = B .0A =或0B =C .0BA =D .0A B +=17.3阶行列式j i a =011101110---中元素21a 的代数余了式21A =( B ) A .-2 B .-1 C .1 D .218.设A 为m n ⨯矩阵,且非奇次线性方程组Ax b =有唯一解,则必有( C )A .m n =B .秩()A m =C .秩()A n =D .秩()A n <19.设n 阶可逆矩阵A 、B 、C 满足ABC =E ,则B -1=( A ) A .A -1C -1 B .C -1A -1 C .AC D .CA 20.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法惟一,则向量组4321,,,αααα的秩为( C )A .1B .2C .3D .4 21.设向量组4321,,,αααα,下列命题中正确是( C ) A .12233441,,,αααααααα++++线性无关 B .12233441,,,αααααααα----线性无关 C .12233441,,,αααααααα+++-线性无关 D .12233441,,,αααααααα++--线性无关22.矩阵563101,121-⎛⎫ ⎪- ⎪ ⎪⎝⎭的特征值是( A ) A .1232λλλ=== B .1231λλλ=== C .1231,2λλλ=== D .1233λλλ=== 23.排列()1,2,3,,12,2,,6,4,2⋅⋅⋅-⋅⋅⋅n n 的逆序数为( C ) A .()1+n n B .()1-n n C .2n D .n24.排列(1,8,2,7,3,6,4,5)是( A )A .偶排列B .奇排列C .非奇非偶D .以上都不对 25.齐次线性方程组0=AX 有零解的充要条件是( A ) A .0≠A B .0=A C .1=A D .1≠A二、填空题1.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =( 0 ) 2.设矩阵A =⎪⎪⎭⎫ ⎝⎛4321,则行列式|A TA |=( 4 )3.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为 ( 0 )4.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵B=A-E ,则矩阵B 的秩r(B )=( 2 )5.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= ( 4 )6.已知某个3元非齐次线性方程组Ax=b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫ ⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为( 0 )7.设⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a a A 使()3=A R ,则a (2,1≠≠a a ) 8.设矩阵A =⎪⎭⎫ ⎝⎛--311102,B =⎪⎭⎫ ⎝⎛753240,则A T B = 33335791119--⎛⎫ ⎪ ⎪ ⎪---⎝⎭9.方程组12340x x x x +=⎧⎨-=⎩的基础解系为(11100ξ-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 20011ξ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭).10.设向量组α1=(6,4,1,-1,2),α2=(1,0,2,3,4),α3=(1,4,-9,-6,22)α4=(7,1,0,-1,3),则向量组的秩为 ( 4 )11.设A 可逆,A λ可逆,则A λ1()A λ-=(11A λ-).12.设矩阵A=⎪⎪⎭⎫ ⎝⎛4321,P=⎪⎪⎭⎫ ⎝⎛1011,则TAP =3274⎛⎫⎪⎝⎭. 13.设矩阵A=020003400⎛⎫ ⎪⎪ ⎪⎝⎭,则A -1=001/41/20001/30⎛⎫ ⎪ ⎪ ⎪⎝⎭ 14.111122220000000a b c d a b c d =(()()512211221a b a b c d c d ∂=--) 15.使排列1274569j k 为偶排列,则j =( 8 )k =( 3 ).16.已知3阶行列式33323123222113121196364232a a a a a a a a a =6,则333231232221131211a a a a a a a a a =(16). 17.若0λ=是方阵A 的一个特征值,则()det A =( 0 ).18.设A =⎪⎪⎪⎭⎫ ⎝⎛-0121,则A 2-2A +E =2211--⎛⎫⎪-⎝⎭.19.若向量组()11,1,0t ∂=+,()21,2,0∂=,()230,0,1t ∂=+线性相关,则t =( 1 ).20.设向量组1α=(a ,1,1),2α=(1,-2,1), 3α=(1,1,-2)线性相关,则数a =(-2).21.若向量组U 与向量组(1,2,3,4),(2,3,4,5),(0,0,1,2)等价,则U 的秩(3). 22.设A 为3阶方阵,()det 3A =-,则()det 2A -=( 24 )23.方程组12312321231x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩,当λ=( 1 )时有无穷多解。