(最新)中考数学二轮复习专题强化训练解答题重难点题型突破超全包含各种类型专题带答案
- 格式:pdf
- 大小:17.22 MB
- 文档页数:79
中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。
4. 解方程: 211()65()11x x +=--中考数学专题复习之二:待定系数法对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。
2024陕西中考数学二轮专题训练题型一二次函数的图象与性质1.已知二次函数y=-x2+bx+c的图象如图所示,则b,c的值可能是()A.b=-3,c=3B.b=3,c=-3C.b=3,c=3D.b=-3,c=-3第1题图2.如图所示的四个函数图象中,分别对应的是①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a,b,c,d的大小关系是()A.a>b>c>dB.a>b>d>cC.b>a>c>dD.b>a>d>c第2题图3.已知二次函数y=2x2-4x+1,则下列说法正确的是()A.该函数图象开口向下B.该函数图象可由函数y=x2平移得到C.该函数图象的顶点在x轴下方D.y有最大值-14.在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:x…-1134…y…-6m n-6…则m、n的大小关系为()A.m<nB.m>nC.m=nD.无法确定5.若二次函数y=ax2+2ax+m(a<0)的图象经过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<0或x>2B.-4<x<2C.x<-4或x>2D.0<x<26.已知抛物线C2与抛物线C1:y=x2-2x+m-1关于x轴对称,且抛物线C2经过点(1,4),则m的值为()A.-2B.-12C.2 D.127.在平面直角坐标系中,若点A(a,b)关于y轴对称的点在第一象限,则抛物线y=ax2+bx +1的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限8.已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3B.-1C.4D.4或-19.抛物线y=x2+2x+a-2与坐标轴有且仅有两个交点,则a的值为()A.3B.2C.2或-3D.2或310.已知二次函数y=(x+m)(x-m-4),点A(-1,a),B(2,b),C(3,c)是该函数图象上的三个点,则下列结论正确的是()A.a>b>cB.a>c>bC.b>a>cD.b>c>a11.将抛物线y=x2+2mx+m2-1向左平移3个单位,平移后的抛物线对称轴为直线x=1,则平移后的抛物线与y轴的交点坐标为()A.(0,0)B.(0,4)C.(0,15)D.(0,16)12.已知抛物线y=ax2+x-a(a≠0)与y轴的交点在x轴的下方,则下列说法中正确的是()A.该抛物线的顶点一定在第一象限B.该抛物线的顶点一定在第二象限C.该抛物线的顶点一定在第三象限D.该抛物线的顶点所在象限不确定13.在平面直角坐标系中,有两条抛物线关于原点中心对称,且它们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=x2+8x+m,则m的值为()A.-13或-19B.-13或19C.13或19D.13或-1914.若抛物线y=x2+bx+c与x轴两个交点间的距离为4,对称轴为直线x=2,P为这条抛物线的顶点,则点P关于x轴的对称点的坐标是()A.(2,4)B.(-2,4)C.(-2,-4)D.(2,-4)15.二次函数y=ax2-2ax+c(a>0)的图象过A(-3,y1),B(-1,y2),C(2,y3),D(4,y4)四个点,下列说法一定正确的是()A.若y1y2>0,则y3y4>0B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0D.若y3y4<0,则y1y2<016.如图,抛物线y=ax2+bx+c经过点(1,0),则下列结论:①ab<0;②3a+c>0;③当-2<x<1时,y随x的增大而减小;④若点M(m,2),N(n,2)是该抛物线上的两点,则-4<m+n<-2.其中正确结论的个数是()第16题图A.0个B.1个C.2个D.3个17.已知抛物线y=ax2+bx+c上的部分点的横坐标x与纵坐标y的对应值如下表:x…-10123…y…30-1m3…以下结论正确的是()A.抛物线y=ax2+bx+c的开口向下B.当x<3时,y随x增大而增大C.方程ax2+bx+c=0的根为0和2D.当y>0时,x的取值范围是0<x<218.下列关于二次函数y=-12x2-6x+2m-6的图象与x轴交点的判断,说法正确的是()A.当m≤-6时,没有交点B.当m=-6时,只有一个交点,且它位于y轴右侧C.当m>3时,有两个交点,且它们均位于y轴右侧D.当-6<m<3时,有两个交点,且它们均位于y轴左侧参考答案1.C【解析】∵抛物线的对称轴为直线x =-b 2a =b2>0,∴b >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0.∴b ,c 的值可能为b =3,c =3.2.A3.C 【解析】∵a =2>0,∴该函数图象开口向上,A 错误;由平移规律可得,二次函数图象平移时,开口大小不会发生改变,因此二次函数y =2x 2-4x +1图象不能由函数y =x 2平移得到,B 错误;∵y =2x 2-4x +1=2(x -1)2-1,∴顶点坐标为(1,-1),在x 轴下方,C 正确;y 的最小值为-1,D 错误.4.B 【解析】由表格可得,二次函数y =-x 2+bx +c 图象的对称轴是直线x =-1+42=32,∵二次函数y =-x 2+bx +c 的开口向下,∴该函数图象上的点距离对称轴越近,函数值越大.∵32-1=12,3-32=32,∴m >n .5.C 【解析】∵抛物线y =ax 2+2ax +m 的对称轴为直线x =-2a2a=-1,抛物线与x 轴的一个交点坐标为(2,0),∴抛物线与x 轴的另一个交点坐标为(-4,0),∵a <0,∴抛物线开口向下,∴当x <-4或x >2时,y <0.6.A【解析】∵抛物线C 1与抛物线C 2关于x 轴对称,∴抛物线C 2的表达式为y =-x 2+2x -m +1,∵抛物线C 2经过点(1,4),∴-1+2×1-m +1=4,解得m =-2.7.A【解析】∵点A (a ,b )关于y 轴对称的点在第一象限,∴点A 在第二象限,∴a <0,b >0,∵抛物线y =ax 2+bx +1的顶点坐标为(-b 2a ,4a -b 24a ),∴-b2a >0,4a -b 24a >0,∴抛物线y =ax 2+bx +1的顶点在第一象限.8.C【解析】∵二次函数y =ax 2+4x +a -1有最小值2,∴a >0,y 最小值=4ac -b 24a=4a (a -1)-424a =2,整理,得a 2-3a -4=0,解得a =-1或a =4,∵a >0,∴a =4.9.D【解析】由题可知,该抛物线的对称轴为直线x =-b2a=-1,且抛物线开口向上,若图象与坐标轴有且仅有两个交点,则有两种情况:第一种,图象经过原点,则a =2;第二种,顶点在x 轴上,0=1-2+a -2,则a =3.10.B【解析】∵y =(x +m )(x -m -4),∴该二次函数图象与x 轴的交点为(-m ,0),(m+4,0),∴该二次函数图象的对称轴为直线x =-m +m +42=2.∵二次函数图象的开口向上,∴距离对称轴越远的点,函数值越大,∴a >c >b .11.A 【解析】y =x 2+2mx +m 2-1=(x +m )2-1,∵将抛物线y =x 2+2mx +m 2-1向左平移3个单位,平移后的抛物线对称轴为直线x =1,∴平移后的抛物线表达式为y =(x -1)2-1=x 2-2x ,∴平移后的抛物线与y 轴的交点坐标为(0,0).12.C【解析】∵抛物线y =ax 2+x -a 与y 轴的交点在x 轴下方,∴-a <0,∴a >0.由题意得,抛物线的顶点坐标为(-12a ,-4a 2-14a ).∵a >0,-4a 2-1<0,∴-12a <0,-4a 2-14a <0,∴该抛物线的顶点一定在第三象限.13.C【解析】∵y =x 2+8x +m =(x +4)2-16+m ,∴该抛物线的对称轴是直线x =-4,∵有两条抛物线关于原点中心对称,且它们的顶点相距10个单位长度,∴顶点到原点的距离是5,∴顶点的纵坐标的绝对值是:52-42=3,∴-16+m =±3,解得m 1=13,m 2=19.14.A【解析】∵抛物线y =x 2+bx +c 与x 轴两个交点间的距离为4.对称轴为直线x =2,∴抛物线与x 轴的两个交点分别为(0,0),(4,0),∴抛物线的表达式为y =x 2-4x =(x -2)2-4,∴顶点P 的坐标为(2,-4),∴点P 关于x 轴的对称点的坐标是(2,4).15.C【解析】∵--2a2a=1>0,∴二次函数图象的对称轴为直线x =1,∵a >0,∴由二次函数的增减性及对称性得y 1>y 4>y 2>y 3,∵y 1y 2>0,∴y 1、y 2同号,可推出y 4与y 1、y 2同号,而y 3不确定,∴A 选项错误;∵y 1y 4>0不能推出y 2、y 3同号,∴B 选项错误;∵y 2y 4<0,∴y 2、y 4异号,∵y 4>y 2,∴y 4>0,y 2<0,∴y 1>0,y 3<0,即y 1y 3<0,∴C 选项正确;∵y 3y 4<0,∴y 3、y 4异号,∵y 4>y 3,∴y 4>0,y 3<0,∴y 1>0,而y 2不确定,∴D 选项错误.16.C 【解析】①∵抛物线开口向下,∴a <0.∵抛物线的对称轴在y 轴左侧,∴-b2a<0,∴b <0,∴ab >0,故①错误;②∵抛物线与x 轴的一个交点为(1,0),∴a +b +c =0,又∵抛物线的对称轴在直线x =-2和直线x =-1之间,∴-b2a<-1,∴b <2a <0,∴0=a +b +c <a +2a +c =3a +c ,∴3a +c >0,故②正确;③当-2<x <-b2a 时,y 随x 的增大而增大,当-b2a<x <1时,y 随x 的增大而减小,故③错误;④∵点M (m ,2),点N (n ,2)是抛物线上的两点,∴点M ,N 关于抛物线对称轴对称,∴-2<m +n2<-1,∴-4<m +n <-2,故④正确.∴正确的结论有2个.17.C 【解析】∵抛物线过点(-1,3),(0,0),(1,-1),∴将(-1,3),(0,0),(1,-1)代入y =ax 2+bx +c -b +c =3=0+b +c =-1=1=0=-2,∴抛物线的表达式为y =x 2-2x ,∵a >0,∴抛物线y =ax 2+bx +c 的开口向上,故A 选项错误;∵-b2a =--22×1=1,抛物线对称轴为直线x =1,且抛物线开口向上,∴x >1时,y 随x 的增大而增大,故B 选项错误;令x 2-2x =0,解得x 1=0,x 2=2,∴该方程的根为0和2,故C 选项正确;当y =x 2-2x >0时,x 的取值范围为x >2或x <0,故D 选项错误.18.D【解析】∵b 2-4ac =24+4m ,∴当m ≤-6时,24+4m ≤0,该函数图象与x 轴有一个交点或没有交点,故A 选项错误;当m =-6时,y =-12(x +6)2,令y =0,解得x 1=x 2=-6,∴该函数图象与x 轴只有一个交点,且在y 轴左侧,故B 选项错误;当m >3时,24+4m >0,2m -6>0,∴该函数图象与x 轴有两个交点,与y 轴交于正半轴.∵该函数图象的对称轴为直线x =-6,∴该函数图象与x 轴的交点位于y 轴两侧,故C 选项错误;当-6<m <3时,-18<2m -6<0,24+4m >0,∴该函数图象与x 轴有两个交点,与y 轴交于负半轴.∵对称轴在y 轴左侧,∴该函数图象与x 轴的交点均位于y 轴左侧,故D 选项正确.。
2024陕西中考数学二轮专题训练方程、不等式的实际应用考向一购买、销售问题构建“总价=单价×数量”关系1.[数学文化]《九章算术》中方程篇记述这样一道题,原文如下:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?”大意为:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?请解答上述问题.2.某超市购进了一批袋装的米脂小米,平均每天可销售40袋,每袋盈利15元,为扩大销售,增加盈利,尽快减少库存,超市决定采取适当的降价措施.经调查发现,每袋米脂小米每降价2元,超市平均每天可多售出10袋.若超市这批米脂小米平均每天要盈利660元,则每袋米脂小米应降价多少元?3.某旅行社今年5月1日租用A、B两种客房一天,供当天使用.下面是有关信息:第3题图请根据上述信息,分别求今年5月1日该旅行社租用的A、B两种客房每间客房的租金.考向二行程问题构建“路程=速度×时间”关系4.我国元朝的数学著作《算学启蒙》中记载了一道追及问题,陈老师改编如下:良马每天跑240里,驽马每天跑150里.良马和驽马从同地出发,驽马先走12天,问良马追上驽马需要多少天?5.小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?6.请根据下面对话,解答问题:第6题图求小明今天的速度.考向三工程问题构建“工作总量=工作效率×工作时间”关系7.随着科技的发展,小型收割机越来越受农民的欢迎,它不仅突破了农村无法进入大型收割机收割的作业瓶颈,推进了收获作业的机械化,缩短了劳动周期,还让人们从繁重的体力劳动中解放出来.已知一收割机收割一块麦田,上午收割了30%,下午收割了40%,结果还剩9亩没有收割,求这块麦田共有多少亩?8.为稳步推进5G网络建设,深化共建共享,项目承包单位派遣甲、乙两队合作完成50km 的工程,已知甲队每天能完成的工程量是乙队的2倍,当两队分别各完成25km的工程时,甲队比乙队少用5天.求甲、乙两队每天能完成的工程量是多少?考向四几何图形构建“面积”关系9.小明家在装修时,小明想知道墙砖的尺寸大小,但是爸爸忽然忘记了,只记得地砖的尺寸,好学的小明计划利用地砖测量墙砖的尺寸,他将4块大小相等的矩形墙砖按如图所示放置在600mm×1200mm的矩形地砖上,恰好发现上下重合,请你根据以上信息,求出墙砖的尺寸.第9题图10.全运会期间,为方便观看比赛的观众停车,举办单位利用一块矩形空地建了一个临时的惠民停车场,其布局如图所示,已知停车场的长为52m,宽为28m,阴影部分设计为停车位,其余部分是等宽的通道,已知停车位占地面积为640m2.求通道的宽是多少米?第10题图考向五生产分配问题11.[数学文化]我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?12.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?参考答案1.解:设牛、羊每头各值金x两、y两,x+2y=10x+5y=8,=3421=2021,答:牛每头值金3421两,羊每头值金2021两.2.解:设每袋米脂小米应降价x元,由题意得,(15-x)(40+x2×10)=660,解得x1=3,x2=4,∵该超市要扩大销售,增加盈利,尽快减少库存,∴x应取4,即每袋米脂小米应降价4元.3.解:设今年5月1日该旅行社租用的A种客房每间租金为x元,则B种客房每间租金为(x-40)元,根据题意得,2000x=1600x-40,解得x=200,经检验,x=200是原分式方程的解,且符合题意,∴200-40=160(元).答:今年5月1日该旅行社租用的A种客房每间租金为200元,B种客房每间租金为160元.4.解:设良马追上驽马的时间为x天,根据题意可得,240x=150(x+12),解得x=20,答:良马追上驽马需要20天.5.解:设小颖上坡用了x分钟,下坡用了y分钟,+y=16x+200y=1880,==5.答:小颖上坡用了11分钟,下坡用了5分钟.6.解:设小明原来的速度为x km/h,则今天的速度为1.2x km/h,由题意得151.2x+16=15x,解得x=15,经检验,x=15是原分式方程的解,且符合题意,∴1.2x=18,答:小明今天的速度为18km/h.7.解:设这块麦田共有x亩,由题意得x-30%x-40%x=9,解得x=30,答:这块麦田共有30亩.8.解:设乙队每天能完成的工程量是x km,则甲队每天能完成的工程量是2x km,由题意得25x-252x=5,解得x=2.5,经检验,x=2.5是原分式方程的解,且符合题意.∴2x=5,答:甲队每天能完成的工程量是5km,乙队每天能完成的工程量是2.5km.9.解:设墙砖的长为x mm,宽为y mm,由题意得=600+2y=1200=600=300,答:墙砖的长为600mm,宽为300mm.10.解:设通道的宽是x米,则阴影部分可合成长为(52-2x)米,宽为(28-2x)米的矩形,依题意得:(28-2x)(52-2x)=640,整理得x2-40x+204=0,解得x1=6,x2=34.又∵28-2x>0,∴x<14,∴x=6.答:通道的宽是6米.11.解:设共有x人,y辆车,(y-2)=x y+9=x,=39=15,答:共有39人,15辆车.12.解:设原先每天生产x万剂疫苗,则现在每天生产(1+20%)x万剂疫苗,由题意可得:240(1+20%)x+0.5=220x,解得x=40,经检验,x=40是原分式方程的解,且符合题意.答:原先每天生产40万剂疫苗.。
第二轮复习一 化归思想Ⅰ、专题精讲:数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等. Ⅱ、典型例题剖析【例1】如图3-1-1,反比例函数y=-8x 与一次函数y=-x+2的图象交于A 、B 两点.(1)求 A 、B 两点的坐标; (2)求△AOB 的面积.解:⑴解方程组82y x y x ⎧=-⎪⎨⎪=-+⎩ 得121242;24x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 所以A 、B 两点的坐标分别为A (-2,4)B(4,-2(2)因为直线y=-x+2与y 轴交点D 坐标是(0, 2), 所以11222,24422AOD BOD S S ∆∆=⨯⨯==⨯⨯= 所以246AOB S ∆=+=点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标. 【例2】解方程:22(1)5(1)20x x ---+= 解:令y= x —1,则2 y 2—5 y +2=0. 所以y 1=2或y 2=12 ,即x —1=2或x —1=12 .所以x =3或x=32 故原方程的解为x =3或x=32点拨:很显然,此为解关于x -1的一元二次方程.如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未·知项的都是含有(x —1)所以可将设为y ,这样原方程就可以利用换元法转化为含有y 的一元二次方程,问题就简单化了. 【例3】如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长.解:过 D 作DE ⊥AC 交BC 的延长线于E ,则得AD=CE 、AC=DE .所以BE=BC+CE=8. 因为 AC ⊥BD ,所以BD ⊥DE .因为 AB=CD , 所以AC =BD .所以GD=DE . 在Rt △BDE 中,BD 2+DE 2=BE 2所以BDBE=4 2 ,即AC=4 2 . 点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决.【例4】已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc ++=++,试判断△ABC 的形状. 解:因为222a b c ab ac bc ++=++, 所以222222222a b c ab ac bc ++=++, 即:222()()()0a b b c a c -+-+-=所以a=b ,a=c , b=c所以△ABC 为等边三角形.点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题.【例5】△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。
2024年中考数学二轮复习题型全通关专练—作图题(含答案)几何直观是初中数学核心素养之一,几何直观主要是指运用图表描述和分析问题的意识与习惯.能够感知各种几何图形及其组成元素,依据图形的特征进行分类;根据语言描述画出相应的图形,分析图形的性质;建立形与数的联系,构建数学问题的直观模型;利用图表分析实际情境与数学问题,探索解决问题的思路.几何直观有助于把握问题的本质,明晰思维的路径.考点讲解:五种基本尺规作图:作一条线段等于已知线段,作一个角等于已知角,作已知角的平分线,作已知线段的垂直平分线,过一点作已知直线的垂线.有时没有直接给出作图的方式,需要根据已知条件分析得出作基本作图中的哪一种或几种.【例1】(2023·陕西·统考中考真题)1.如图.已知锐角ABC ,48B ∠=︒,请用尺规作图法,在ABC 内部求作一点P .使PB PC =.且24PBC ∠=︒.(保留作图痕迹,不写作法)【变1】(2021·江苏南京·统考中考真题)2.如图,已知P 是O 外一点.用两种不同的方法过点P 作O 的一条切线.要求:试卷第2页,共14页(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.考点讲解:一般的网格是由全等的正方形构成的,可视网格的边长为单位“1”,根据正方形的性质,结合作图目标展开作图.常见的是利用网格作三视图,利用网格作作特殊的三角形和四边形,利用网格设计图案等.【例1】(2023·陕西西安·校考三模)3.如图是由若干个完全相同的小正方体组成的一个几何体.(1)请结合俯视图画出这个几何体的主视图和左视图.(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.【变1】(2023·江苏盐城·校考二模)4.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.A 、B 、C 三点是格点,仅用无刻度尺的直尺.......在给定网格中画图,画图过程用虚线表示,画图结(1)如图1,点P 在线段AB 上,请在图1中完成以下作图:画出一点E ,使BE=BP :(2)在图2中完成以下作图:在线段BC 上画出一点考点讲解:图形的变换包括平移、旋转、对称、位似,根据这些变换的性质作图.(1)将ABC 向上平移4个单位,再向右平移(2)请画出ABC 关于y 轴对称的222A B C △(3)将222A B C △着原点O 顺时针旋转90︒,得到考点讲解:描点作图是针对函数展开的.画函数图象的步骤是:列表,描点,连线.试卷第4页,共14页试卷第6页,共14页结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为______个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约______个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C ______0.990(填“>”“=”或“<”).(2022·广西贵港·中考真题)9.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m ,n .求作ABC ,使90,,A AB m BC n ∠=︒==.(2021·山东青岛·统考中考真题)10.已知:O ∠及其一边上的两点A ,B .求作:Rt ABC ,使90C ∠=︒,且点C 在O ∠内部,BAC O ∠=∠.(2023·山东滨州·统考中考真题)11.(1)已知线段,m n ,求作Rt ABC △,使得90,,C CA m CB n ∠=︒==;(请用尺规作图,保留作图痕迹,不写作法.)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在(2023·江苏·统考中考真题)△12.如图,在Rt ABC,使得圆心(1)尺规作图:作O保留作图痕迹,标明相应的字母,不写作法)试卷第8页,共14页(1)请用无刻度的直尺和圆规作出(2)若(1)中所作的角平分线与边(2023·山东青岛·统考中考真题)(2023·黑龙江哈尔滨·统考中考真题)16.如图,方格纸中每个小正方形的边长均为均在小正方形的顶点上.试卷第10页,共14页(1)在方格纸中画出ABE ,且AB =(2)在方格纸中将线段CD 向下平移MN (点C 的对应点是点M ,点D 长.(1)在图①中,ABC 的面积为92;(2)在图②中,ABC 的面积为5(3)在图③中,ABC 是面积为52的钝角三角形.