非局部均值滤波代码
- 格式:pdf
- 大小:72.66 KB
- 文档页数:4
21种nr的iqa处理算法及通用函数引言在数字图像处理中,图像质量评估(I QA)是一个重要的研究领域。
其中,噪声降低(N R)算法被广泛应用于提高图像的质量。
本文将介绍21种常用的NR的I Q A处理算法及通用函数。
1.均值滤波均值滤波是一种常见的降噪算法。
它通过计算像素周围邻域的均值来减小噪声。
均值滤波可以使用以下通用函数实现:d e fm ea n_fi lt er(im a ge):"""均值滤波"""实现算法代码r e tu rn fi lt er ed_im a ge2.中值滤波中值滤波也是一种常用的NR算法,它使用像素点周围邻域中的中值来减小噪声的影响。
以下是中值滤波的通用函数:d e fm ed ia n_fi lt er(i ma ge):"""中值滤波"""实现算法代码r e tu rn fi lt er ed_im a ge3.高斯滤波高斯滤波是一种基于高斯函数的线性平滑滤波器。
它通过计算像素点周围邻域的加权平均值来降低噪声。
以下是高斯滤波的通用函数:d e fg au ss ia n_fi lte r(i ma ge):"""高斯滤波"""实现算法代码r e tu rn fi lt er ed_im a ge4.双边滤波双边滤波是一种保留图像边缘的滤波方法。
它通过考虑像素点的空间距离和像素值之间的差异来平滑图像。
以下是双边滤波的通用函数:d e fb il at er al_f ilt e r(im ag e):"""双边滤波"""实现算法代码r e tu rn fi lt er ed_im a ge5.小波去噪小波去噪是一种基于小波变换的降噪方法。
平滑滤波方法研究平滑滤波是低频增强的空间域滤波技术。
它的目的有两类:一类是模糊;另一类是消除噪音。
并且具有一定的处理要求,一是不能损坏图像的轮廓及边缘等重要信息;二是使图像清晰视觉效果好。
平滑滤波的方法有邻域平滑滤波,就是求邻近像元点的平均亮度值,双边滤波,中值滤波,以及非局部均值滤波等。
1、双边滤波法双边滤波是一种非线性滤波器,它可以达到保持边缘、降噪平滑的效果。
双边滤波的边缘保持特性主要是通过在卷积的过程中组合空域函数和值域核函数来实现的,典型的核函数为高斯分布函数,如下所示:其中:为归一化作用。
σs为空域高斯函数的标准差,σr为值域高斯函数的标准差,Ω表示卷积的定义域。
编写代码测试,当添加的噪声为0.05时,结果如下滤波后图像添加噪声为0.3时,结果如下滤波后图像由此可知,双边滤波具有去除噪音的作用2、邻域平均法邻域平滑滤波原理:邻域平均法就是对含噪声的原始图像f(x,y)的每一个像素点取一个邻域,计算S中所有像素灰度级的平均值,作为邻域平均处理后的图像g(x, y)的像素值。
即式中:x,y=0,1,…,N-1;S是以(x,y)为中心的邻域的集合,M是S 内的点数。
邻域平均法的思想是通过一点和邻域内像素点求平均来去除突变的像素点,从而滤掉一定噪声,其优点是算法简单,计算速度快,其代价会造成图像在一定程度上的模糊。
3、中值滤波法中值滤波就是用一个奇数点的移动窗口,将窗口的中心点的值用窗口内的各点中值代替。
假设窗口内有五点,其值为80、90、200、110和120,那么此窗口内各点的中值及为110。
设有一个一维序列f1,f2,…,fn,取窗口长度(点数)为m(m为奇数),对其进行中值滤波,就是从输入序列中相继抽出m个数fi-v,…,fi-1,fi,fi+1,…,fi+v(其中fi为窗口中心值,v=(m-1)/2),再将这m个点按其数值大小顺序排序,取其序号的中心点的那个数作为滤波输出。
数学公式表示为:Yi=Med{fi-v,…,fi-1,fi,fi+1,…,fi+v} i∈N v=(m-1)/2 (式1-2)Yi称为序列fi-v,…,fi-1,fi,fi+1,…,fi+v的中值例如,有一序列{0,3,4,0,7},重新排序后为{0,0,3,4,7}则Med{0,0,3,4,7}=3。
图像处理中的图像去噪方法对比与分析图像处理是一门涉及数字图像处理和计算机视觉的跨学科领域。
去噪是图像处理中一个重要的任务,它的目的是减少或消除图像中的噪声,提高图像的质量和清晰度。
在图像处理中,有许多不同的去噪方法可供选择。
本文将对其中几种常见的图像去噪方法进行对比与分析。
首先是均值滤波器,它是最简单的去噪方法之一。
均值滤波器通过计算像素周围邻域的像素值的平均值来降低图像中的噪声。
它的优点是简单易懂,计算速度快,但它的效果可能不够理想,因为它会导致图像模糊。
接下来是中值滤波器,它是一种非线性滤波器。