(2023·湖北·统考中考真题)(1)在图1中作出以BE为对角线的一个菱形BMEN(2)在图2中作出以BE为边的一个菱形BEPQ (2023·湖北武汉·校联考模拟预测)(1)在图中画一个等腰三角形画出该三角形绕矩形ABCD试卷第12页,共14页(2)在图中画一个Rt PQR △,使45P ∠=︒,点Q 在BC 上,点R 在AD 上,再画出该三角形向右平移1个单位后的图形.(2023·湖北宜昌·统考中考真题)21.如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA 绕点O 顺时针旋转90︒后得到的线段OB ,连接AB ;(2)画出与AOB 关于直线OB 对称的图形,点A 的对称点是C ;(3)填空:OCB ∠的度数为_________.(2023·山东枣庄·统考中考真题)22.(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.(2020·宁夏·中考真题)23.在平面直角坐标系中,ABC 的三个顶点的坐标分别是(1,3),(4,1),(1,1)A B C .(1)画出ABC 关于x 轴成轴对称的111A B C △;(2)画出ABC 以点O 为位似中心,位似比为1∶2的222A B C △.(2023·重庆·统考中考真题)24.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.(2023·四川达州·统考中考真题)25.【背景】在一次物理实验中,小冉同学用一固定电压为12V 的蓄电池,通过调节滑试卷第14页,共14页(2)【探究】根据以上实验,构建出函数()1202y x x =≥+的图象与性质.①在平面直角坐标系中画出对应函数②随着自变量x 的不断增大,函数值y 的变化趋势是(3)【拓展】结合(2)中函数图象分析,当x参考答案:【点睛】本题考查了作图合几何图形的基本性质把复杂作图拆解成基本作图,2.答案见解析.【分析】方法一:作出答案第2页,共30页【详解】解:作法:作射线PO ,交O 于点,M N ,以P 为圆心,长为半径画弧交P 于点A ,连接,PA OA ,OA 交O 于点12OB OA =,则PB OA ⊥,PB 即为所求.【点睛】本题考查了作图——复杂作图,涉及垂直平分线的作法,角平分线的作法,等腰三角形的作法,圆的作法等知识点.复杂作图是在五种基本作图的基础上进行作图.键是熟悉基本几何图形的性质,结合基本几何图形的性质把复杂作图拆解成基本作图,操作.(2)2【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;据此可画出图形.(2)结合主视图和俯视图不变得出可在第二层第1列第一行加一个,第三层第1列第一行加一个,共2个.【详解】(1)解:画图如下:(2)解:主视图和俯视图不变得出可在第二层第1列第一行加一个,第三层第1列第一行加一个,共2个.故答案为:2.【点睛】本题考查三视图的画法,以及根据三视图求立方体个数,理解三视图的意义,掌握简单组合体三视图的画法是正确解答的关键.4.(1)见解析(2)见解析【分析】(1)将点A向右平移5个格得到点D,连接CD即得菱形ABCD,连接BD、CP交于点Q,作射线AQ交BC于点E,点E即为所作;(2)连接AC交格点于点M,连接BD交格点于点N,作射线AN交BC于点F,则∠=∠,即点F即为所作.BAF FCN(2)如图,点F即为所作.【点睛】题考查作图﹣应用与设计,涉及菱形的判定与性质、全等三角形、等腰三角形的性质解直角三角形,解题的关键是理解题意,灵活运用所学知识找到关键信息作图..(1)见解析(2)见解析(3)134π答案第4页,共30页(2)如图所示,222A B C △即为所求;(3)将222A B C △着原点O 顺时针旋转90︒,得到设 23A A 所在圆交3OC 于点D ,交2OC 于点E 23OA OA =,23OC OC =,23C E C D ∴=,3290A OA ∠=︒ ,2390C OC ∠=︒,32A OD A OE ∴∠=∠,32A D A E ∴=,3322A C D A C E S S ∴= 曲边曲边,332OC =,OD =π4答案第6页,共30页答案第8页,共30页故答案为:4;②根据表格描点再连接起来,如图所示,;(3)解:①当1x ≥时,2(1)224y x x =--+=-+,故答案为:24x -+;②当1x <时,2(1)22y x x =-+=,当1x =时,2y =,当0x =时,0y =,当2x =时,2240y =-⨯+=,描点如图所示,;(4)解:由解析式得,当x b ≥时,y ax ab c =-+,当0a >时,x b ≥时,y 随x 增大而增大,当a<0时,x b ≥时,y 随x 增大而减小,当x b ≤时,y ax ab c =-++,当0a >时,x b ≤时,y 随x 增大而减小,当a<0时,x b ≤时,y 随x 增大而增大,故答案为:当0a >时,x b ≥时,y 随x 增大而增大,当a<0时,x b ≥时,y 随x 增大而减小,当0a >时,x b ≤时,y 随x 增大而减小,当a<0时,x b ≤时,y 随x 增大而增大(写其中任意一条即可).【点睛】本题考查一次函数的图像与性质,解题的关键是根据绝对值的性质化简出解析式.8.(Ⅰ)见解析;(Ⅱ)见解析,4;(1)11.3;(2)<【分析】(Ⅰ)直接在表格中标记即可;(Ⅱ)根据表格中数据描点连线即可做出函数图象,再结合函数图象找到最低点,可得第一答案第10页,共30页由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度0.990C <,故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、从函数图象获取信息是解题的关键.9.见解析【分析】作直线l 及l 上一点A ;过点A 作l 的垂线;在l 上截取AB m =;作BC n =;即可得到ABC .【详解】解:如图所示:ABC 为所求.注:(1)作直线l 及l 上一点A ;(2)过点A 作l 的垂线;(3)在l 上截取AB m =;(4)作BC n =.答案第12页,共30页【点睛】本题考查作图——复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.10.见解析【分析】先在∠O 的内部作∠DAB =∠O ,再过B 点作AD 的垂线,垂足为C 点.【详解】解:如图,Rt △ABC 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.11.(1)见解析;(2)见解析【分析】(1)作射线AP ,在AP 上截取AC m =,过点C 作AC 的垂线MN ,在CN 上截取CB n =,连接AB ,则Rt ABC △,即为所求;(2)先根据题意画出图形,再证明.延长CD 至E 使CD DE =,连接AE 、BE ,因为D 是AB 的中点,所以AD BD =,因为CD DE =,所以四边形ACBE 是平行四边形,因为90ACB ∠=︒,所以四边形ACBE 是矩形,根据矩形的性质可得出结论.【详解】(1)如图所示,Rt ABC △即为所求;∵CD 为AB 边中线,∴BD AD =,∴四边形ACBE 为平行四边形.∵90ACB ∠=︒,∴平行四边形ACBE 为矩形,答案第14页,共30页(2)解:∵60,ABC AB ∠=︒=∴30A ∠=︒,∴12DO OB AO ==,∵60,ABC OB OE ∠=︒=,∴OBE △是等边三角形,如图所示,过点E 作EF BO ⊥∴30OEF ∠=︒∠.(2)证明:∵OP平分AOB答案第16页,共30页(2)证明:∵AE 平分BAC ∠∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,性质.(2)解:如图所示,MN,EN22EN=+=.112【点睛】本题考查了平移作图,勾股定理与网格,熟练掌握勾股定理是解题的关键.17.(1)见解析(2)见解析答案第18页,共30页(2)由网格可知,22AB=+=3110以10AB=为底,设AB(3)如图所示,作5==,过点BD AB由网格可知,22BD AB==+=,215△是直角三角形,且∴ABD∥∵CD AB答案第20页,共30页(2)解:如图,菱形BEPQ 即为所求.BEPQ 是菱形,且要求BE 为边,∴①当BE 为上底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向右下偏移,如图所示,②当BE 为上底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向左下偏移如图所示,答案第22页,共30页③当BE 为下底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向左上偏移如图所示,④当BE 为下底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向右上偏移如图所示,【点睛】本题考查了作图-复杂作图,复杂作图是结合了几何图形的性质和基本作图的方法,涉及到的知识点有菱形的性质和判定,解题的关键在于熟悉菱形的几何性质和正六边形的几何性质,将复杂作图拆解成基本作图.19.(1)见解析(2)见解析(3)见解析【分析】(1)根据轴对称变换的性质作出点A的对应点B即可;△的中位(2)取格点H,连接HB,延长HB交网格线与点T,连接AH,AT,作出AHT线,连接GF交AB于点O,点C即为所求;(3)过点B作关于直线AC的对称点B',连接CB',PB'交AC与点O,连接BO,延长BO 交CB'于点M,点M即为所求.【详解】(1)解:在图1中,点B即为所求;(2)解:在图2中,点C即为所求;(3)解:在图3中,点M即为所求.【点睛】本题考查作图一轴对称变换,三角形中位线定理,平行线等分线段定理等知识,解(2)画法不唯一,如图3或图4.【点睛】本题主要考查了格点作图,解题关键是掌握网格的特点,相垂直或平行的线段.21.(1)详见解析(2)详见解析(3)45︒答案第24页,共30页【分析】(1)根据题目叙述画出图形即可;(2)根据题目叙述画出图形即可;(3)由(1)作图可得AOB 是等腰直角三角形,且=45A ︒∠,由对称的性质可得45OCB ∠=︒.【详解】(1)在方格纸中画出线段OA 绕点O 顺时针旋转90︒后得到的线段OB ,连接AB ,如图;(2)画出与AOB 关于直线OB 对称的图形,点A 的对称点是C ;如上图所示:(3)由(1)作图可得AOB 是等腰直角三角形,且=45A ︒∠,再根据对称的性质可得45OCB A ∠=∠=︒.故答案为:45︒.【点睛】此题考查了旋转作图及作轴对称图形,解答本题的关键是仔细审题,得出旋转三要素,进而得出旋转后的图形.22.(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是轴对称图形,且面积为4的图形.【详解】解:(1)观察发现四个图形都是轴对称图形,且面积相等;故答案为:观察发现四个图形都是轴对称图形,且面积相等;(2)如图:答案第26页,共30页【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.23.(1)如图所示111A B C △为所求;见解析;(2)如图所示222A B C △为所求;见解析.【分析】(1)将ABC 的各个点关于x 轴的对称点描出,连接即可.(2)在ABC 同侧和对侧分别找到2OA=OA 2,2OB=OB 2,2OC=OC 2所对应的A 2,B 2,C 2的坐标,连接即可.【详解】(1)由题意知:ABC 的三个顶点的坐标分别是A (1,3),B (4,1),C (1,1),则ABC 关于x 轴成轴对称的111A B C △的坐标为A 1(1,-3),B 1(4,-1),C 1(1,-1),连接A 1C 1,A 1B 1,B 1C 1得到111A B C △.如图所示111A B C △为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,222A B C △和ABC 在同一侧则A 2(2,6),B 2(8,2),C 2(2,2),连接各点,得222A B C △.第二种,222A B C △在ABC 的对侧A 2(-2,-6),B 2(-8,-2),C 2(-2,-2),连接各点,得222A B C △.综上所述:如图所示222A B C △为所求;【点睛】本题主要考查了位似中心、位似比和轴对称相关知识点,正确掌握位似中心、位似比的概念及应用是解题的关键.24.(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【详解】(1)解:当04t <≤时,连接EF ,答案第28页,共30页由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.②由图象可知,随着自变量x 的不断增大,函数值故答案为:函数值y 逐渐减小;(3)解:当2x =时,32632y =-⨯+=,当∴函数()1202y x x =≥+与函数362y x =-+的图象交点坐标为答案第30页,共30页由图知,当2x ≥或0x =时,123622x x ≥-++,即当0x ≥时,123622x x ≥-++的解集为2x ≥或故答案为:2x ≥或0x =.【点睛】本题考查函数的图象与性质、描点法画函数图象、两个函数图象的交点问题,根据表格画出函数的图象,并利用数形结合思想探究函数性质是解答的关键.。
题型六 二次函数与几何图形综合题类型一 二次函数与图形判定1.(2017·某某)在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.2.(2017·随州)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为__________,点A的坐标为__________,点B的坐标为__________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.(2017·某某模拟)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.(2016·某某)如图①,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图②,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.类型二 二次函数与图形面积1.(2017·某某)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2.(2017·某某)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).3.(2017·某某模拟)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y 轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.4.(2017·某某模拟)如图①,已知抛物线y=ax2+bx-3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.(1)求该抛物线的解析式.(2)如图②,点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?(3)如图③,将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1∶2两部分,请直接写出此时平移的距离.类型三二次函数与线段问题1.(2017·某某)如图,已知抛物线y=ax2-23ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,1AM +1AN均为定值,并求出该定值.2.(2017·某某模拟)如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =12x 2+bx +c 经过点B ,点C 的横坐标为4.(1)请直接写出抛物线的解析式;(2)如图②,点D 在抛物线上,DE ∥y 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为x(0<x <4),矩形DFEG 的周长为l ,求l 与x 的函数关系式以及l 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.3.(2017·某某)已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,,连接FH、AE,求证:FH∥AE;(3)如图②,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.类型四二次函数与三角形相似1.(2016·某某)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2.(2017·某某模拟)如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.(1)直线的表达式为__________;抛物线的表达式为__________;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.3.如图①,二次函数y =ax 2+bx +33经过A(3,0),G(-1,0)两点. (1)求这个二次函数的解析式;(2)若点M 是抛物线在第一象限图象上的一点,求△ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E(0,233)作x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得△FEQ∽△BEP?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.(2017·某某)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=错误!x+3相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②,是否存在点P,使得△Q与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.题型六第23题二次函数与几何图形综合题类型一二次函数与图形判定1.解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.设P(a ,b),则Q(a +4,b)或(a -4,b), ①当Q(a +4,b)时,得:a 2-2a -3=(a +4)2+2(a +4)-3, 解得a =-2,∴b =a 2-2a -3=4+4-3=5, ∴P 1(-2,5),Q 1(2,5). ②当Q(a -4,b)时,得:a 2-2a -3=(a -4)2+2(a -4)-3, 解得a =2.∴b =4-4-3=-3, ∴P 2(2,-3),Q 2(-2,-3).综上所述,所求点的坐标为P 1(-2,5),Q 1(2,5); P 2(2,-3),Q 2(-2,-3). 2.解:(1)∵抛物线y =-233x 2-433x +23, ∴其梦想直线的解析式为y =-233x +233,联立梦想直线与抛物线解析式可得⎩⎪⎨⎪⎧y =-233x +233y =-233x 2-433x +23,解得⎩⎨⎧x =-2y =23或⎩⎪⎨⎪⎧x =1y =0,∴A(-2,23),B(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形, 如解图①,过A 作AD ⊥y 轴于点D ,则AD =2,在y =-233x 2-433x +23中,令y =0可求得x =-3或x =1,∴C(-3,0),且A(-2,23), ∴AC =(-2+3)2+(23)2=13, 由翻折的性质可知AN =AC =13,在Rt △AND 中,由勾股定理可得DN =AN 2-AD 2=13-4=3, ∵OD =23,∴ON =23-3或ON =23+3,当ON =23+3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意, ∴N 点坐标为(0,23-3);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如解图②,在Rt △AMD 中,AD =2,OD =23,∴tan ∠DAM =MDAD =3,∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAM =60°, 又由折叠可知∠NMA =∠AMC =60°, ∴∠NMP =60°,且MN =CM =3, ∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32,332);综上可知N 点坐标为(0,23-3)或(32,332);(3)①当AC 为平行四边形的边时,如解图③,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC =EF ,∴∠ACK =∠EFH , 在△ACK 和△EFH 中,⎩⎪⎨⎪⎧∠ACK =∠EFH ∠AKC =∠EHF AC =EF,∴△ACK ≌△EFH(AAS ), ∴FH =CK =1,HE =AK =23,∵抛物线对称轴为x =-1,∴F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点横坐标为0时,则F(0,233),此时点E 在直线AB 下方,∴E 到x 轴的距离为EH -OF =23-233=433,即E 点纵坐标为-433,∴E(-1,-433); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵C(-3,0),且A(-2,23), ∴线段AC 的中点坐标为(-52,3),设E(-1,t),F(x ,y),则x -1=2×(-52),y +t =23,∴x =-4,y =23-t ,代入直线AB 解析式可得23-t =-233×(-4)+233,解得t =-433,∴E(-1,-433),F(-4,1033);综上可知存在满足条件的点F ,此时E(-1,-433)、F(0,233)或E(-1,-433)、F(-4,1033).3.解:(1)由题意,得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4, ∴所求抛物线的解析式为y =-12x 2+x +4;(2) 设点Q 的坐标为(m ,0),如解图①,过点E 作EG ⊥x 轴于点G. 由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BQE ∽△BAC ,∴EG CO =BQ BA ,即EG 4=m +26,∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO-12BQ·EG=12(m +2)(4-2m +43)=-13m 2+23m +83=-13(m-1)2+3,又∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q(1,0);图①图②(3)存在.在△ODF 中. (ⅰ)若DO =DF ,∵A(4,0),D(2,0),∴AD =OD =DF =2, 又∵在Rt △AOC 中,OA =OC =4,∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,此时,点P 的坐标为P(1+5,2)或P(1-5,2); (ⅱ)若FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得:OM =MD =1,∴AM =3, ∴在等腰直角△AMF 中,MF =AM =3,∴F(1,3), 由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,此时,点P 的坐标为:P(1+3,3)或P(1-3,3); (ⅲ)若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22,与OF ≥22矛盾, ∴AC 上不存在点使得OF =OD =2,此时,不存在这样的直线l ,使得△ODF 是等腰三角形. 综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3). 4.解:(1)∵点C(0,4)在直线y =-43x +n 上,∴n =4,∴y =-43x +4,令y =0,解得x =3,∴A(3,0),∵抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2),∴c =-2,6+3b -2=0,解得b =-43,∴抛物线的解析式为y =23x 2-43x -2;(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴P(m ,23m 2-43m -2),∵PD ⊥x 轴,BD ⊥PD ,∴点D 坐标为(m ,-2), ∴|BD|=|m|,|PD|=|23m 2-43m -2+2|,当△BDP 为等腰直角三角形时,PD =BD , ∴|m|=|23m 2-43m -2+2|=|23m 2-43m|.∴m 2=(23m 2-43m)2,解得:m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12;(3)∵∠PBP′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=45,cos ∠PBP ′=35,①当点P′落在x 轴上时,如解图①,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′,由旋转知,P ′D ′=PD =23m 2-43m ,在Rt △P ′D ′N 中,cos ∠ND ′P ′=ND′P′D′=cos ∠PBP ′=35,∴ND ′=35(23m 2-43m),在Rt △BD ′M 中,BD ′=-m ,sin ∠DBD ′=D′M BD′=sin ∠PBP ′=45,∴D ′M =-45m ,∴ND ′-MD′=2,∴35(23m 2-43m)-(-45m)=2, 解得m =5(舍去)或m =-5,如解图②, 同①的方法得,ND ′=35(23m 2-43m),MD ′=45m ,ND ′+MD′=2, ∴35(23m 2-43m)+45m =2, ∴m =5或m =-5(舍去),∴P(-5,45+43)或P(5,-45+43),②当点P′落在y 轴上时,如解图③,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N , ∴∠DBD ′=∠ND′P′=∠PBP′,同①的方法得:P′N=45(23m 2-43m),BM =35m ,∵P ′N =BM ,∴45(23m 2-43m)=35m , 解得m =258或m =0(舍去),∴P(258,1132),∴P(-5,45+43)或P(5,-45+43)或P(258,1132).类型二 二次函数与图形面积1.解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y =-12x 2+bx +c 经过A 、C 两点,∴⎩⎪⎨⎪⎧0=-12×16-4b +c 2=c ,解得⎩⎪⎨⎪⎧b =-32c =2, ∴y =-12x 2-32x +2;(2)①令y =0,∴-12x 2-32x +2=0,解得x 1=-4,x 2=1,∴B(1,0),如解图①,过D 作DM ∥y 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1S 2=DE BE =DMBN ,设D(a ,-12a 2-32a +2),∴M(a ,12a +2),∵B(1,0),∴N(1,52),∴S 1S 2=DMBN =-12a 2-2a 52=-15(a +2)2+45; ∴当a =-2时,S 1S 2有最大值,最大值是45;②∵A(-4,0),B(1,0),C(0,2), ∴AC =25,BC =5,AB =5, ∵AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA =PC =PB =52,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC)=43,如解图②,过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G , 情况一:∠DCF =2∠BAC =∠DGC +∠CDG ,∴∠CDG =∠BAC , ∴tan ∠CDG =tan ∠BAC =12,即RC DR =12,令D(a ,-12a 2-32a +2),∴DR =-a ,RC =-12a 2-32a ,∴-12a 2-32a -a =12,解得a 1=0(舍去),a 2=-2, ∴x D =-2,情况二:∠FDC =2∠BAC , ∴tan ∠FDC =43,设FC =4k ,∴DF =3k ,DC =5k , ∵tan ∠DGC =3k FG =12,∴FG =6k ,∴CG =2k ,DG =35k ,∴RC =255k ,RG =455k , DR =35k -455k =1155k ,∴DR RC =1155k 255k =-a -12a 2-32a ,解得a 1=0(舍去),a 2=-2911, ∴点D 的横坐标为-2或-2911.2.解:(1)∵直线y =-x +3与x 轴、y 轴分别交于点B 、点C , ∴B(3,0),C(0,3),把B 、C 坐标代入抛物线解析式可得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3; (2)∵y =x 2-4x +3=(x -2)2-1, ∴抛物线对称轴为x =2,P(2,-1), 设M(2,t),且C(0,3),∴MC =22+(t -3)2=t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25, ∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M(2,32);②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M(2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M(2,-1+25)或(2,-1-25);综上可知存在满足条件的点M ,其坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25);(3)如解图,在0<x <3对应的抛物线上任取一点E ,过E 作EF ⊥x 轴,交BC 于点F ,交x 轴于点D ,设E(x ,x 2-4x +3),则F(x ,-x +3), ∵0<x <3,∴EF =-x +3-(x 2-4x +3)=-x 2+3x ,∴S △CBE =S △EFC +S △EFB =12EF·OD+12EF·BD=12EF·OB=12×3(-x 2+3x)=-32(x -32)2+278,∴当x =32时,△CBE 的面积最大,此时E 点坐标为(32,-34),即当E 点坐标为(32,-34)时,△CBE 的面积最大.3.解:(1)∵A(1,0),对称轴l 为x =-1,∴B(-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3; (2)如解图①,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q. ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°, ∴∠BPM =∠NBQ.又∵∠BMP =∠BQN =90°,PB =NB ,∴△BPM ≌△NBQ ,∴PM =BQ.∵抛物线y =x 2+2x -3与x 轴交于点A(1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0), ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(舍去), ∴此时点P 的坐标为(-1-2,-2); (3) 存在.如解图②,连接AC ,PC.可设点P 的坐标为(x ,y)(-3<x <0),则y =x 2+2x -3, ∵点A(1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3,即点C(0,-3),∴OC =3. 由(2)可知S四边形PBAC=S △BPM +S四边形PMOC+S △AOC =12BM·PM+12(PM +OC)·OM+12OA·OC=12(x+3)(-y)+12(-y +3)(-x)+12×1×3=-32y -32x +32,将y =x 2+2x -3代入可得S 四边形PBAC =-32(x 2+2x -3)-32x +32=-32(x +32)2+758.∵-32<0,-3<x <0,∴当x =-32时,S 四边形PBAC 有最大值758,此时,y =x 2+2x -3=-154.∴当点P 的坐标为(-32,-154)时,四边形PBAC 的面积最大,最大值为758.4.解:(1)把y =0代入直线的解析式得x +1=0,解得x =-1,∴A(-1,0). ∵抛物线的对称轴为x =1,∴B 的坐标为(3,0). 将x =0代入抛物线的解析式得y =-3,∴C(0,-3).设抛物线的解析式为y =a(x +1)(x -3),将C(0,-3)代入得-3a =-3,解得a =1, ∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3; (2)如解图①,连接OP.将x =0代入直线AD 的解析式得y =1,∴OD =1. 由题意可知P(t ,t 2-2t -3). ∵S 四边形DCPB =S △ODB +S △OBP +S △OCP ,∴S =12×3×1+12×3×(-t 2+2t +3)+12×3×t ,整理得S =-32t 2+92t +6,配方得:S =-32(t -32)2+758,∴当t =32时,S 取得最大值,最大值为758;(3)如解图②,设点D′的坐标为(a ,a +1),O ′(a ,a).当△D′O′E 的面积∶△D′EB′的面积=1∶2时,则O′E∶EB ′=1∶2. ∵O ′B ′=OB =3,∴O ′E =1, ∴E(a +1,a).将点E 的坐标代入抛物线的解析式得(a +1)2-2(a +1)-3=a ,整理得:a 2-a -4=0,解得a =1+172或a =1-172,∴O ′的坐标为(1+172,1+172)或(1-172,1-172),∴OO ′=2+342或OO′=34-22, ∴△DOB 平移的距离为2+342或34-22, 当△D′O′E 的面积∶△D ′EB ′的面积=2∶1时,则O′E∶EB ′=2∶1. ∵O ′B ′=OB =3,∴O ′E =2,∴E(a +2,a).将点E 的坐标代入抛物线的解析式得:(a +2)2-2(a +2)-3=a ,整理得:a 2+a -3=0,解得a =-1+132或a =-1-132.∴O ′的坐标为(-1+132,-1+132)或(-1-132,-1-132).∴OO′=-2+262或OO′=2+262.∴△DOB 平移的距离为-2+262或2+262.综上所述,当△D′O′B′沿DA 方向平移2+342或2+262单位长度,或沿AD 方向平移34-22或-2+262个单位长度时,ED ′恰好将△O′D′B′的面积分为1∶2两部分. 类型三 二次函数与线段问题1.(1)解:∵C(0,3),∴-9a =3,解得a =-13.令y =0,得ax 2-23ax -9a =0,∵a ≠0,∴x 2-23x -9=0,解得x =-3或x =3 3. ∴点A 的坐标为(-3,0),点B 的坐标为(33,0),∴抛物线的对称轴为x =3; (2)解:∵OA =3,OC =3, ∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°, ∴DO =33AO =1,∴点D 的坐标为(0,1), 设点P 的坐标为(3,a).∴AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =0或a =2, ∴点P 的坐标为(3,0)或(3,2).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4. ∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4)或(3,2);(3)证明:设直线AC 的解析式为y =mx +3,将点A 的坐标代入得-3m +3=0,解得m =3,∴直线AC 的解析式为y =3x +3. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1,得kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0),∴AN =-1k +3=3k -1k.将y =3x +3与y =kx +1联立,解得x =2k -3,∴点M 的横坐标为2k -3.如解图,过点M 作MG ⊥x 轴,垂足为G.则AG =2k -3+ 3.∵∠MAG =60°,∠AGM =90°, ∴AM =2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=k -323k -2+2k 23k -2=3k -323k -2=3(3k -1)2(3k -1)=32. 2.解:(1)∵直线l :y =34x +m 经过点B(0,-1),∴m =-1,∴直线l 的解析式为y =34x -1,∵直线l :y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,∵抛物线y =12x 2+bx +c 经过点C(4,2)和点B(0,-1),∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1,解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =0,则34x -1=0,解得x =43,∴点A 的坐标为(43,0),∴OA =43,在Rt △OAB 中,OB =1,∴AB =OA 2+OB 2=(43)2+12=53, ∵DE ∥y 轴,∴∠ABO =∠DEF ,在矩形DFEG 中,EF =DE·cos ∠DEF =DE·OB AB =35DE ,DF =DE·sin ∠DEF =DE·OA AB =45DE ,∴l =2(DF +EF)=2×(45+35)DE =145DE ,∵点D 的横坐标为t(0<t <4), ∴D(t ,12t 2-54t -1),E(t ,34t -1),∴DE =(34t -1)-(12t 2-54t -1)=-12t 2+2t ,∴l =145×(-12t 2+2t)=-75t 2+285t ,∵l =-75(t -2)2+285,且-75<0,∴当t =2时,l 有最大值285;(3)“落点”的个数有4个,如解图①,解图②,解图③,解图④所示.如解图③,设A 1的横坐标为m ,则O 1的横坐标为m +43,∴12m 2-54m -1=12(m +43)2-54(m +43)-1, 解得m =712,如解图④,设A 1的横坐标为m ,则B 1的横坐标为m +43,B 1的纵坐标比A 1的纵坐标大1,∴12m 2-54m -1+1=12(m +43)2-54(m +43)-1,解得m =43, ∴旋转180°时点A 1的横坐标为712或43.3.(1)解:将点A(-1,1),B(4,6)代入y =ax 2+bx 中, 得⎩⎪⎨⎪⎧a -b =116a +4b =6,解得⎩⎪⎨⎪⎧a =12b =-12, ∴抛物线的解析式为y =12x 2-12x ;(2)证明:设直线AF 的解析式为y =kx +m , 将点A(-1,1)代入y =kx +m 中,即-k +m =1, ∴k =m -1,∴直线AF 的解析式为y =(m -1)x +m. 联立直线AF 和抛物线解析式成方程组,⎩⎪⎨⎪⎧y =(m -1)x +m y =12x 2-12x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=1,⎩⎪⎨⎪⎧x 2=2my 2=2m 2-m , ∴点G 的坐标为(2m ,2m 2-m). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0). ∵抛物线的解析式为y =12x 2-12x =12x(x -1),∴点E 的坐标为(1,0).设直线AE 的解析式为y =k 1x +b 1,将A(-1,1),E(1,0)代入y =k 1x +b 1中,得⎩⎪⎨⎪⎧-k 1+b 1=1k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-12b 1=12,∴直线AE 的解析式为y =-12x +12.设直线FH 的解析式为y =k 2x +b 2,将F(0,m)、H(2m ,0)代入y =k 2x +b 2中,得⎩⎪⎨⎪⎧b 2=m 2mk 2+b 2=0,解得:⎩⎪⎨⎪⎧k 2=-12b 2=m, ∴直线FH 的解析式为y =-12x +m.∴FH ∥AE ;(3)解:设直线AB 的解析式为y =k 0x +b 0,将A(-1,1),B(4,6)代入y =k 0x +b 0中,⎩⎪⎨⎪⎧-k 0+b 0=14k 0+b 0=6,解得⎩⎪⎨⎪⎧k 0=1b 0=2, ∴直线AB 的解析式为y =x +2.当运动时间为t 秒时,点P 的坐标为(t -2,t),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如解图所示.∵QM =2PM , ∴QM′QP′=MM′PP′=23,∴QM ′=43,MM ′=23t ,∴点M 的坐标为(t -43,23t),又∵点M 在抛物线y =12x 2-12x 上,∴23t =12(t -43)2-12(t -43), 解得t =15±1136,当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t -4,2t), ∵点M 在抛物线y =12x 2-12x 上,∴2t =12×(t -4)2-12(t -4),解得t =13±892.综上所述:当运动时间为15-1136秒、15+1136秒、13-892秒或13+892秒时,QM =2PM.类型四 二次函数与三角形相似 1.(1)解:∵顶点坐标为(1,1), ∴设抛物线解析式为y =a(x -1)2+1,又∵抛物线过原点,∴0=a(0-1)2+1,解得a =-1, ∴抛物线的解析式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x y =x -2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3);(2)证明:如解图,分别过A 、C 两点作x 轴的垂线,交x 轴于D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3, ∴∠ABO =∠CBO =45°,即∠ABC =90°, ∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设N(x ,0),则M(x ,-x 2+2x), ∴ON =|x|,MN =|-x 2+2x|,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ∴∠MNO =∠ABC =90°,∴当△MNO 和△ABC 相似时有MN AB =ON BC 或MN BC =ONAB,①当MN AB =ON BC 时,则有|-x 2+2x|2=|x|32,即|x|×|-x +2|=13|x|,∵当x =0时M 、O 、N 不能构成三角形, ∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x =53或x =73,此时N 点坐标为(53,0)或(73,0),②当MN BC =ON AB 时,则有|-x 2+2x|32=|x|2,即|x|×|-x +2|=3|x|,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1, 此时N 点坐标为(-1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(-1,0)或(5,0).2.解:(1)把A 、C 两点坐标代入直线y =-ax +c 可得⎩⎪⎨⎪⎧3a +c =0c =1,解得⎩⎪⎨⎪⎧a =-13c =1, ∴直线的表达式为y =13x +1,把A 点坐标和a =-13代入抛物线解析式可得9×(-13)-3b +1=0,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +1;(2)∵点D 为抛物线在第二象限部分上的一点,∴可设D(t ,-13t 2-23t +1),则F(t ,13t +1),∴DF =-13t 2-23t +1-(13t +1)=-13t 2-t =-13(t +32)2+34.∵-13<0,∴当t =-32时,DF 有最大值,最大值为34,此时D 点坐标为(-32,54);(3)设P(m ,-13m 2-23m +1),如解图,∵P 在第四象限,∴m >0,-13m 2-23m +1<0,∴AN =m +3,PN =13m 2+23m -1,∵∠AOC =∠ANP =90°,∴当以P 、A 、N 为顶点的三角形与△ACO 相似时有△AOC ∽△PNA 和△AOC ∽△ANP ,①当△AOC ∽△PNA 时,则有OC NA =AO PN ,即1m +3=313m 2+23m -1,解得m =-3或m =10,经检验当m =-3时,m +3=0(舍去), ∴m =10,此时P 点坐标为(10,-39);②当△AOC ∽△ANP 时,则有OC NP =AO AN ,即113m 2+23m -1=3m +3,解得m =2或m =-3,经检验当m =-3时,m +3=0(舍去), ∴m =2,此时P 点坐标为(2,-53);综上可知P 点坐标为(10,-39)或(2,-53).3.解:(1)将A 、G 点坐标代入函数解析式,得⎩⎨⎧9a +3b +33=0,a -b +33=0,解得⎩⎨⎧a =-3b =23,∴抛物线的解析式为y =-3x 2+23x +33; (2)如解图①,作ME ∥y 轴交AB 于E 点, 当x =0时,y =33,即B 点坐标为(0,33), 直线AB 的解析式为y =-3x +33,设M(n ,-3n 2+23n +33),E(n ,-3n +33), ME =-3n 2+23n +33-(-3n +33)=-3n 2+33n , S △ABM =12ME·AO=12(-3n 2+33n)×3=-332(n -32)2+2738,当n =32时,△ABM 面积的最大值是2738;(3)存在;理由如下:OE =233,AP =2,OP =1,BE =33-233=733,当y =233时,-3x +33=233,解得x =73,即EF =73,将△BEP 绕点E 顺时针方向旋转90°,得到△B′EC(如解图②), ∵OB ⊥EF ,∴点B′在直线EF 上,∵C 点横坐标绝对值等于EO 长度,C 点纵坐标绝对值等于EO -PO 长度, ∴C 点坐标为(-233,233-1),如解图,过F 作FQ ∥B′C,交EC 于点Q , 则△FEQ ∽△B′EC,由BE EF =B′E EF =CEEQ =3,可得Q 的坐标为(-23,-33);根据对称性可得,Q 关于直线EF 的对称点Q′(-23,533)也符合条件.4.解:(1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0), ∴⎩⎪⎨⎪⎧a +b +3=025a +5b +3=0,解得⎩⎪⎨⎪⎧a =35b =-185, ∴该抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720,联立直线CD 与抛物线解析式可得⎩⎪⎨⎪⎧y =35x +3y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x =0y =3或⎩⎪⎨⎪⎧x =7y =365,∴C(0,3),D(7,365),分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①,则CE =t ,DF =7-t ,∴S △PCD =S △P +S △PDN =12PN·CE+12PN·DF=72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积最大,最大值为102940;②存在.∵∠CQN =∠PMB =90°, ∴当△Q 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况, ∵CQ ⊥PN ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3,当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3),解得t =349或t =5(舍去),此时P(349,-5527);综上可知存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).。