中值滤波器通过对像素周围邻域的像素值进行排序,并选取中间值来替代当前像素的值。
它的优点是可以有效地去除椒盐噪声和激光点噪声等噪声类型,而且不会对图像的边缘和细节造成太大的损失。
然而,中值滤波器也有一些缺点,例如无法去除高斯噪声和处理大面积的噪声。
另一种常见的去噪方法是小波去噪。
小波去噪利用小波变换的多尺度分解特性,将图像分解为不同尺度的频带,然后根据频带的能量分布进行噪声和信号的分离,再对分离后的频带进行阈值处理和重构。
小波去噪的优点是可以提供较好的去噪效果,并且能够保留边缘和细节。
然而,小波去噪的计算复杂度较高,处理大尺寸的图像会耗费较多的时间。
另外,还有一种常见的图像去噪方法是非局部均值去噪(Non-local Means Denoising,NLM)。
NLM方法基于图像的纹理特征,通过计算像素周围的相似度来降噪。
它的优点是可以保持图像的纹理和细节,并且可以处理各种类型的噪声。
然而,NLM方法的计算复杂度较高,对于大尺寸的图像来说可能会耗费较多的时间。
最后,自适应滤波器也是一种常见的图像去噪方法。
自适应滤波器根据图像的局部特性来调整滤波器的参数,以达到更好的去噪效果。
它的优点是可以根据图像的特点进行自适应调整,并且可以有效地去除噪声和保留细节。
然而,自适应滤波器也存在一些缺点,例如可能会对图像的边缘造成一定的模糊。
一些软件滤波算法的原理和程序源代码滤波算法是信号处理中常用的技术,用于去除信号中的噪声或抽取感兴趣的信号特征。
在本文中,我将介绍几种常见的软件滤波算法的原理和程序源代码,包括均值滤波、中值滤波和高斯滤波。
1.均值滤波均值滤波是一种简单直观的滤波算法。
其原理是通过计算像素周围邻近像素的平均值,来替换掉原始图像像素的值。
均值滤波的算法步骤如下:-创建一个大小为n的窗口(n通常为奇数),以当前像素为中心。
-计算窗口中所有像素的平均值。
-将当前像素的值替换为计算得到的平均值。
-按顺序处理所有像素。
以下是均值滤波的C++程序源代码示例:```cppvoid meanFilter(const cv::Mat& src, cv::Mat& dst, int kernelSize)int kernelHalfSize = kernelSize / 2;dst.create(src.size(, src.type();for (int y = 0; y < src.rows; y++)for (int x = 0; x < src.cols; x++)cv::Vec3f sum = cv::Vec3f(0, 0, 0);int numPixels = 0;for (int ky = -kernelHalfSize; ky <= kernelHalfSize; ky++) for (int kx = -kernelHalfSize; kx <= kernelHalfSize; kx++) int px = x + kx;int py = y + ky;if (px >= 0 && py >= 0 && px < src.cols && py < src.rows) sum += src.at<cv::Vec3b>(py, px);numPixels++;}}}cv::Vec3f average = sum / numPixels;dst.at<cv::Vec3b>(y, x) = average;}}```2.中值滤波中值滤波是一种非线性滤波算法,主要用于去除图片中的椒盐噪声。
滤波matlab代码滤波是信号处理中常用的技术,用于去除信号中的噪声或者滤波信号以得到感兴趣的频率成分。
在MATLAB中,有多种滤波函数可以使用,例如`filter`、`designfilt`和`fir1`等。
本文将介绍这些函数的用法和原理,并通过实例说明如何使用MATLAB进行滤波。
我们来介绍一下`filter`函数。
该函数可以用于实现各种滤波器,如低通滤波器、高通滤波器和带通滤波器等。
其基本语法为:```Matlaby = filter(b,a,x)```其中,`b`和`a`是滤波器的系数,`x`是输入信号的向量。
这个函数将输出滤波后的信号`y`。
接下来,我们来看一个实例。
假设我们有一个包含噪声的信号`x`,我们希望通过低通滤波器来去除噪声。
我们可以使用`filter`函数来实现这个功能。
首先,我们需要设计一个低通滤波器的系数。
可以使用`fir1`函数来设计一个FIR滤波器的系数。
例如,我们可以使用以下代码来设计一个阶数为10的低通滤波器:```Matlaborder = 10; % 滤波器阶数cutoff = 0.2; % 截止频率b = fir1(order, cutoff);```然后,我们可以使用这个滤波器对信号进行滤波:```Matlaby = filter(b, 1, x);```这样,我们就得到了滤波后的信号`y`。