中考数学第二轮复习资料—专题复习(一)、初中阶段主要的数学思想1.数形结合的思想把问题中的数量关系与形象直观的几何图形有机的结合起来,并充分利用这种结合寻找解题的思路,使问题得到解决的思想方法,在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法。
涉及实数与数轴上点的对应关系,公式、定理的几何背景问题,函数与方程的对应关系等。
一:【要点梳理】1.数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等2.热点内容(1).利用数轴解不等式(组)(2).研究函数图象隐含的信息,判断函数解析式的系数之间的关系,确定函数解析式和解决与函数性质有关的问题.(3).研究与几何图形有关的数据,判断几何图形的形状、位置等问题.(4).运用几何图形的性质、图形的面积等关系,进行有关计算或构件方程(组),求得有关结论等问题.二:【例题与练习】1.选择:(1)某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的图象如图所示,则该厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月均停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产(2)某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如图所示,正确的是( )(3)丽水到杭州的班车首法时间为早上6时,末班车为傍晚18时,每隔2小时有一班车发出,且丽水到杭州需要4个小时.图中相遇的次数最多为( )A.4次B.5次C.6次.D.7次 2.填空:(1)已知关于X 的不等式2x-a>-3的解集如图所示,则a 的值等于 (2)如果不等式组8 4x-1x mx ⎧+⎪⎨⎪⎩的解集为x>3,则m 的取值范围是3.考虑2xy =的图象,当x=-2时,y= ;当x<-2时,y 的取值范围是 。
类型二 新运算型1.定义一种运算例1规定一种新的运算:ba b a 11+=⊗,则=⊗21. 【解答】解:把21==b a ,代入式子b a b a 11+=⊗计算即可:=⊗2123.2.定义一个规则例2为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文d c b a ,,,对应密文, d d c c b b a 4,32,2,2+++.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A .4,6,1,7B .4,1,6,7C .6,4,1,7D .1,6,4,7【解答】解:根据对应关系,284=d 可以求得7=d ;代入2332=+d c 得1=c ;在代入92=+c b 得4=b ;代入142=+b a 得6=a .故选C .3.定义一种变换例3把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图乙)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行【解答】:D 4.定义一类数例4定义[]p q ,为一次函数y px q =+的特征数.(1)若特征数是[]22k -,的一次函数为正比例函数,求k 的值;(2)设点A B ,分别为抛物线()(2)y x m x =+-与x y ,轴的交点,其中0m >,且OAB △的面积为4,O 为原点,求图象过A B ,两点的一次函数的特征数.【解答】解:(1)特征数为[22]k -,的一次函数为22y x k =+-,20k ∴-=,2k ∴=.(2)抛物线与x 轴的交点为12(0)(20)A m A -,,,, 与y 轴的交点为(02)B m -,.若14OBA S =△,则2,4221==⋅m m m ; 若24OBA S =△,则2,42221==⨯⨯m m .∴当2m =时,满足题设条件.∴此时抛物线为(2)(2)y x x =+-.它与x 轴的交点为(20)(20)-,,,,与y 轴的交点为(04)-,,∴一次函数为24y x =--或24y x =-, ∴特征数为[24]--,或[24]-,.5.定义一个函数例5设关于x 的一次函数11b x a y +=与22b x a y +=,则称函数)()(2211b x a n b x a m y +++=(其中1=+n m )为此两个函数的生成函数.(1)当1=x 时,求函数1+=x y 与x y 2=的生成函数的值;(2)若函数11b x a y +=与22b x a y +=的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.【解答】解:(1)当1=x 时,()2222)2()1(=+=+=++=n m n m x n x m y (2)点P 在此两个函数的生成函数的图象上, 设点P 的坐标为()b a ,,∵b b a a b b a a =+⨯=+⨯2211,,∴当a x =时,)()(2211b x a n b x a m y +++=,()b n m b nb mb b a a n b a a m =+=+=+⨯++⨯=)()(2211, 即点P 在此两个函数的生成图象上. 6.定义一个公式例6阅读材料:如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出 一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【解答】解:(1)设抛物线的解析式为:()4121+-=x a y 把A (3,0)代入解析式求得1-=a所以()3241221++-=+--=x x x y设直线AB 的解析式为:b kx y +=2 由3221++-=x x y 求得B 点的坐标为)3,0( 把)0,3(A ,)3,0(B 代入b kx y +=2中 解得:3,1=-=b k ,所以32+-=x y (2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2,所以CD =4-2=2图2xC Oy ABD 1 1B铅垂高水平宽 ha图132321=⨯⨯=∆CAB S (平方单位) (3)假设存在符合条件的点P ,设P 点的横坐标为x ,△PAB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-=由S △PAB =89S △CAB ,得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x ,解得,23=x将23=x 代入3221++-=x x y 中,解得P 点坐标为⎪⎭⎫ ⎝⎛41523,7.定义一个图形 7.1定义“点”例7联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图1,若PA=PB ,则点P 为△ABC 的准外心.应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且PD=12AB ,求∠APB 的度数.探究:已知△ABC 为直角三角形,斜边BC=5,AB=3,准外心P 在AC 边上,试探究PA 的长.【解答】解:①若PB=PC ,连接PB ,则∠PCB=∠PBC, ∵CD 为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=33DB=36AB , 与已知PD=12AB 矛盾,∴PB≠PC, ②若PA=PC ,连接PA ,同理可得PA≠P C ,③若PA=PB ,由PD=12AB ,得PD=BD , ∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC=2222BC AB 534-=-=, ①若PB=PC ,设PA=x ,则2223(4)x x +=-,∴78x =,即PA=78, ②若PA=PC ,则PA=2,③若PA=PB ,由图知,在Rt△PA B 中,不可能. 故PA=2或78.7.2定义“线”例8如图,定义:若双曲线y = kx(k >0)与它的其中一条对称轴y =x 相交于A 、B 两点,则线段AB 的长度为双曲线y = kx(k >0)的对径.(1)求双曲线y = 1x的对径;(2)若双曲线y = kx(k >0)的对径是102,求k 的值;(3)仿照上述定义,定义双曲线y = kx(k <0)的对径.【解答】解:过A 点作AC ⊥x 轴于C ,如图,(1)解方程组⎪⎩⎪⎨⎧==xy x y 1,得⎩⎨⎧-=-=⎩⎨⎧==11,112211y x y x , ∴A 点坐标为(1,1),B 点坐标为(-1,-1), ∴OC =AC =1,∴OA =2OC =2, ∴AB =2OA =22,∴双曲线y =x1的对径是22; (2)∵双曲线的对径为210,即AB =210,OA =25,N∴OA=2OC=2AC,∴OC=AC=5,∴点A坐标为(5,5),把A(5,5)代入双曲线y=xk(k>0)得k=5×5=25,即k的值为25;(3)若双曲线y=xk(k<0)与它的其中一条对称轴y=-x相交于A、B两点,则线段AB的长称为双曲线y=xk(k>0)的对径.7.3定义“角”例9如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB是⊙O上关于A、B的滑动角.(1)已知∠APB是⊙O上关于A、B的滑动角.①若AB是⊙O的直径,则∠APB=;②若⊙O的半径是1,AB=2,求∠APB的度数.(2)已知O2是⊙O1外一点,以O2为圆心做一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于A、B的滑动角,直线PA、PB分别交⊙O2于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.【解答】解:(1)①∵AB是⊙O的直径,∴∠APB=90°.②∵OA=OB=1, AB=2,∴OA2+OB2=1+1=2=AB2∴△AOB是直角三角形∴∠AOB=90°.∴∠APB=21∠AOB=45°图(2)当P 在优弧AB 上时,如图1,这时∠MAN 是△PAN 的外角,因而∠APB=∠MAN -∠ANB;当P 在劣弧AB 上时,如图2,这时∠APB 是△PAN 的外角, 因而∠APB=∠MAN+∠ANB; 7.4定义“三角形”例10(2010某某某某)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形. (1)求函数y =43-x +3的坐标三角形的三条边长; (2)若函数y =43-x +b (b 为常数)的坐标三角形周长为16, 求此三角形面积.【解答】解:(1) ∵ 直线y =43-x +3与x 轴的交点坐标为(4,0),与y 轴交点坐标为(0,3),∴函数y =43-x +3的坐标三角形的三条边长分别为3,4,5.(2) 直线y =43-x +b 与x 轴的交点坐标为(b 34,0),与y 轴交点坐标为(0,b ),当b >0时,163534=++b b b ,得b =4,此时,坐标三角形面积为332;当b <0时,163534=---b b b ,得b =-4,此时,坐标三角形面积为332.综上,当函数y =43-x +b 的坐标三角形周长为16时,面积为332.7.5定义“四边形”例11我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边. (1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称,;(2)如图1,已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;A 60(3)如图2,将ABC △绕顶点B 按顺时针方向旋转60,得到DBE △,连结AD DC ,,30DCB =∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形. 【解答】解:(1)正方形、长方形、直角梯形.(任选两个均可)(2)答案如图所示.(34)M ,或(43)M ,.(3)证明:连结ECABC DBE △≌△ AC DE ∴=,BC BE =60CBE =∠EC BC ∴=,60BCE =∠30DCB =∠90DCE ∴=∠222DC EC DE ∴+=222DC BC AC ∴+=,即四边形ABCD 是勾股四边形60。
考前特训01新定义与规律性探索选题压轴一、单选题1.对于两个正整数a ,()b a b <,将这两个数进行如下操作:第一次操作:计算b 与a 的差的算术平方根,记作1x ;第二次操作:计算b 与1x 的差的算术平方根,记作2x ;第三次操作:计算b 与2x 的差的算术平方根,记作3x ;……依次类推,若12n x x x a ==⋯==,则下列说法①当3a =时,12b =;②当306b =时,18a =;③点(),P a b 一定在抛物线2y x x =+上;④当1a =,2,3,…,n 时,对应b 的值分别为1b ,2b ,3b ,…,n b ,若12333114n b b b --⋯-=则n 的值为42:其中正确的个数是()A .1个B .2个C .3个D .4个1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()()2211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()()2211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()()2211,1n A n n ---,所以()22122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.3.规定:()2f x x =-,()3g y y =+.例如()442f -=--,()443g -=-+.下列结论中:①若()()0f x g y +=,则2313x y -=;②若3x <-,则()()12f x g x x +=--;③能使()()f x g x =成立的x 的值不存在;④式子()()11f x g x -++的最小值是7.其中正确的所有结论是()A .①②③B .①②④C .①③④D .②③④A .3a c -=B .29bc -=C .02a ≤≤D .3 4.5c ≤≤的末位数字,例如:12f =(12⨯的末位数字),()26f =(23⨯的末位数字),()32f =(34⨯的末位数字)…,则()()()()1232023f f f f +++⋯+的值是()A .4020B .4030C .4040D .4050【答案】D 【分析】本题考查数字的变化类,根据题意,可以写出前几个式子的值,然后即可发现式子的变化特点,从而可以求得所求式子的值.解答本题的关键是明确题意,发现式子的变化特点,求出所求式子的值.【详解】解:由题意可得,因为()12f =,()26f =,所以()()12268f f +=+=,以此类推,得()()()12326210f f f ++=++=,()()()()1234262010f f f f +++=+++=,()()()()()123452620010f f f f f ++++=++++=,()()()156********f f f +++=+++++=…,()()()()1567262002618f f f f ++++=++++++=…,()()()1782620026220f f f +++=+++++++=…,()()()()178926200262020f f f f ++++=++++++++=…,()()()()()178910262002620020f f f f f +++++=+++++++++=………∵202354043÷=⋯,∴()()()()1232023f f f f +++⋯+()()()()264002640026400264=++++++++++⋯++++++++1040410=⨯+404010=+4050=,故选:D .6.(),,,a b c d 表示由四个互不相等的正整数组成的一个数组,(),,,a b b c c d d a ++++表示由它生成的第一个数组,(),,,a b b c b c c d c d d a d a a b ++++++++++++表示由它生成的第二个数组,按此方式可以生成很多数组,记0M a b c d =+++,第n 个数组的四个数之和为n M (n 为正整数).下列说法:①n M 可以是奇数,也可以是偶数;②n M 的最小值是20;③若010002000n M M <<,则10n =.其中正确的个数()A .0B .1C .2D .3【答案】C 【分析】本题考查了新定义运算,根据新定义运算分别进行运算即可判断求解,理解新定义运算是解题的关键.【详解】解:根据题意可知,0M a b c d =+++,()12M a b c d =+++,()24M a b c d =+++,()38M a b c d =+++,∴()2n n M a b c d =+++,∴n M 是偶数,故①错误;∵0M a b c d =+++,∴0M 的最小值是123410+++=,∴n M 的最小值是210n ⨯,又∵n 为正整数,∴n M 的最小值为20,故②正确;∵10002000n M <<,∴10002102000n <⨯<,∴10n =,故③正确;故选:C.7.已知非负实数,,a b c 满足24,0a b a b c +=-+<,则下列结论一定正确的是()A .43b a >>B .2b c >>C .43b a >>D .240b ac -≤22()b a c ∴>+,即2222b a c ac >++.由2()0a c -≥得222,a c ac +≥24b ac ∴>,即240b ac ->,D 项错误.故选:C 8.潼铜在研究数学问题时遇到一个定义:将三个已经排好顺序的数:123,,x x x ,称为数列123,,x x x .计算121231,,23x x x x x x +++,将这三个数的最小值称为数列123,,x x x 的最佳值.例如,对于数列2,1,3-,因为()()212131422,,2233+-+-+===,所以数列2,1,3-的最佳值为12.潼铜进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列1,2,3-的最佳值为12;数列3,1,2-的最佳值为1;…经过研究,潼铜发现,对于“2,1,3-”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12;….根据以上材料,下列说法正确的个数有①数列4,3,2--的最佳值为53;②将“4-,3-,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列取得最佳值最小值的数列为3,2,4--;③将2,9-,(1)a a >这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,则满足条件a 的值有4个.A .3个B .2个C .1个D .0个【答案】C【分析】本题是一道数与式中的新定义问题,理解最佳值的定义以及正确的分类讨论是解题的关键.根据题中对最佳值的定义,结合分类讨论的思想可解决问题.【详解】9.定义一个运算()1212121212,,,,0n n n n n H x x x y y y y y y y y y =+++≠+++ ,下列说法正确的有()个①()1,231H =;②若()()24,41,21H x H x ---=-,则=1x -或2;③()()()()22217511,212,413,6110,20264H H H H ++++=;④若()()()(),,,,,,,,H a b c d H b a c d H c a b d H d a b c ===,则1c da b+=+.A .1B .2C .3D .41,2,3轴上,点1,2,3y x =上,11OA B ,112B A A △,212△B B A ,223B A A △,323B B A △…都是等腰直角三角形,且11OA =,则点2023B 的坐标是()A .()2022202222,B .()2023202322,C .()2022202322,D .()2023202222,【答案】A【分析】由11OA =,得到点1B 的坐标,然后利用等腰直角三角形的性质得到点2A 的坐标,进而得到点2B 的坐标,然后再依次类推得到点2023B 的坐标.【详解】解: 11OA =,∴点1A 的坐标为()10,,11OA B 是等腰直角三角形,111AB ∴=,()111B ∴,,112B A A △是等腰直角三角形,121A A ∴=,2222121112112B A A B A A =+=+=,212△B B A 是等腰直角三角形,222A B ∴=,()222B ∴,,同理可得:()22322B ,,()33422B ,,…,()20222022202322B ∴,,故选:A .【点睛】本题主要考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是通过等腰直角三角形的性质依次求出系列点B的坐标找出规律.11.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2023次.移动规则是:第n次移动n个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处).按这样的规则,在这2023次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.C、E、F D.C、E、G【点睛】本题主要考查了整式加减的探究规律,解题的关键是弄清题意,总结归纳出题目中的规律.12.定义:如果两个函数图象上至少存在一对点是关于原点对称的,则称这两个函数互为“关联函数”,这对对称的点称为“关联点”.例如:点()3,9P -在函数2y x =上,点()3,9Q -在函数23y x =--上,点P 与点Q 关于原点对称,此时函数2y x =和23y x =--互为“关联函数”,点P 与点Q 则为一对“关联点”.已知函数22y x x =+和42022y x n =+-互为“关联函数”,则n 不可能是()A .2021B .2022C .2023D .2024【答案】D【分析】设(),P s t 在22y x x =+,则(),Q s t --在42022y x n =+-上,得出42022n t s =-++()212023s =--+,求得最大值为2023,即可求解.【详解】解:设(),P s t 在22y x x =+,则(),Q s t --在42022y x n =+-上,∴2242022s s t s n t⎧+=⎨-+-=-⎩∴42022n t s =-++222022s s =-++()212023s =--+∴当1s =时,n 的最大值为2023,故选:D .【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.13.已知一列数的和()12202311220232x x x ++⋅⋅⋅+=⨯++⋅⋅⋅+,且1223202220232023131323202232023x x x x x x x x -+=-+=⋅⋅⋅=-+=-+,则12323x x x --的值是()A .2B .2-C .3D .3-14.我们知道,同一个平面内,1条直线将平面分成12a =部分,2条直线将平面最多分成24a =部分,3条直线将平面最多分成37a =部分,4条直线将平面形多分成411a =部分……,n 条直线将平面最多分成n a 部分,则1210111111a a a ++=--- ()A .2011B .2011-C .1011D .95-阶方点”.例如,点()13,与点122⎛⎫⎪⎝⎭,都是函数=21+y x 图象的“3阶方点”.若y 关于x 的二次函数22()6y x n n =-+-的图象存在“n 阶方点”,则n 的取值范围是()A .615n ≤≤B .625n ≤≤C .23n ≤≤D .13n ≤≤【答案】D 【分析】本题主要考查了二函数与几何综合,由二次函数解析式可知其顶点坐标在直线x n =上移动,当二次函数图象过点()n n -,-和点()n n ,时为临界情况,求出此时n 的值,进而可得n 的取值范围.【详解】解:由题意得:二次函数22()6y x n n =-+-的图象上的顶点坐标为:()26n n -,,16.已知1213435241110,,1,,1,,a S S S S S S S a S S >==--==--=⋯.即当n 为于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--.计算1232022S S S S ++++ 的结果为.∵20223376=⨯,∴12320221337337S S S S =-⨯++=-++ ,故答案为:337-.【点睛】本题考查了规律型中数字的变化类,根据数值的变化找出n S 的值,每6个一循环是解题的关键.17.