除了`filter`函数,MATLAB还提供了`designfilt`函数用于设计各种类型的滤波器。
该函数可以设计IIR滤波器、带通滤波器、带阻滤波器等。
使用`designfilt`函数需要指定滤波器的类型、阶数以及其他参数。
例如,我们可以使用以下代码来设计一个IIR低通滤波器:```Matlaborder = 6; % 滤波器阶数cutoff = 0.2; % 截止频率d = designfilt('lowpassiir', 'FilterOrder', order, 'PassbandFrequency', cutoff);```然后,我们可以使用这个滤波器对信号进行滤波:```Matlaby = filter(d, x);```同样地,我们得到了滤波后的信号`y`。
点云数据滤波处理及特征提取研究一、内容概述本文针对空间几何信息获取与处理的迫切需求,对点云数据滤波处理及特征提取进行了深入研究。
点云数据作为一种广泛应用的地理信息数据形式,在自动驾驶、无人机领域、建筑规划设计等领域具有重要的实际价值与应用前景。
由于点云数据噪声、异常值和复杂多变的表面特性,对其进行有效的滤波处理以及准确的特征提取变得尤为关键。
本文首先分析了点云数据滤波处理的研究现状,指出传统滤波方法如平面波滤波、高斯滤波等在面对复杂点云数据时存在局限性。
本文提出了一种基于非局部均值滤波的点云数据滤波方法。
该方法利用非局部均值滤波具有优异的去噪性能和对图像边缘保护的优点,对点云数据进行预处理,能够有效消除噪声干扰、降低异常值的影响、精确地提取出点云数据的本质特征。
本文对滤波后的点云数据进行了特征提取研究。
考虑到点云数据的多样性和复杂性,本文提出了一种结合局部纹理特征和全局形状特征的点云数据特征提取方法。
该方法利用局部纹理特征描述点云数据表面的细致特征,同时采用全局形状特征描述点云数据整体的分布特征。
通过将局部纹理特征与全局形状特征相结合,可以有效地提取出点云数据的本质特征,为后续的应用提供有力的支持。
本文针对点云数据滤波处理及特征提取问题,提出了一种基于非局部均值滤波和结合局部纹理特征与全局形状特征的特征提取方法。
该方法不仅具有较好的去噪和特征提取效果,而且在实际应用中具有较高的价值和广泛的应用前景。
本文的研究成果对于推动点云数据处理技术的发展和应用具有一定的借鉴意义。
1. 点云数据的定义和来源点云数据(Point Cloud Data)是一种由大量离散点的集合构成的三维数据结构,这些点通常来自于二维平面影像或者通过激光扫描、CT等设备获取的三维物体形状信息。
点云数据可以表示物体的表面形态、几何特征以及空间分布等多种信息,在计算机图形学、遥感、无人机控制、医学成像、制造业等领域具有广泛的应用价值。
基于离散余弦变换的非局部均值滤波算法田红磊【摘要】Non-local means(NLM ) has been becoming one of the most useful tools for image denoising. However , the calculation for its similarity weights has limited accuracy against noise when the noise level is too high. In order to handle above-mentioned problem, NLM denoising algorithm is introducd based on discrete cosine transform (DCT). First, making use of the low frequency of DCT to reconstruct image , the part of the denoise in image is filtered while preserving the main information of the image . Second, the NLM algorithm is used for the reconstructed image to filter the additional denoise through calculation of similarity weights accurately. Compared with NLM algorithm, the experimental results demonstrate that our method gets a higher Peak Signal to Noise Ratio (PSNR) and better visual fidelity.%要非局部均值(non-local means,NLM)去噪算法已成为较有效去除图像噪声的算法之一.然而,当噪声水平较高时,NLM不能准确地计算图像块之间的相似度权重值,影响图像的去噪效果.针对上述问题,结合离散余弦变换(discrete cosine transform,DCT)提出了基于DCT的非局部均值滤波算法.首先,利用DCT 的低频系数重构图像,以达到滤除部分噪声的同时保护图像的主要内容.其次,利用重构图像较准确地计算图像块之间的相似度权重值,将NLM去噪算法用于噪声图像.实验结果表明,该算法能够得到较高的峰值信噪比(peak signal to noiseratio,PSNR)和更好的视觉效果.【期刊名称】《科学技术与工程》【年(卷),期】2013(013)011【总页数】4页(P3123-3126)【关键词】图像去噪;非局部均值(NLM);离散余弦变换(DCT)【作者】田红磊【作者单位】中国石油大学(华东)计算机与通信工程学院,青岛266580【正文语种】中文【中图分类】TP391.41图像去噪是图像预处理的一个基本内容,与图像处理相关的许多应用如分割、配准、边缘提取等,通常均需要使用有效的去噪算法进行预处理来获得更可靠的效果。
10种简单的数字滤波算法(C++源程序)以下是10种简单的数字滤波算法C++实现示例:1. 均值滤波均值滤波是数字滤波算法的一种常见形式,它可以通过计算一定范围内像素值的平均值来平滑图像。
其C++实现如下:#include <iostream>#include <opencv2/opencv.hpp>using namespace std;using namespace cv;// Function to implement mean filtervoid meanBlur(Mat& img, Mat& result, int k_size){int img_rows = img.rows;int img_cols = img.cols;// Create a same sized blank imageresult.create(img_rows, img_cols, img.type());for(int r=0; r<img_rows; r++){for(int c=0; c<img_cols; c++){// Define the window of radius k_sizeint r_min = max(0, r-k_size/2);int r_max = min(img_rows-1, r+k_size/2);int c_min = max(0, c-k_size/2);int c_max = min(img_cols-1, c+k_size/2);// Calculate the mean valueint sum = 0;int count = 0;for (int i=r_min; i<=r_max; i++){for (int j=c_min; j<=c_max; j++){sum += img.at<uchar>(i,j);count++;}}result.at<uchar>(r,c) = (uchar) (sum/count);}}}int main(int argc, char** argv){// Load the imageMat img = imread("image.jpg", 0);// Check if image is loaded properlyif(!img.data){cout << "Failed to load image" << endl;return -1;}// Define the kernel sizeint k_size = 3;// Apply mean filterMat result;meanBlur(img, result, k_size);// Display the resultnamedWindow("Original Image", WINDOW_NORMAL);namedWindow("Mean Filtered Image", WINDOW_NORMAL);imshow("Original Image", img);imshow("Mean Filtered Image", result);waitKey(0);return 0;}在上述代码中,`meanBlur()` 函数接收一个输入图像`img` 和一个输出图像`result`,以及一个整数参数`k_size`,该参数指定滤波器的大小,即窗口的半径。