如图,在平面直角坐标系中,点1A 的坐标为()10,,以1OA 为直角边作12Rt OA A △,使1260AOA ∠=︒,再以2OA 为直角边作23Rt OA A △,使2360A OA ∠=︒,再以3OA 为直角边作34Rt OA A △,使3460A OA ∠=︒……按此规律进行下去,点2023A 的坐标是.【点睛】本题主要考查了点的坐标的规律探索、解直角三角形等知识点,求出前面7个点的坐标并发现规律是解答本题的关键.18.对于一个四位自然数N ,其千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,各个数位上的数字均不相同且均不为0.将自然数N 的千位数字和个位数字组成一个两位数ad ,记为A ;百位数字和十位数字组成另一个两位数字bc ,记为B ,若A 与B 的和等于N 的千位数字与百位数字之和的11倍,则称N 为“坎数”.例如:6345,65A =,34B ,653499+=,()116399=+,所以6345是“坎数”.若N 为“坎数”,且a b >,当a bc d+-为9的倍数时,则所有満足条件的N 的最大值为.∴5c=,4d=,∴9+=+=,a b c da=,时,N有最大值,当8∴981b=-=,∴N的最大值为8154,故答案为:8154.【点睛】本题考查了因式分解的应用,通过给出的“坎数”的定义求出对应的各个数位的数字的关系,通过给出的式子,求出对应的数字的结果,从而求出最后的解.19.在一次数学活动课上,李老师将一副扑克牌中的红桃2~10共9张牌挑出,打乱顺序随机发给了甲、乙、丙三名同学,每人三张牌.已知甲的三张牌数字之和是12,乙的三张牌数字之和与丙的三张牌数字之和相同,且乙的三张牌上的数字都是奇数.写出甲的三张牌上的数字是,丙的三张牌上的数字是.【答案】2,4,63,8,10【分析】根据题意先分析出甲的可能结果,然后结合乙的三个奇数,筛选出合适的,最后再按照乙丙的三张牌数字和相同进行分配即可.【详解】解:已知红桃2~10有数字2,3,4,5,6,7,8,9,10共计9张牌甲的三张牌数字之和为12的情况有2,4,6、2,3,7、3,4,5三种组合,9张牌中共有4个奇数,乙的三张牌上的数字都是奇数,∴甲最多只能有一个奇数,只有2,4,6符合,乙的三张牌数字之和与丙的三张牌数字之和相同,∴乙的三张牌数字为5,7,9,丙的三张牌数字为3,8,10,故答案为:2,4,6;3,8,10【点睛】本题考查了数字类组合运算,按照题目进行逐步筛选和分析是解题关键.20.已知两个正数a,b,可按规则c ab a b=++扩充为一个新数.c在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依此继续扩充下去,将每扩充一次得到一个新数称为一次操作,(1)若1a =,3b =,按上述规则操作三次,扩充所得的数是;(2)若0a b >>,按上述规则操作五次后扩充所得的数为(1)(1)1m n a b ++-(m ,n 为正整数),则m n +=.(1)计算:2 13 4=.(2)若14,81a a ba ab b b-==-++,则,1 2a bb a bb--+的值为.①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.【答案】243【分析】先根据给出的图②和图③找出出现“1”规律,然后根据规律即可得解.【详解】观察图②和图③可知,前8行中包含3个前4行的图形,中间三角形中的数字均为0,∴前8行中“1”的个数是前4行中“1”的个数的3倍,即前8行中“1”的个数为9327⨯=(个),同理可知前16行中“1”的个数是前8行中“1”的个数的3倍,即前16行中“1”的个数为⨯=(个),27381⨯=(个),前32行中“1”的个数是前16行中“1”的个数的3倍,即前32行中“1”的个数为813243故答案为:243.【点睛】本题考查了数字规律探究计算,根据给出的图②和图③找出出现“1”规律是解题关键.x= ,这个小数从小数点后,以1开头一直写到999得23.设实数0.1234567891011998999到的,那么小数点后第2018位的数字是.【答案】0【分析】首先确定一位数,以及二位数的个数,判断排x的右边第2018个数字是第几个三位数的数字,从而确定.【详解】解:从1到9都是一位数,共有9个;从10到99共有90个数,都是二位数,则数字是由依次写下正整数1~99是x的前+=位数;9180189-=,∴4129是“差中数”;那么称这个四位数为“差中数”.例如:四位数4129,∵412912-=≠,∴5324不是“差中数”.若一个“差中数”为518m,又如:四位数5324,∵53242932则这个数为;如果一个“差中数”能被11整除,则满足条件的数的最大值是.∴12457,,,,,7518487531c c c c cd d d d db b b b b=====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩当178cdb=⎧⎪=⎨⎪=⎩时,这个“差中数”是9817,不能被11整除,当257cdb=⎧⎪=⎨⎪=⎩时,这个“差中数”是9725,不能被11整除,当415cdb=⎧⎪=⎨⎪=⎩时,这个“差中数”是9541,不能被11整除,当583cdb=⎧⎪=⎨⎪=⎩时,这个“差中数”是9358,不能被11整除,当741cdb=⎧⎪=⎨⎪=⎩时,这个“差中数”是9174,能被11整除,故如果一个“差中数”能被11整除,则满足条件的数的最大值是9174,故答案为:5138,9174.25.如果把一个奇数位的自然数各数位上的数字从最高位到个位依次排列,与从个位到最高位依次排列出的一串数字完全相同,相邻两个数位上的数字之差的绝对值相等:(不等于0);且该数正中间的数字与其余数字均不同,我们把这样的自然数称为“绝对等差对称数”,例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,且122332211-=-=-=-=,因此12321是一个“绝对等差对称数”,又如262,85258,…,都是“绝对等差对称数”,若一个“绝对等差对称数”t各个数位上的数字之和记为()Q t.已知一个五位“绝对等差对称数”t能被4整除,且()2Q t-也能被4整除,则t的个位数字是,t的最大值是.【答案】2或667876【分析】考查了新定义运算的含义,二元一次方程的解的含义,不等式的应用,解题的关键是弄清楚“阶梯数”的定义,从而写出符合题意的数.设某五位阶梯数为所以该五位“阶梯数”t的个位数字为2或6,最大值是67876.故答案为:2或6;67876。
2024年中考数学二轮复习模块专练—二次函数与方程、不等式综合(含答案)一、二次函数与一元二次方程1.抛物线与x 轴交点的横坐标抛物线2y ax bx c =++,令y =0,则20ax bx c ++=,方程的解就是抛物线与x 轴交点的横坐标;2.抛物线与x 轴交点情况(1)抛物线2y ax bx c =++与x 轴的交点个数由判别式24b ac ∆=-的值的正负确定;(2)当240b ac ∆=->时,抛物线与x 轴有两个交点;当240b ac ∆=-=时,抛物线与x 轴只有一个交点;当24<0b ac ∆=-时,抛物线与x 轴没有交点;3.利用二次函数求一元二次方程的近似根对于一元二次方程20ax bx c ++=,令2y ax bx c =++,画出函数的图像,抛物线与x 轴的交点的横坐标就是方程的解;二、二次函数与不等式1.二次函数与一元二次不等式20ax bx c ++>的解集就是抛物线2y ax bx c =++在x 轴上方的那部分图像对应的自变量的取值范围.《义务教育数学课程标准》2022年版,学业质量要求:1.知道二次函数和一元二次方程之间的关系;2.会根据二次函数的求其图像与坐标轴的交点坐标;试卷第2页,共12页3.会利用二次函数的图像求一元二次方程的近似解;【例1】(2023·四川巴中·统考中考真题)1.规定:如果两个函数的图象关于y 轴对称,那么称这两个函数互为“Y 函数”.例如:函数3y x =+与3y x =-+互为“Y 函数”.若函数2(1)34k y x k x k =+-+-的图象与x 轴只有一个交点,则它的“Y 函数”图象与x 轴的交点坐标为.【变1】(2023·河南鹤壁·统考三模)2.已知抛物线233(0)y mx mx m m --=>与x 轴交于A 、B 两点(点A 在点B 左侧).(1)抛物线对称轴为,A 点坐标为.(2)当0m >时,不等式232m mx mx ≤-的解集为.(3)已知点(2,4)M -、1(,4)2N -,连接MN 所得的线段与该抛物线有一个交点,求m 的取值范围.【例1】(2023·四川成都·校考三模)3.在探究关于x 的二次三项式21215x x +-的值时,小明计算了如下四组值:x1.1 1.2 1.3 1.421215x x +-0.59-0.842.293.76小明说,他通过这四组值能得到方程212150x x +-=的一个近似根,这个近似根的个位是,十分位是.【变1】(2023·河南商丘·统考二模)4.为解方程31212x x -=,小舟根据学习函数的经验对其进行了探究,下面是其探究的过程,请补充完整:(1)先研究函数3122y x x =-,列表如表:x 2-1-0121252y32m324516表格中,m 的值为__________.(2)如图,在平面直角坐标系xOy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出了函数3122y x x =-图象的一部分,请根据剩余的点补全此函数图象.(3)观察图象,当31202x x ->时,满足条件的x 的取值范围是__________.(4)在第(2)问的平面直角坐标系中画出直线1y =.根据图象直接写出方程31212x x -=的近似根(结果保留一位小数)试卷第4页,共12页【例1】(2021·广西贺州·统考中考真题)5.如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3,)A y -,2(1,)B y 两点,则关于x 的不等式2ax c kx m +≥-+的解集是()A .3x ≤-或1x ≥B .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤【变1】(2023·山西太原·校联考二模)6.请仔细阅读下面的材料,并完成相应的任务.利用二次函数图象解不等式数学活动课上,老师提出这样一个问题:我们曾经利用一次函数的图象解一元一次不等式,类比前面的学习经验,我们能否利用二次函数的图象解相应的不等式呢?例如解不等式2233x x -->-,同学们以小组为单位展开了讨论.善思小组展示了他们的方法:将不等式进一步变形为220x x ->,如图1,画出函数22y x x =-的图象,抛物线与x 轴相交于()0,0和()2,0两点,这两个点将x 轴分为三段,当0x <或2x >时,二次函数的图象位于x 轴上方,此时0y >,所以220x x ->,即2233x x -->-,所以此不等式的解集为0x <或2x >.勤学小组受善思小组的启发,画出函数2=23y x x --的图象和直线=3y -.如图2所示,它们相交于()0,3-和()2,3-两点,当0x <或2x >时,二次函数的图象位于直线=3y -的上方,此时3y >-,即2233x x -->-,所以不等式的解集为0x <或2x >.任务:(1)两个小组的方法主要运用的数学思想是______(从下面的选项中选择一个即可).A .数形结合思想B .分类讨论思想C .公理化思想(2)请你选择阅读材料中的一个方法解不等式243x x -<-.请将函数图象画在图3的平面直角坐标系中,并参照材料中的分析过程写出你的分析过程.【例1】(2023·青海西宁·统考中考真题)7.直线1y ax b =+和抛物线22y ax bx =+(a ,b 是常数,且0a ≠)在同一平面直角坐标系中,直线1y ax b =+经过点()4,0-.下列结论:试卷第6页,共12页①抛物线22y ax bx =+的对称轴是直线2x =-②抛物线22y ax bx =+与x 轴一定有两个交点③关于x 的方程2ax bx ax b +=+有两个根14x =-,21x =④若0a >,当<4x -或1x >时,12y y >其中正确的结论是()A .①②③④B .①②③C .②③D .①④【变1】(2023·江苏·统考中考真题)8.已知二次函数23y xbx =+-(b 为常数).(1)该函数图像与x 轴交于A B 、两点,若点A 坐标为()3,0,①则b 的值是_________,点B 的坐标是_________;②当<<0y 5时,借助图像,求自变量x 的取值范围;(2)对于一切实数x ,若函数值y t >总成立,求t 的取值范围(用含b 的式子表示);(3)当m y n <<时(其中m n 、为实数,m n <),自变量x 的取值范围是12x <<,求n 和b 的值以及m的取值范围.一、选择题(2023·湖北恩施·统考中考真题)9.如图,在平面直角坐标系xOy 中,O 为坐标原点,抛物线()20y ax bx c a =++≠的对称轴为1x =,与x 轴的一个交点位于()2,0,()3,0两点之间.下列结论:①20a b +>;②0bc <;③13a c <-;④若1x ,2x 为方程20ax bx c ++=的两个根,则1230x x ⋅-<<.其中正确的有()个.A .1B .2C .3D .4(2023·河北·统考中考真题)10.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A .2B .2m C .4D .22m (2023·湖南·统考中考真题)11.已知0m n >>,若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是()A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<(2023·四川自贡·统考中考真题)12.经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为()A .10B .12C .13D .15(2023·浙江衢州·统考中考真题)13.已知二次函数24y ax ax =-(a 是常数,a<0)的图象上有()1,A m y 和()22,B m y 两点.若点A ,B 都在直线3y a =-的上方,且12y y >,则m 的取值范围是()A .312m <<B .423m <<C .4332m <<D .m>2二、填空题试卷第8页,共12页(2023·广东深圳·深圳市石岩公学校考模拟预测)14.如图,二次函数与x 轴交点坐标为()10-,,()20,,当0y <时,x的取值范围是(2023·江苏镇江·统考二模)15.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠的自变量和对应函数值如表:x…1-047 (1)y (01)58 (x)…2-1-04 (2)y …503-5…21y y>当时,自变量x 的取值范围是(2023·云南昆明·统考二模)16.如图,在平面直角坐标中,抛物线()20y ax bx a =+>和直线()0y kx k =>交于点O和点A ,则不等式2ax bx kx +<的解集为.(2023·江苏南京·统考二模)17.二次函数2y ax bx c =++(0,a a b c ≠、、是常数)的图象如图所示,则不等式()220ax b x c +-+>的解集是.(2023·湖南永州·统考二模)18.我们学习了一元二次方程和二次函数,综合利用它们的性质解决问题,阅读下列材料,回答问题:例:已知关于x 的方程2(2)40tx t x t +-+=有实数根,求t 的最大值?解:由题意可知,当t =0时,方程有实数解当0t ≠时,240b ac ∆=-≥即()22440t t t --⋅⋅≥∴215440t t +-≤设函数()21544f t t t =+-当()0f t ≤时,2235t -≤≤综上max 25t =(1)已知关于x 的方程2252214x mx x m m -++-=有实数根,则m 的最大值为;(2)已知方程22221x xy y -+=有实数根,则x -2y 的最大值为.三、解答题(2022·山东青岛·统考中考真题)19.已知二次函数y =x 2+mx +m 2−3(m 为常数,m >0)的图象经过点P (2,4).(1)求m 的值;(2)判断二次函数y =x 2+mx +m 2−3的图象与x 轴交点的个数,并说明理由.试卷第10页,共12页(2023·广东广州·统考模拟预测)20.如图,抛物线2y x mx =+与直线y x b =-+交于点A (2,0)和点B.(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>-+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.(2023·河南南阳·统考三模)21.如图,抛物线23y x mx =-++与直线2y x b =-+交于点()4,5A -和点B.(1)求抛物线和直线的解析式;(2)请结合图象直接写出不等式232x mx x b -++<-+的解集;(3)点N 是抛物线对称轴上一动点,且点N 纵坐标为n ,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若点1,2P t ⎛⎫- ⎪⎝⎭在直线2y x b =-+上,且直线PN 与图象G有公共点,结合函数图象,直接写出点N 纵坐标n 的取值范围.(2023·云南·统考中考真题)22.数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++--+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.(2023·江苏盐城·统考中考真题)23.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c=++与x 轴的另一交点为点B .若14OB OA =,求b 的值.【拓展延伸】(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.试卷第12页,共12页参考答案:1.(3,0)C 或(4,0)C 【分析】根据题意2(1)34k y x k x k =+-+-与x 轴的交点坐标和它的“Y 函数”图象与x 轴的交点坐标关于y 轴对称,再进行分类讨论,即0k =和0k ≠两种情况,求出2(1)34k y x k x k =+-+-与x 轴的交点坐标,即可解答.【详解】解:①当0k =时,函数的解析式为3y x =--,此时函数的图象与x 轴只有一个交点成立,当0y =时,可得03x =--,解得3x =-,∴3y x =--与x 轴的交点坐标为()3,0-,根据题意可得,它的“Y 函数”图象与x 轴的交点坐标为()3,0;①当0k ≠时,函数2(1)34k y x k x k =+-+-的图象与x 轴只有一个交点,240∴-=b ac ,即()()214304k k k --⨯⨯-=,解得1k =-,∴函数的解析式为21244y x x =---,当0y =时,可得210244x x =---,解得4x =-,根据题意可得,它的“Y 函数”图象与x 轴的交点坐标为()4,0,综上所述,它的“Y 函数”图象与x 轴的交点坐标为(3,0)C 或()4,0C ,故答案为:(3,0)C 或(4,0)C .【点睛】本题考查了轴对称,一次函数与坐标轴的交点,抛物线与x 轴的交点问题,理解题意,进行分类讨论是解题的关键.答案第2页,共28页2.(1)32x =;3(2(2)1x ≤-或3x ≥(3)m 的取值范围为416517m ≤<或1621m =【分析】(1)根据抛物线的对称轴方程可得答案;令0y =,求出x 的值,即可得出答案.(2)由题意得,2230x x --≥,求出方程2230x x --=的解,进而可得答案.(3)分别求出抛物线顶点在线段MN 上、抛物线经过点M 或点N 时m 的值,进而可得答案.【详解】(1)解:抛物线的对称轴为3322m x m -=-=,令0y =,得2330mx mx m --=,解得12x x ==A 在B的左侧,33,,022A B ⎛⎫⎛⎫+∴ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故答案为:32x =;;(2)232m mx mx -≤ ,0m >2230x x --∴≥,解方程223=0x x --,得1213x x ,=-=,2230x x --∴≥的解集为1x ≤-或3x ≥,即不等式232m mx mx ≤-的解集为1x ≤-或3x ≥,故答案为:1x ≤-或3x ≥;(3)当抛物线233(0)y mx mx m m --=>的顶点在MN 上时,即2334mx mx m --=-有两个相等的实数根,()294340m m m ∴∆=--+=,解得10m =(舍去),21621m =;当抛物线经过线段MN 的左端点N 时,把1(,4)2N -代入233y mx mx m -=-,得133442m m m --=-,解得1617m =,当抛物线经过线段MN 的右端点M 时,把(2,4)M -代入233y mx mx m -=-,得4634m m m --=-,解得45m =;综上所述,m 的取值范围为416517m ≤<或1621m =.【点睛】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了二次函数图象与系数的关系和抛物线与x 轴的交点问题.3.11【分析】根据表格可得0.5900.84-<<,则方程212150x x +-=的一个近似根取值范围为:1.1 1.2x <<,即可进行解答.【详解】解:根据题意可得:0.5900.84-<<,∴方程212150x x +-=的一个近似根取值范围为:1.1 1.2x <<,∴这个近似根的个位是1,十分为是1,故答案为:1,1.【点睛】本题主要考查了求一元二次方程的近似根,解题的关键是掌握正确理解表格中的数答案第4页,共28页据,根据表格得出近似根的取值范围.4.(1)1516-(2)见解析(3)20x -<<或2x >(4)231.7,0.5, 2.2x x x =-=-=【分析】(1)将12x =代入函数解析式进行求解即可;(2)根据表格,描点,连线画出函数图象即可;(3)结合图象即可得出结果;(4)图象法解方程即可.【详解】(1)解:当12x =时,311115222216y ⎛⎫=⨯-⨯=- ⎪⎝⎭,∴1516m =-,故答案为:1516-;(2)根据(1)中表格数据,描点,连线,如图,(3)解:由图象可知,当20x -<<或2x >时,图象在x 轴上方,即:31202x x ->,故答案为:20x -<<或2x >;(4)解:作图如下:由图象可得:方程的解为231.7,0.5, 2.2x x x =-=-=.【点睛】本题考查函数的图象和性质.熟练掌握函数图象的画法,利用图象法解不等式和方程,是解题的关键.5.D【分析】将要求的不等式抽象成两个函数的函数关系问题,根据二次函数图象的对称性,以及两一次函数图象的关系,求出新的一次函数与二次函数的交点,从而写出抛物线在直线上方部分的x 的取值范围即可.【详解】y kx m =+ 与y kx m =-+关于y 轴对称抛物线2y ax c =+的对称轴为y 轴,因此抛物线2y ax c =+与直线y kx m =+的交点和与直线y kx m =-+的交点也关于y 轴对称设y kx m =-+与2y ax c =+交点为A B ''、,则A '2(1,)y -,B '1(3,)y 2ax c kx m+≥-+即在点A B ''、之间的函数图像满足题意2ax c kx m ∴+≥-+的解集为:13x -≤≤故选D .【点睛】本题考查了轴对称,二次函数与不等式,数形结合是数学中的重要思想之一,解决答案第6页,共28页函数问题更是如此.理解y kx m =+与y kx m =-+关于y 轴对称是解题的关键.6.(1)A(2)见解析【分析】(1)根据材料中两个小组的做法进行判别即可;(2)根据材料中两个小组的解题步骤进行解答即可.【详解】(1)两个小组都是画出了坐标系函数图象,通过观察图象得出的结论,∴主要运用的是数形结合的思想,故答案为:A ;(2)①选择善思小组的方法:将不等式进一步变形为2430x x -+<,画出函数243y x x =-+的图象,观察图象可知:抛物线与x 轴相交于()1,0和()3,0两点,这两个点将x 轴分为三段,当13x <<时,二次函数的图象位于x 轴下方,此时0y <,即2430x x -+<,∴不等式243x x -<-的解集为13x <<.②选择勤学小组的方法:画出函数24y x x =-的图象和直线=3y -,观察图象可知:函数24y x x =-的图象和直线=3y -相交于()1,3-和()3,3-两点,当13x <<时,二次函数的图象位于直线=3y -的下方,此时3y <-,即243x x -<-,∴不等式的解集为13x <<.【点睛】本题考查了二次函数与不等式的综合,熟练运用数形结合的思想方法是解题的关键.7.B【分析】①可得40a b -+=,从而可求4b a =,即可求解;②可得2240b ac b ∆=-=≥,由0a ≠,可得20b ∆=>,即可求解;③可判断抛物线也过()4,0-,从而可得方程()20ax b a x b +--=的一个根为4x =-,可求抛物线()23y ax b a x b =+--的对称轴为直线32x =-,从而可得抛物线()23y ax b a x b =+--与x 轴的另一个交点为()1,0,即可求解;④当0a >,当41x -<<时,12y y <,即可求解.【详解】解:① 直线1y ax b =+经过点()4,0-,40a b ∴-+=,4b a ∴=,抛物线的对称轴为直线4222b a x a a=-=-=-,故①正确;答案第8页,共28页②2240b ac b ∆=-=≥,由①得4b a =,0a ≠ ,0b ∴≠,∴20b ∆=>,∴抛物线22y ax bx =+与x 轴一定有两个交点,故②正确;③当4x =-时,164y a b=-16160a a =-=,∴抛物线也过()4,0-,由2ax bx ax b +=+得∴方程()20ax b a x b +--=,∴方程的一个根为4x =-,抛物线()23y ax b a x b =+--, 43222b a a a x a a --=-=-=-,∴抛物线()23y ax b a x b =+--的对称轴为直线32x =-,与x 轴的一个交点为()4,0-,()33422x ⎛⎫∴--=--- ⎪⎝⎭,解得:1x =,∴抛物线()23y ax b a x b =+--与x 轴的另一个交点为()1,0,∴关于x 的方程2ax bx ax b +=+有两个根14x =-,21x =,故③正确;④当0a >,当41x -<<时,12y y <,故④错误;故选:B .【点睛】本题考查了二次函数的基本性质,二次函数与一次函数交点,二次函数与不等式等,理解性质,掌握解法是解题的关键.8.(1)①()2,1,0--②2<<1x --或34x <<(2)234b t <--(3)213,5,4b n m =-=-<-【分析】(1)①待定系数法求出函数解析式,令0y =,求出点B 的坐标即可;②画出函数图像,图像法求出x 的取值范围即可;(2)求出二次函数的最小值,即可得解;(3)根据当m y n <<时(其中m n 、为实数,m n <),自变量x 的取值范围是12x <<,得到1x =和2x =关于对称轴对称,进而求出b 的值,得到n 为1x =的函数值,求出n ,推出直线y m =过抛物线顶点或在抛物线的下方,即可得出结论.【详解】(1)解:①∵函数图像与x 轴交于A B 、两点,点A 坐标为()3,0,∴20333b =+-,∴2b =-,∴2=23y x x --,∴当0y =时,2230x x --=,∴121,3x x =-=,答案第10页,共28页∴点B 的坐标是()1,0-;故答案为:()21,0--,;②2=23y x x --,列表如下:xL 2-1-134L y L 504-05L画出函数图像如下:由图可知:当<<0y 5时,2<<1x --或34x <<;(2)∵2223324b b y x bx x ⎛⎫=+-=+-- ⎪⎝⎭,∴当2b x =-时,y 有最小值为234b --;∵对于一切实数x ,若函数值y t >总成立,∴234b t <--;(3)∵2223324b b y x bx x ⎛⎫=+-=+-- ⎪⎝⎭,∴抛物线的开口向上,对称轴为2b x =-,又当m y n <<时(其中m n 、为实数,m n <),自变量x 的取值范围是12x <<,∴直线y n =与抛物线的两个交点为()()1,,2,n n ,直线y m =在抛物线的下方,∴()()1,,2,n n 关于对称轴对称,∴1222b +-=,∴3b =-,∴223932132424y x x ⎛⎫⎛⎫=---=-- ⎪ ⎪⎝⎭⎝⎭,∴23211524n ⎛⎫=--=- ⎪⎝⎭,当32x =时,y 有最小值214-,∴214m <-.答案第12页,共28页【点睛】本题考查二次函数的图像和性质,熟练掌握二次函数的图像和性质,利用数形结合和分类讨论的思想进行求解,是解题的关键.本题的综合性较强,属于中考压轴题.9.B【分析】由图象得a<0,0c >,由对称轴12b x a=-=得20b a =->,20a b +=,0bc >;抛物线与x 轴的一个交点位于()2,0,()3,0两点之间,由对称性知另一个交点在(1,0)-,(0,0)之间,得0y a b c =-+<,于是13a c <-,进一步推知30c a -<<,由根与系数关系知1230x x -<< ;【详解】解:开口向下,得a<0,与y 轴交于正半轴,0c >,对称轴12b x a=-=,20b a =->,20a b +=,故①20a b +>错误;0bc >故②0bc <错误;抛物线与x 轴的一个交点位于()2,0,()3,0两点之间,对称轴为1x =,故知另一个交点在(1,0)-,(0,0)之间,故=1x -时,0y a b c =-+<∴(2)0a a c --+<,得13a c <-,故③13a c <-正确;由13a c <-,a<0,0c >知30c a -<<,∵1x ,2x 为方程20ax bx c ++=的两个根,∴12cx x a= ∴1230x x -<< ,故④正确;故选:B【点睛】本题考查二次函数图象性质,一元二次方程根与系数关系,不等式变形,掌握函数图象性质,注意利用特殊点是解题的关键.10.A【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或x m =,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),答案第14页,共28页∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.11.B【分析】把12x x ,看做是直线y m =与抛物线223y x x =+-交点的横坐标,把34x x ,看做是直线y n =与抛物线223y x x =+-交点的横坐标,画出对应的函数图象即可得到答案.【详解】解:如图所示,设直线y m =与抛物线223y x x =+-交于A 、B 两点,直线y n =与抛物线223y x x =+-交于C 、D 两点,∵0m n >>,关于x 的方程2230x x m +--=的解为()1212,x x x x <,关于x 的方程2230x x n +--=的解为3434,()x x x x <,∴1234,,,x x x x 分别是A 、B 、C 、D 的横坐标,∴1342x x x x <<<,故选B.【点睛】本题主要考查了抛物线与一元二次方程的关系,正确把一元二次方程的解转换成直线与抛物线交点的横坐标是解题的关键.12.B【分析】根据题意,求得对称轴,进而得出1c b =-,求得抛物线解析式,根据抛物线与x 轴有交点得出240b ac ∆=-≥,进而得出2b =,则1c =,求得,A B 的横坐标,即可求解.【详解】解:∵抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭∵抛物线经过23,()41,),(A b m B b c m -+-两点∴23412b bc b -++-=,即1c b =-,∴22221122222y x bx b c x bx b b =-+-+=-+-+-,∵抛物线与x 轴有交点,∴240b ac ∆=-≥,即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭,即2440b b -+≤,即()220b -≤,∴2b =,1211c b =-=-=,∴23264,418118b b c -=-=-+-=+-=,∴()()41238412AB b c b =+---=--=,故选:B .【点睛】本题考查了二次函数的对称性,与x 轴交点问题,熟练掌握二次函数的性质是解题的关键.13.C【分析】根据已知条件列出不等式,利用二次函数与x 轴的交点和二次函数的性质,即可解答.答案第16页,共28页【详解】解:0a < ,30y a ∴=->,点A ,B 都在直线3y a =-的上方,且12y y >,可列不等式:2483am am a ->-,0a < ,可得24830m m -+<,设抛物线21483y m m =-+,直线10x =,∴24830m m -+<可看作抛物线21483y m m =-+在直线10x =下方的取值范围,当10y =时,可得20483m m =-+,解得1213,22m m ==,40> ,21483y m m ∴=-+的开口向上,24830m m ∴-+<的解为1322m <<,根据题意还可列不等式:22448am am am am ->-,0a < ,∴可得22448m m m m -<-,整理得2340m m -+<,设抛物线2234y m m =-+,直线20x =,∴2340m m -+<可看作抛物线2234y m m =-+在直线20x =下方的取值范围,当20y =时,可得2034m m =-+,解得1240,3m m ==,30-<Q ,∴抛物线2234y m m =-+开口向下,2340m m ∴-+<的解为0m <或43m >,综上所述,可得4332m <<,故选:C .【点睛】本题考查了二次函数图象上的点的坐标特征,一次函数图象上点的坐标特征,正确列出不等式是解题的关键.14.12x -<<##21x >>-【分析】写出图象在x 轴下方所对应的自变量的范围即可.【详解】解:由图象可知,当0y <时,12x -<<.故答案为:12x -<<.【点睛】本题考查了抛物线与x 轴的交点问题,二次函数与不等式的关系,利用了转化及数形结合的数学思想.15.1x <-或4x >##4x >或1x <-【分析】利用表中数据得到直线与抛物线的交点为()10-,和()45,,画出草图,从而得到当21y y >时,自变量x 的取值范围.【详解】解:∵当=1x -时,120y y ==;当4x =时,125y y ==;∴直线与抛物线的交点为()10-,和()45,,画出草图如图所示,答案第18页,共28页当21y y >时,1x <-或>4x ,故答案为:1x <-或>4x .【点睛】本题考查了二次函数与不等式,对于二次函数2y ax bx c =++(a 、b 、c 是常数,0a ≠)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.16.03x <<【分析】根据已知图象,确定交点横坐标,再找出直线在抛物线上方的部分,即可得到答案.【详解】解:由图象可知,抛物线与直线交点的横坐标分别为0、3,当03x <<时,直线在抛物线上方,∴不等式2ax bx kx +<的解集为03x <<,故答案为:03x <<.【点睛】本题考查了二次函数与不等式的关系,利用数形结合的思想解决问题是解题关键.17.1x <或3x >【分析】利用图象法解不等式即可.【详解】解:∵()220ax b x c +-+>,∴22ax bx c x ++>,将不等式转化为两个函数:2y ax bx c =++与2y x =的交点问题,由图可知:点()()1,2,3,6在抛物线2y ax bx c =++,又∵()()1,2,3,6满足直线2y x =的解析式,∴两个函数的交点坐标为:()()1,2,3,6,由图象可知:当1x <或3x >时,22ax bx c x ++>,∴不等式()220ax b x c +-+>的解集是1x <或3x >;故答案为:1x <或3x >.【点睛】本题考查图象法求不等式的解集.解题的关键是将不等式转化为二个函数图象交点的问题,利用数形结合的思想进行求解.18.5【分析】(1)仿照例题得出()2252142104m m m ⎛⎫-+---≥ ⎪⎝⎭,进而根据二次函数的性质即可求解.(2)令2x y t -=,则2x t y =+,将2x t y =+代入,得()()2222221t y t y y y +-++=,根据题意得出222Δ43640+200b ac t t =-=-≥,进而根据二次函数的性质即可求解.【详解】解:(1)∵关于x 的方程2252214x mx x m m -++-=,即22522104x mx x m m -++--=有实数根,∴240b ac ∆=-≥,1,21a b m ==-+,25214c m m =--,即()2252142104m m m ⎛⎫-+---≥ ⎪⎝⎭答案第20页,共28页∴2540m m +-≥设函数()245f m m m =-++当()0f m ≥时,15m -≤≤综上max 5m =,故答案为:5.(2)令2x y t -=,则2x t y =+,将2x t y =+代入,()()2222221t y t y y y +-++=整理得2256210y ty t ++-=,该方程有实数根,∴222Δ43640+200b ac t t =-=-≥∴t ≤≤t即2x y -【点睛】本题考查了一元二次方程根的判别式,二次函数的性质,熟练掌握二次函数的性质是解题的关键.19.(1)m =1(2)二次函数22y x x =+-的图象与x 轴有两个交点,理由见解析.【分析】(1)把P (2,4)代入y =x 2+mx +m 2−3即可求得m 的值;(2)首先求出Δ=b 2-4ac 的值,进而得出答案.【详解】(1)解:∵二次函数y =x 2+mx +m 2−3图象经过点P (2,4),∴4=4+2m +m 2−3,即m 2+2m −3=0,解得:m 1=1,m 2=−3,又∵m >0,∴m =1;(2)解:由(1)知二次函数y =x 2+x −2,∵Δ=b 2−4ac =12+8=9>0,∴二次函数y =x 2+x −2的图象与x 轴有两个交点.【点睛】此题主要考查了抛物线与x 轴的交点以及一元二次方程的解法,得出△的值是解题关键.20.(1)2m =-,2b =;(2)不等式2x mx +>x b -+的解集为1x <-或2x >;(3)点M 的横坐标M x 的取值范围是:12M x -≤<或3M x =.【分析】(1)把A (2,0)分别代入两个解析式,即可求得m 和b 的值;(2)解方程222x x x -=-+求得点B 的坐标为(-1,3),数形结合即可求解;(3)画出图形,利用数形结合思想求解即可.【详解】解:(1)∵点A (2,0)同时在2y x mx =+与y x b =-+上,∴2022m =+,02b =-+,解得:2m =-,2b =;(2)由(1)得抛物线的解析式为22y x x =-,直线的解析式为2y x =-+,解方程222x x x -=-+,得:1221x x ==-,.∴点B 的横坐标为1-,纵坐标为23y x =-+=,∴点B 的坐标为(-1,3),观察图形知,当1x <-或2x >时,抛物线在直线的上方,答案第22页,共28页∴不等式2x mx +>x b -+的解集为1x <-或2x >;(3)如图,设A 、B 向左移3个单位得到A 1、B 1,∵点A (2,0),点B (-1,3),∴点A 1(-1,0),点B 1(-4,3),∴A A 1=BB 1=3,且A A 1∥BB 1,即MN 为A A 1、BB 1相互平行的线段,对于抛物线()22211y x x x =-=--,∴顶点为(1,-1),如图,当点M 在线段AB 上时,线段MN 与抛物线22y x x =-只有一个公共点,此时12M x -≤<,当线段MN 经过抛物线的顶点(1,-1)时,线段MN 与抛物线22y x x =-也只有一个公共点,此时点M 1的纵坐标为-1,则12M x -=-+,解得3M x =,综上,点M 的横坐标M x 的取值范围是:12M x -≤<或3M x =..【点睛】本题考查了二次函数的图象与性质;能够画出图形,结合函数图象,运用二次函数的性质求解是关键.21.(1)223y x x =-++和23y x =-+(2)0x <或4x >(3)14n ≤≤【分析】(1)将点A 的坐标代入23y x mx =-++,2y x b =-+求出m 、b 的值即可;(2)求出点B 的坐标,根据图象得出不等式的解集即可;(3)求出点P 的坐标为1,42⎛⎫- ⎪⎝⎭,直线AB 与抛物线对称轴的交点为()1,1,结合图象即可得出答案.【详解】(1)解:将点()4,5A -代入23y x mx =-++得:25443m -=-++,解得:2m =,将点()4,5A -代入2y x b =-+得:524b -=-⨯+,解得:3b =,∴抛物线和直线的解析式分别为223y x x =-++和23y x =-+.(2)解:联立22323y x x y x ⎧=-++⎨=-+⎩,解得:1103x y =⎧⎨=⎩,2145x y =⎧⎨=-⎩,∴()0,3B ,∴根据图象可知,不等式232x mx x b -++<-+的解集为0x <或>4x ;(3)解:把1,2P t ⎛⎫- ⎪⎝⎭代入23y x =-+得:4t =,∴点P 的坐标为1,42⎛⎫- ⎪⎝⎭,∵抛物线解析式为()222314y x x x =-++=--+,∴抛物线的顶点坐标为()1,4,对称轴为直线1x =,把1x =代入23y x =-+得:1y =,∴直线AB 与抛物线对称轴的交点为()1,1,根据图象可知,当直线PN 与图像G 有公共点时,14n ≤≤.答案第24页,共28页【点睛】本题主要考查了求二次函数解析式,一次函数解析式,一次函数与二次函数的交点问题,解题的关键是数形结合,熟练掌握待定系数法,以及求出两个函数解析式和交点坐标.22.(1)见解析(2)0a =或1a =-或1a =或2a =-【分析】(1)分12a =-与12a ≠-两种情况讨论论证即可;(2)当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,得2(42)(96)440a x a x a ++--+=,从而有4421a x a -=+或12x =-,根据整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,从而有211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解之即可.【详解】(1)解:当12a =-时,420a +=,函数2(42)(96)44y a x a x a =++--+为一次函数126y x =+,此时,令0y =,则1260x +=,解得12x =-,∴一次函数126y x =+与x 轴的交点为102⎛⎫- ⎪⎝⎭;当12a ≠-时,420a +≠,函数2(42)(96)44y a x a x a =++--+为二次函数,∵2(42)(96)44y a x a x a =++--+,∴()2(96)(42)444a a a ∆=+---+228110836643232a a a a =-++--214049100a a -+=。
中考数学二轮复习重难题型突破类型三新解题方法型中考数学二轮复习重难题型突破类型三新解题方法型类型三新解题方法型例1、求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91-56=3556-35=2121-1 4=714 -7=7所以,91与56的最大公约数是7.请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.[解答]解:(1)108-45=6345-18=2727-18=918-9=9所以,108与45的最大公约数是9;(2)①先求104与78的最大公约数,104-78=2678-26=52所以,104与78的最大公约数是26;②再求26与143的最大公约数,143-26=117117-26=9191-26=6565-26=3939-26=13所以,26与143的最大公约数是13.综上所述,78、104、143 的最大公约数是13.例2、数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究:求不等式|x-1|(1)探究|x-1|的几何意义[解答]如图①,在以O为原点的数轴上,设点A′对应的数是x-1,由绝对值的定义可知,点A′与点O的距离为|x-1|,可记为A′O=|x-1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x-1|.因此,|x-1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.第2题图(2)求方程|x-1|=2的解[解答]因为数轴上3和-1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,-1.(3)求不等式|x-1|因为|x-1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x-1|[解答] 解:在数轴上表示如解图所示.第2题解图所以,不等式的|x-1|例3、古希腊数学家丢番图(公元250年前后)在《算术》中提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:如图,以a2 和b为两直角边作Rt△ABC,再在斜边上截取BD=a2,则AD的长就是所求方程的解.(1)请用含字母a、b的代数式表示AD的长.(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.第3题图[解答]解:(1)∵∠C=90°,BC=a2,AC=b,∴AB=b2+a24,∴AD=b2+a24-a2=4b2+a2-a2;(2)用求根公式求得:x1=-4b2+a2-a2;x2=4b2+a2-a2故A D的长就是方程的正根,遗憾之处:图解法不能表示方程的负根.例4、请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答.引例:设a,b,c为非负实数,求证:a2+b2+b2+c2 +c2+a2≥2(a+b+c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+b+c的正方形来研究.解:如图①,设正方形的边长为a+b+c,则AB=a2+b2,BC=b2+c2,CD=a2+c2,显然AB+BC+CD≥AD,∴a2+b2+b2+c2+c2+a2≥2(a+b+c).探究一:已知两个正数x,y,满足x+y=12,求x2+4+y2+9的最小值(图②仅供参考);探究二:若a,b为正数,求以a2+b2,4a2+b2,a2+4b2为边的三角形的面积.第4题图[解答]解:探究一:如解图①,构造矩形AECF,并设矩形的两边长分别为12,5,第4题解图①则x+y=12,AB=x2+4,BC=y2+9,显然AB+BC≥AC,当A,B,C三点共线时,AB+BC最小,即x2+4+y2+9的最小值为AC,∵AC=122+52=13,∴x2+4+y2+9 的最小值为13;第4题解图②探究二:如解图②,设矩形ABCD的两边长分别为2a,2b,E,F分别为AB,AD的中点,则CF=4a2+b2,CE=a2+4b2,EF=a2+b2,设以a2+b2,4a2+b2,a2+4b2为边的三角形的面积为S△CEF,∴S△CEF=S矩形ABCD-S△C DF-S△AEF-S△BCE=4ab-12×2a×b-12ab-12a×2b=32ab,∴以a2+b2,4a2+b2,a2+4b2为边的三角形的面积为32ab.。
初中数学二轮冲刺专题复习2018版分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y 点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O2沿x 轴向右平移,在平移的过程中与x轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG ·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
类型二图形规律1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.+=根木棍,【详解】解:第①个图案用了459+⨯=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341=⨯-;…,所以第⑦个图案中圆圈的个数为37120⨯-=;故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n 个图案的规律为31n -是解题的关键.3.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D.【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()A.()31.34B.()31,34-C.()32,35D.()32,0【答案】A 【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n --,.【详解】解:∵()121A -,,()412A -,,()703A ,,()1014A ,,L ,∴()323n A n n --,,∵1003342=⨯-,则34n =,∴()1003134A ,,故选:A.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.5.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.A.40452πB.2023π【答案】A【分析】曲线11112DA B C D A …是由一段段得到1114(1)22n n AD AA n -==⨯-+,7.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.8.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解析】根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.9.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21【分析】根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解析】∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.10.观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.11.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.12.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A.()202020202,32--B.()202120212,32C.()202020202,2⨯D.()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.【详解】解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=3222-⨯-,()2020202020212,2A ∴,故选:C.【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.13.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多个小正方形.【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解析】∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n 个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n 个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.【答案】66n +/66n +【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,a a a a ++++= ()2143212n n n n n n +-18.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,…∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.【答案】()2023,3-【分析】先确定前几个点的坐标,然后归纳规律,按规律解答即可.【详解】解:由图形可得:()()2352,0,3,0,A A A 如图:过1A 作1A B x ⊥轴,∵12,OA A20.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2019个菱形时,2n-1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.21.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.【答案】202223【分析】过点1A 作1A M x ⊥轴,先求出130AOM ∠=︒,再根据等边三角形的性质、()12,0A ,12OA ∴=,当2x =时,233y =,即M ⎛ ⎝23.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,第n个图形中的黑色圆点的个数为()1 2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,,其中每3个数中,都有2个能被3整除,33÷2=161,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.24.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有12019190 2⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1) 2n n-.25.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.26.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+ +n=()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+ +n=()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n.27.如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A 位于x 轴上,顶点B,D 位于y 轴上,O 为坐标原点,则OBOA的值为__________.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.【答案】(1)12;(2)606255(,【解析】(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴OB DCOA BC=,∵DC=1,BC=2,∴OB OA =12,故答案为:12.(2过C 作CM⊥y 轴于M,过M 1作M 1N⊥x 轴,过F 作FN 1⊥x轴.根据勾股定理易证得BD ==CM=OA=5,DM=OB=AN=5,∴C(5),∵AF=3,M 1F=BC=2,∴AM 1=AF-M 1F=3-2=1,∴△BOA≌ANM 1(AAS),∴NM 1=OA=255,∵NM 1∥FN 1,∴1111251553M N AM FN AF FN ==,,∴FN 1=655,∴AN 1=355,∴ON 1=OA+AN 1=253555555+=,∴F(555,655),同理,F 1(857555,F 2(55,),F 3(1459555,),F 4(55,),…F 2019),即(【名师点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键28.如图,正方形1ABCB 中,AB =,AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】202033【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =,∴∠11B AA =30°,∴11B A =1B A 3=1,∴1113=2=2(3AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=33133⨯=,∴21123=23A A -⨯;∴线段20202021A A =202112020332(33-⨯=,故答案为:20203)3.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.29.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1AC 为一边,在BC 的延长线上作菱形111ACC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得134S =,2S =242n n S -=,然后问题可求解.【详解】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,过点B 作BE⊥CD 于点E,如图所示:∴sin 2BE BC BCD =⋅∠=,∴1121133244A D BE A S D =⋅==,同理可得:2222133244S A D ==⨯=,2233233444S A D ==⨯=∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-==⋅;故答案为40382【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.30.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n+5(n 为正整数)”,再代入n=30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n+1)+(n −1)2+2=n 2−n+5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】本题考查了规律型:图形的变化类,根据各图形中“〇”个数的变化找出变化规律“a n =n 2−n+5(n 为正整数)”是解题的关键.31.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n个图形中三角形个数是_______.n n+-【答案】21【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42 (2)n n+-.∴上下两部分统一规律为:21n n+-.故答案为:21【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究32.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).【分析】根据图形的变化发现规律,即可用含n的代数式表示.【解析】第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即7=3×2+1第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n 个图案有(3n+1)个三角形.故答案为:(3n+1).33.如图,四边形ABCD 是矩形,延长DA 到点E,使AE=DA,连接EB,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)【分析】先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n﹣1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.【解析】∵AE=DA,点F 1是CD 的中点,矩形ABCD 的面积等于2,∴△EF 1D 和△EAB 的面积都等于1,∵点F 2是CF 1的中点,∴△EF 1F 2的面积等于12,同理可得△EF n﹣1F n 的面积为12n−1,∵△BCF n 的面积为2×12n ÷2=12n,∴△EF n B 的面积为2+1﹣1−12−⋯−12n−1−12n =2﹣(1−12n )=2n +12n.故答案为:2n +12n.。
中考数学二轮备考增强习题(分析)1.用以下一种多边形不可以铺满地面的是()A. 正方形B.正十边形C.正六边形D.等边三角形2.以下多边形中,内角和与外角和相等的是()A. 四边形B.五边形C.六边形D.八边形3.如图 4-3-9,在 ?ABCD 中, AC 与 BD 订交于点 O,那么以下结论不必定成立的是 ()A.BO=DOB.CD=ABC.∠ BAD= ∠BCDD.AC=BD图 4-3-9 图 4-3-10 图 4-3-11 图 4-3-12 图 4-3-134.如图 4-3-10,在?ABCD 中,AD=2AB ,CE 均分∠ BCD,并交 AD 边于点 E,且 AE=3,那么 AB 的长为 ()A.4B.3C.52D.26.如图 4-3-11,?ABCD 的周长为 36,对角线 AC,BD 订交于点 O,点 E 是 CD 的中点, BD=12 ,那么△ DOE 的周长为 ____________.7.如图 4-3-12,?ABCD 与?DCFE 的周长相等,且∠ BAD=60 °,∠F=1 10°,那么∠ DAE 的度数为 __________.8.如图 4-3-13,按序连接四边形 ABCD 四边的中点 E,F,G,H,那么四边形 EFGH 的形状必定是 __________.9.一个多边形的内角和是外角和的32,那么这个多边形的边数是_____ ___.10.如图 4-3-14,在平行四边形 ABCD 中,对角线 AC ,BD 交于点 O,经过点 O 的直线交 AB 于 E,交 CD 于 F.求证: OE=OF.11 如图 4-3-15,在?ABCD 中, E,F 是对角线 BD 上两点,且 BE=DF.(1)图中共有 ______对全等三角形 ;(2)请写出此中一对全等三角形:________≌__________,并加以证明 .B级中等题12.如图 4-3-16,四边形 ABCD 是平行四边形,把△ ABD 沿对角线 BD翻折 180°获得△ A′BD.(1)利用尺规作出△ A ′BD( 要求保留作图印迹,不写作法);(2)设 DA ′与 BC 交于点 E,求证:△ BA ′E≌△ DCE.13.如图 4-3-17,在 ?ABCD 中,延长 DA 到点 E,延长 BC 到点 F,使得 AE=CF ,连接 EF,分别交 AB ,CD 于点 M,N,连接 DM ,BN.(1)求证:△ AEM ≌△ CFN;(2)求证:四边形BMDN 是平行四边形 .C级拔尖题14.(1)如图 4-3-18(1), ?ABCD 的对角线 AC,BD 交于点 O,直线 EF过点 O,分别交 AD ,BC 于点 E,F.求证: AE=CF.(2)如图 4-3-18(2),将?ABCD( 纸片 )沿过对角线交点O 的直线 EF 折叠,点 A 落在点 A1 处,点 B 落在点 B1 处,设 FB1 交 CD 于点 G,A1B1 分别交CD, DE 于点 H,I.求证: EI=FG.1.B2.A3.D4.B5.C6.157.25°8.平行四边形9.510.证明:∵四边形ABCD 是平行四边形,∴O A=OC,AB ∥CD.∴∠ OAE= ∠OCF.∵∠ AOE= ∠COF,∴△ OAE ≌△ OCF(ASA).∴O E=OF.11.解: (1)3(2)①△ ABE≌△ CDF.证明:在 ?ABCD 中, AB ∥CD,AB=CD ,∴∠ ABE= ∠CDF.又∵ BE=DF,∴△ ABE ≌△ CDF(SAS).②△ ADE ≌△ CBF.证明:在 ?ABCD 中, AD ∥BC,AD=BC ,∴∠ ADE= ∠CBF,∵ BE=DF,∴B D-BE=BD-DF ,即 DE=BF.∴△ ADE ≌△ CBF(SAS).③△ ABD ≌△ CDB.证明:在 ?ABCD 中, AB=CD ,AD=BC ,又∵ BD=DB ,∴△ ABD ≌△ CDB(SSS).(任选此中一对进行证明即可)12.解: (1)略(2)∵四边形 ABCD 是平行四边形,∴A B=CD ,∠ BAD= ∠C,由折叠性质,可得∠ A′=∠A,A′B=AB ,设 A′D 与 BC 交于点 E,∴∠ A′=∠C, A′B=CD,在△ BA ′E 和△ DCE 中,∠A′=∠C,∠ BEA ′=∠DEC,BA ′=DC,∴△ BA ′E≌△ DCE(AAS).13.证明: (1)∵四边形 ABCD 是平行四边形,∴∠ DAB= ∠BCD.∴∠ EAM= ∠FCN.又∵ AD ∥BC,∴∠ E=∠F.又∵ AE=CF,∴△ AEM ≌△ CFN(ASA).(2)∵四边形 ABCD 是平行四边形,∴A B ∥CD,AB=CD.又由 (1),得 AM=CN ,∴ BM=DN.又∵ BM ∥DN∴四边形 BMDN 是平行四边形 .14.证明: (1)∵四边形 ABCD 是平行四边形,∴A D ∥BC,OA=OC. ∴∠ 1=∠2.又∵∠ 3=∠4,∴△ AOE≌△ COF(ASA). ∴AE=CF.(2)∵四边形 ABCD 是平行四边形,∴∠ A= ∠C,∠ B=∠D.由(1),得 AE=CF.由折叠的性质,得AE=A1E ,∠ A1=∠A,∠ B1=∠B,∴A1E=CF,∠ A1=∠ C,∠ B1=∠D.又∵∠ 1=∠2,∴∠ 3=∠4.∵∠ 5=∠3,∠ 4=∠6,∴∠ 5=∠6.在△ A1IE 与△ CGF 中,∠A1=∠ C,∠ 5=∠6,A1E=CF,〝师〞之看法,大体是从先秦期间的〝师长、师傅、先生〞而来。
中考数学第二轮复习资料目录专题一选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略.具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考考点精讲1.(莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A.B.C.D.2.(自贡)如图,已知A、B是反比例函数y=kx(k>0,x>0)上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P 作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是A.B.C.D.3.(鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是A.B.C.D.4.(巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是A.B.C.D.5.(宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是A.B.C.D.6.(菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A.15°或30°B.30°或45°C.45°或60°D.30°或60°7.(邵阳)下列四个图形中,不是轴对称图形的是A.B.C.D.8.(南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是A.三角形B.线段C.矩形D.正方形9.(长沙)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是A.B.C.D.10.(达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是A.③①④②B.③②①④C.③④①②D.②④①③11.(陕西)如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A .B .C .D .12.(黑龙江)如图,爸爸从家(点O )出发,沿着扇形AOB 上OA →弧AB →BO 的路径去匀速散步,设爸爸距家(点O )的距离为S ,散步的时间为t ,则下列图形中能大致刻画S 与t 之间函数关系的图象是A .B .C .D .13.(盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有A .4种B .5种C .6种D .7种14.(咸宁)如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为A .1732B .12C .1736D .173815.(雅安)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为A .12B .32C .22D .3316.(衢州)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .17.(柳州)如图,点P (a ,a )是反比例函数y =16x在第一象限内的图象上的一个点,以点P 为顶点作等边△P AB ,使A 、B 落在x 轴上,则△POA 的面积是A .3B .4C .123− D .33824− 18.(莱芜)下列说法错误的是A .若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B .22C .若a >|b |,则a >bD .梯形的面积等于梯形的中位线与高的乘积的一半19.(无锡)已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为A .6、7B .7、8C .6、7、8D .6、8、920.(钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A 地到B 地的路线图(箭头表示行进的方向).其中E 为AB 的中点,AH >HB ,判断三人行进路线长度的大小关系为A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙21.(邗江区一模)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示;(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示;(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示;(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=4π以上结论正确的有A.1个B.2个C.3个D.4个专题二 新定义型问题一、中考专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考考点精讲1.(湛江)阅读下面的材料,先完成阅读填空,再按要求答题:sin 30°=12,cos 30°sin 230°+cos 230°= ; ①sin 45°,cos 45°,则sin 245°+cos 245°= ;②sin 60°=2,cos 60°=12,则sin 260°+cos 260°= ; ③ …… 观察上述等式,猜想:对任意锐角A ,都有sin 2A +cos 2A = .④(1)如图,在锐角三角形ABC 中,利用三角函数的定义及勾股定理对∠A 证明你的猜想; (2)已知:∠A 为锐角(cosA >0)且sinA =35,求cosA . 2.(河北)定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在图所示的数轴上表示出来.3.(十堰)定义:对于实数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a ]=-2,那么a 的取值范围是 .(2)如果[12x+]=3,求满足条件的所有正整数x.4.(钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是A.2 B.3 C.4 D.55.(宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫做这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.6.(舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E =E⊕F=F⊕D,则C,D,E,F四点A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点7.(常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A.B.C.D.8.(上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .9.(宜宾)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB =1,那么曲线CDEF 的长是 .10.(淄博)在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有 条.11.(乐山)对非负实数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n -12≤x <n +12,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若(12x -1)=4,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有(m +2013x )=m +(2013x );⑤(x +y )=(x )+(y );其中,正确的结论有 (填写所有正确的序号).12.(莆田)定义:如图1,点C 在线段AB 上,若满足AC 2=BC •AB ,则称点C 为线段AB 的黄金分割点.如图2,△ABC 中,AB =AC =1,∠A =36°,BD 平分∠ABC 交AC 于点D .(1)求证:点D 是线段AC 的黄金分割点;(2)求出线段AD 的长.13.(大庆)对于钝角α,定义它的三角函数值如下:sinα=sin (180°-α),cosα=-cos (180°-α)(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的比是1:1:4,A ,B 是这个三角形的两个顶点,sinA ,cosB 是方程4x 2-mx -1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的大小.14.(安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证: AB BE DC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)15.(北京)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下的定义:若⊙C 上存在两个点A 、B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F 0).(1)当⊙O 的半径为1时,①在点D 、E 、F 中,⊙O 的关联点是 ;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.专题三开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等.三、中考考点精讲1.(盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系,使得另一边EF过原矩形的(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积(2)写出如图中的三对相似三角形,并选择其中一对进行证明.6.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.7.(徐州)请写出一个是中心对称图形的几何图形的名称:.8.(钦州)请写出一个图形经过一、三象限的正比例函数的解析式.9.(连云港)若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以10使△ABC≌△DEF.第11题第12题第13题12.(绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.13.(义乌市)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.14.(齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是____________(填一个即可)15.(邵阳)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.第14题第15题第16题第17题16.(吉林)如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可) 17.(昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)18.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已19.(盐城)市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)专题四探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法,当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法,即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲1.(襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.2.(新疆)如图,□ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.3.(牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD CD=,CB=.4.(河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E =30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.8.(陕西)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.9.(西城区一模)在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A6的坐标为;若点A n的坐标为(2013,2012),则n=.10.(湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…是.11.(绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.12.(茂名)如图,在□ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.13.(白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.14.(无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)15.(宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.16.(凉山州)先阅读以下材料,然后解答问题:材料:将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).解:在抛物线y=-x2+2x+3图象上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到A′(-1,3),再向下平移2个单位得到A″(-1,1);点B向左平移1个单位得到B′(0,4),再向下平移2个单位得到B″(0,2).设平移后的抛物线的解析式为y=-x2+bx+c.则点A″(-1,1),B″(0,2)在抛物线上.可得:112b c c −−+=⎧⎨=⎩,解得:02b c =⎧⎨=⎩.所以平移后的抛物线的解析式为:y =-x 2+2. 根据以上信息解答下列问题:将直线y =2x -3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.17.(湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB =BC ,∠ABC =90°,BO ⊥AC ,于点O ,点P 、D 分别在AO 和BC 上,PB =PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE .(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB 平分∠ABO ,其余条件不变.求证:AP =CD .(3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P ′时,满足题中条件的点D 也随之在直线BC 上运动到点D ′,请直接写出CD ′与AP ′的数量关系.(不必写解答过程)18.(淄博)分别以□ABCD (∠CDA ≠90°)的三边AB 、CD 、DA 为斜边作等腰直角三角形△ABE 、△CDG 、△ADF .(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF ,EF .请判断GF 与EF 的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF ,EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.19.(张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.20.(衡阳)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.21.(宁夏)在□ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,□ABCD的两边AB与BC应满足什么关系?22.(南平)在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.23.(德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.24.(泉州)如图1,在平面直角坐标系中,正方形OABC的顶点A(-6,0),过点E(-2,0)作EF∥AB,交BO于F;25.(梅州)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠P AB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF 的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.返回专题五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三.三、中考考点精讲1.(吉林)若a-2b=3,则2a-4b-5=.2.(福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.3.(东营)如图,圆柱形容器中,高为 1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).4.(宁德质检)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为.5.(山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?。
2024年中考数学二轮复习题型全通关专练—综合与实践(含答案)初中阶段综合与实践领域,可采用项目式学习的方式,以问题解决为导向,,整合数学与其他学科的知识和思想方法,让学生从数学的角度观察与分析、思考与表达、解决与阐释社会生活以及科学技术中遇到的现实问题,感受数学与科学、技术、经济、金融、地理、艺术等学科领域的融合,积累数学活动经验,体会数学的科学价值,提高发现与提出问题、分析与解决问题的能力,发展应用意识、创新意识和实践能力.考点讲解:跨章节的综合与实践,就是利用同板块的内容解决问题,但这些内容来自初中的不同年级的不同章节.【例1】(2023·宁夏·统考中考真题)1.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为36︒的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在ABC 中,36A ∠=︒,AB AC =.(1)操作发现:将ABC于点D,连接DE,DB (用含x的式子表示)(2)进一步探究发现:证明:512 BCAC-=底腰【变1】(2023·江苏盐城·统考中考真题)2.综合与实践【问题情境】如图1,小华将矩形纸片ABCD试卷第2页,共16页考点讲解:跨板块的综合与实践,就是利用不同数学模块的内容综合解决问题,但这些板块都来自于初中所学的知识,是这些知识的综合应用.【问题解决】请你基于上述数据整理的信息解答下列问题:(1)这8周每周来访旅客的平均人数有______万人;(2)求平均每周到访该市只游玩一天的游客人数;(3)请你通过计算估计第9周来访的旅客量约是多少万人?(精确到0.1)【问题提出】小组同学提出这样一个问题:若【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB为m x,BC为m y.由矩形地块面积为成是反比例函数8yx=的图象在第一象限内点的坐标;满足条件的(),x y可看成一次函数这两个条件的(),x y就可以看成两个函数图象交点的坐标.试卷第4页,共16页(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图说明理由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数是直线2y x =-通过平移得到的,在平移过程中,当过点比例函数()80y x x=>的图象有唯一交点.(3)请在图2中画出直线2y x a =-+过点【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 值范围.考点讲解:跨学科的综合与实践,就是利用数学知识和方法解决其它学科的问题,或者把数学与其它学科结合起来,共同解决实际问题.【例1】(2022·广西·统考中考真题)芒果树叶的长宽比荔枝树叶的长宽比【问题解决】试卷第6页,共16页【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.(2023·广东·统考中考真题)7.综合与实践主题:制作无盖正方体形纸盒素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:试卷第8页,共16页(1)直接写出纸板上ABC ∠与纸盒上111A B C ∠的大小关系;(2)证明(1)中你发现的结论.(2023·广西北海·统考二模)8.综合与实践【数学理解】德国数学家米勒曾提出最大视角问题,对该问题的一般描述是:如图2,已知点A ,B 是MON ∠的边OM 上的两个定点,C 是ON 边上的一个动点,当且仅当ABC 的外接圆与ON 边相切于点C 时,ACB ∠最大.人们称这一命题为米勒定理.(1)【问题提出】如图1,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻,当甲带球冲到A 点时,乙已跟随冲到B 点,仅从射门角度大小考虑,甲是自己射门好,还是迅速将球回传给乙,让乙射门好?假设球员对球门的视角越大,足球越容易被踢进.请结合你所学知识,求证:MBN MAN ∠>∠.(2)【问题解决】如图3,已知点A ,B 的坐标分别是()0,1,()0,3,C 是x 轴正半轴上的一动点,当ABC 的外接圆⊙D 与x 轴相切于点C 时,ACB ∠最大.当ACB ∠最大时,求点C 的坐标.(2023·山东临沂·统考中考真题)9.综合与实践问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮试卷第10页,共16页(1)如图2,分别以BC 、CA 、AB 为边向外作的等腰直角三角形的面积为1S 、2S 、3S ,则1S 、2S 、3S 之间的数量关系是______.(2)如图3,分别以BC 、CA 、AB 为边向外作的等边三角形的面积为4S 、5S 、6S ,试猜想4S 、5S 、6S 之间的数量关系,并说明理由.实践应用(1)如图4,将图3中的BCD 绕点B 逆时针旋转一定角度至BGH ,ACE 绕点A 顺时针旋转一定角度至AMN ,GH 、MN 相交于点P .求证:PHN PMFG S S = 四边形;(2)如图5,分别以图3中Rt ABC 的边BC 、CA 、AB 为直径向外作半圆,再以所得图形为底面作柱体,BC 、CA 、AB 为直径的半圆柱的体积分别为1V 、2V 、3V .若4AB =,柱体的高8h =,直接写出12V V +的值.(2022·甘肃兰州·统考中考真题)11.综合与实践问题情境:我国东周到汉代一些出土实物上反映出一些几何作图方法,如侯马铸铜遗址出土车軎范、芯组成的(如图1),它的端面是圆形,如图2是用“矩”(带直角的角尺)确定端面圆心的方法.....:将“矩”的直角尖端A 沿圆周移动,直到AB AC =,在圆上标记A ,B ,C 三点;将“矩”向右旋转,使它左侧边落在A ,B 点上,“矩”的另一条边与圆的交点标记为D 点,这样就用“矩”确定了圆上等距离的A ,B ,C ,D 四点,连接AD ,BC 相交于点,这样就用“矩”确定了圆上等距离的A ,B ,C ,D 四点,连接AD ,BC 相交于点O ,即O 为圆心.(1)问题解决:请你根据“问题情境”中提供的方法,用三角板还原..我国古代几何作图确定圆心O .如图3,点A ,B ,C 在O 上,AB AC ⊥,且AB AC =,请作出圆心O .(保留作图痕迹,不写作法)(2)类比迁移:小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB 和AC 不相等,用三角板也可以确定圆心O .如图4,点A ,B ,C 在O 上,AB AC ⊥,请作出圆心O .(保留作图痕迹,不写作法)(3)拓展探究:小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图....的方法确定圆心可以减少误差.如图5,点A ,B ,C 是O 上任意三点,请用不带刻度的直尺和圆规作出圆心O .(保留作图痕迹,不写作法)请写出你确定圆心的理由:______________________________.(2023·广西桂林·统考一模)12.综合与实践[问题情境]学习完《解直角三角形的应用》后,同学们对如何建立解直角三角形的模型测量物体的实际高度产生了浓厚的兴趣,数学老师决定开展一次主题为《测量学校旗杆高度》的数学实践活动,并为各小组准备了卷尺、测角仪等工具,要求各小组建立测高模型并测量学校旗杆的高度.[问题探究]第一小组的同学经过讨论,制定出了如下测量实施方案:第一步,建立测高模型,画出测量示意图(如图1),明确需要测量的数据和测量方法:试卷第12页,共16页(1)n 的值为;该小组选择不同的位置测量三次,再以三次测量计算的旗杆高度的平均数作为研究结论,这样做的目的是.(2)该测量模型中,若CD a AC b ==,,仰角为α,用含a b α,,的代数式表示旗杆高度为.[拓展应用](3)第二小组同学设计的是另外一种测量方案,他们画出的测量示意图如图2,测量时,固定测角仪的高度为1m ,先在点C 处测得旗杆顶端B 的仰角30α=︒,然后朝旗杆方向试卷第14页,共16页(3)方法迁移:用正方形纸片ABCD 折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个n 阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点E 为正方形ABCD 边AB 上(不与端点重合)任意一点,连接CE ,继续(2)中操作的第二步、第三步,四边形AGHE 的周长与矩形GDCK 的周长比值总是定值.请写出这个定值,并说明理由.(2023·青海·统考中考真题)15.综合与实践车轮设计成圆形的数学道理小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:将车轮设计成不同的正多边形,在水平地面上模拟行驶.(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是 BD ,2BA CA DA ===,圆心角120BAD ∠=︒.此时中心轨迹最高点是C (即 BD 的中点),转动一次前后中心的连线是BD (水平线),请在图2中计算C 到BD 的距离1d .(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是 BD,2BA CA DA ===,圆心角90BAD ∠=︒.此时中心轨迹最高点是C (即 BD 的中点),转动一次前后中心的连线是BD (水平线),请在图4中计算C 到BD 的距离2d (结果保留根号).(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是 BD ,圆心角BAD ∠=______.此时中心轨迹最高点是C (即 BD 的中点),转动一次前后中心的连线是BD (水平线),在图6中计算C 到BD 的距离3d =______(结果保留根号).(4)归纳推理:比较1d ,2d ,3d 大小:______,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离______(填“越大”或“越小”).(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离d ______.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.试卷第16页,共16页参考答案:答案第2页,共27页∵在菱形ABCD 中,BAD ∠=∴36,CAD ACD CD ∠=∠=︒=∴EDC DAC ACD ∠=∠+∠=∴EDC AEC ∠=∠,∴1CE CD ==,∴ACE △为黄金三角形,由折叠得:EF BD⊥,OB= BOF DOE∴∠=∠=︒,90四边形ABCD是矩形,∴∥,AD BC∴∠=∠,OBF ODEBMF BCD∴∠=∠,FBM DBC∠=∠,BFM BDC ∴△∽△,∴BM BFBC BD=,即3845BM=,答案第4页,共27页四边形ABCD 是矩形,OA OB ∴=,90OBA OBC ∠+∠=OAB OBA ∴∠=∠,设OAB OBA α∠=∠=,则90OBC α∠=︒-,答案第6页,共27页答案第8页,共27页(4)根据题意可得∶若要围出满足条件的矩形地块,内交点的存在问题,即方程()820x a a x -+=>有实数根,整理得:2280x ax -+=,∴()2Δ4280a =--⨯⨯≥,把()8,1代入2y x a =-+得:解得:17a =,∴817a ≤≤.【点睛】本题主要考查了反比例函数和一次函数综合,意得出等量关系,掌握待定系数法,会根据函数图形获取数据.5.(1)3.75,2.0(2)②(3)这片树叶更可能来自于荔枝,理由见解析答案第10页,共27页答案第12页,共27页设小正方形边长为1,则AC 22255AC BC AB +=+=Q ABC ∴ 为等腰直角三角形,∵1111111A C B C A C B ==⊥,【点睛】本题考查圆的基本性质,关系,垂径定理,圆的切线定理.9.(1)见解析(2)售价每涨价2元,日销售量少卖(3)①定价为每盆25元或每盆35够获得最大利润【分析】(1)按照从小到大的顺序进行排列即可;(2)根据表格数据,进行求解即可;(3)①设定价应为x元,根据题意,列出一元二次方程,进行求解即可;②设每天的利润为w,列出二次函数表示式,利用二次函数的性质,进行求解即可.答案第14页,共27页答案第16页,共27页作∠ABD=90°,BD与圆相交于∵∠CAB=∠ABD=90°,∴BC、AD是圆的直径,∴点O是圆的圆心.(2)解:如图所示,点O就是圆的圆心.答案第18页,共27页作∠ABD =90°,BD 与圆相交于D ,连接BC 、AD 相交于点O ,∵∠CAB =∠ABC =90°,∴BC 、AD 是圆的直径,∴点O 是圆的圆心.(3)解:如图所示,点O 就是圆的圆心.作AB 的垂直平分线DE ,作AC 的垂直平分线MN ,DE 交MN 于O ,∵DE 垂直平分AB ,∴DE 经过圆心,即圆心必在直线DE 上,∵MN 垂直平分AC ,∴MN 经过圆心,即圆心必在直线MN 上,∴DE 与MN 的交点O 是圆心.确定圆心的理由:弦的垂直平分线经过圆心.【点睛】本题考查圆周角定理的推论,垂径定理的推论,尺规作线段垂直平分线,熟练掌握直角的圆周角所对的弦是直径是解题的关键.12.(1)13.1;减小误差(2)tan b aα+答案第20页,共27页答案第22页,共27页设正方形的边长为2,根据折叠的性质,可得设DG x =,则2AG =-根据折叠,可得GH GD =理由如下,连接GE ,设正方形的边长为设DG x =,则4AG x=-根据折叠,可得GH GD =在Rt BEC △中,EC =答案第24页,共27页设DG x =,则1AG x=-根据折叠,可得GH GD =在Rt BEC △中,EC EB =∴211EH m =+-,在Rt ,Rt AEG GHE 中,2222,AG AE GE GH +=+2AB AD == ,AC 12BAC CAD ∴∠=∠=AB AD,AC⊥=∴∠=∠=ABD ADBsinAE AB ABD∴=⋅∠∴==-d CE AC AE∠=∴=,ABDAB BD∴ 是等边三角形,ABDBAD=∴∠︒,60在Rt ABE△中,=⋅∠=sinAE AB ABD答案第26页,共27页【点睛】本题考查了等腰三角形的性质,正方形的性质,圆的定义,解直角三角形等知识,解决问题的关键是弄清数量间的关系.。