第九章 多元函数微分法及其应用 高等数学上册 国家级精品课程教案
- 格式:doc
- 大小:1.28 MB
- 文档页数:42
课题函数的微分及其应用课时2课时(90 min)教学目标知识技能目标:(1)理解函数微分的概念,及其几何意义。
(2)掌握基本初等函数的微分与函数微分的运算法则。
(3)掌握微分在近似运算中的应用。
思政育人目标:由具体问题引出微分的定义,使学生体会到数学是源于生活的,是对实际问题的抽象产生的,不是脱离实际生活的;引导学生养成独立思考和深度思考的良好习惯;培养学生的逻辑思维、辩证思维和创新思维能力;树立学生实事求是、一丝不苟的科学精神;引导学生运用所学知识揭示生活中的奥秘,在实践中深化认识,达到学以致用的目的。
教学重难点教学重点:函数微分的概念、函数微分的运算法则教学难点:微分在近似运算中的应用教学方法讲授法、问答法、讨论法、演示法、实践法教学用具电脑、投影仪、多媒体课件、教材教学设计第1节课:考勤(2 min)→知识讲解(33 min)→课堂测验(10 min)第2节课:知识讲解(20 min)→问题讨论(10 min)→课堂测验(10 min)→课堂小结(5 min)教学过程主要教学内容及步骤设计意图第一节课考勤(2 min)⏹【教师】清点上课人数,记录好考勤⏹【学生】班干部报请假人员及原因培养学生的组织纪律性,掌握学生的出勤情况知识讲解(33 min)⏹【教师】讲解微分的定义例1一块正方形金属薄片,由于温度的变化,其边长由x变为x x+∆,如图2-4所示,此时薄片的面积改变了多少?学习微分的定义和几何意义。
边做边讲,及时巩固练习,实现教学做一体化2图2-4解 设此薄片的边长为x ,面积为A ,则2A x =.当自变量x 在0x 有改变量x ∆时,相应的面积函数有改变量A ∆,则222000()2()A x x x x x x ∆=+∆-=⋅∆+∆.从图中可以看出,A ∆由两部分组成:一部分是02x x ∆(x ∆的线性函数),为图中两个矩形的面积,它是A ∆的主要组成部分(x ∆很小时);另一部分是2()x ∆,为图中小正方形的面积,当x ∆很小时,这部分可以忽略不计(2()x ∆是x ∆的高阶无穷小).所以,当x ∆很小时,02A x x ∆≈⋅∆.这表明,正方形金属薄片面积的改变量可近似地用x ∆的线性函数部分来代替,其误差2()x ∆是x ∆的高阶无穷小.由此产生了微分概念.定义1 设函数()f x 在0()U x 内有定义,x ∆为自变量改变量,0x 和0x x +∆都在0()U x 内,若x ∆产生的函数改变量00()()y f x x f x ∆=+∆-可以表示成()y A x x ο∆=∆+∆(A 是不依赖于x ∆的常数),即y ∆可用x ∆的线性函数A x ⋅∆加x ∆的高阶无穷小量表示,则称函数()f x 在0x 点可微.A x ∆称为函数()f x 在点0x 相应于x ∆的微分,记作0d |x x y =,即0d |x x y A x ==∆.一般来说,如果()y f x =在点0x 可微,则存在常数A ,使300()()()y f x x f x A x x ο∆=+∆-=∆+∆,这样就有()y x A x xο∆∆=+∆∆.令0x ∆→,得00()lim lim x x y x A A x x ο→∆→∆∆=+=∆∆,所以,0()A f x '=.故若()f x 在0x 点可微,则()f x 在0x 点一定可导,且00d |()x x y f x x ='=∆.反之,若()f x 在0x 点可导,则00lim()x yf x x ∆→∆'=∆,0()()yf x x xα∆'=+∆∆(其中()x α∆是0x ∆→的无穷小量),00()()()()y f x x x x f x x x αο''∆=∆+∆∆=∆+∆.所以,()f x 在0x 点一定可微. 因此,有如下定理.定理1 设函数()y f x =在0()U x 内有定义,则()f x 在点0x 处可微的充要条件是()f x 在点0x 处可导,且0d ()y f x x '=∆.定理表明,函数在点0x 处的可微性与可导性是等价的.因此,可导函数也称为可微函数.函数()f x 在任意点x 处的微分称为函数()f x 的微分,记作d y 或d ()f x ,即d ()y f x x '=∆.当()f x x =时,0d ()|x x x x x x ='=⋅∆=∆,即d x x ∆=.因此,x ∆可看成自变量本身的微分,因此,函数()f x 的微分又可写成d ()d y f x x '=,从而,有d ()d yf x x '=.因此,导数也称为微商.4按以上结果可以得到:(1)微分计算与导数计算的本质相同; (2)导数记号d d yx就是微分的商; (3)前面讨论的复合函数求导法则及参变量函数的导数公式d d d d d /d d d d d d /d y y u y y tx u x x x t=⋅=, 均是微分的代数恒等式.例1 求函数3y x =在1x =和2x =点处的微分. 解 函数3y x =在1x =处的微分32111d |()|d 3|d 3d x x x y x x x x x ==='=⋅==.函数3y x =在2x =点处微分32222d |()|d 3|d 12d 12d x x x y x x x x x x ==='=⋅===.例2 分别求函数sin y x =,tan y x =,e x y =的微分. 解 函数sin y x =的微分d (sin )d cos d y x x x x '==;函数tan y x =微分2d tan (tan )d sec d x x x x x '==;函数e x y =微分de (e )d e d x x x x x '==.⏹ 【学生】理解微分的定义⏹ 【教师】讲解微分的几何意义如图2-5所示,设函数()y f x =在点0x 处可微,在直角坐标5系中,MT 是曲线()f x 在点000(())M x f x ,处的切线.对于可微函数()y f x =来说,当00()()y f x x f x ∆=+∆-是曲线()f x 在0x 点和0x x +∆点纵坐标的增量时,函数()y f x =在0x 的微分就是曲线()f x 在点0M 处的切线在0x 点和0x x+∆点纵坐标的增量,这就是微分的几何意义.图2-5由微分的定义和几何意义可以看出:当x ∆很小时,0d ()y y f x x '∆≈=∆.在几何上就是函数曲线在局部可用函数的切线段近似代替,这种表示称为非线性函数的局部线性表示.这是微积分学的基本思想方法之一,这种思想方法在自然科学和工程问题的研究中被经常采用.上述思想方法,在几何上看就是:在000(())M x f x ,邻近用切线段近似代替曲线段,我们称之为“局部以直代曲”.⏹ 【学生】理解微分的几何意义课堂测验 (10 min )⏹ 【教师】出几道测试题目,测试一下大家的学习情况⏹ 【学生】做测试题目⏹ 【教师】公布题目正确答案,并演示解题过程⏹ 【学生】核对自己的答题情况,对比答题思路,巩固答题技巧通过测试,了解学生对知识点的掌握情况,加深学生对本节课知识的印象第二节课知识讲解 (20 min ) ⏹ 【教师】讲解基本初等函数的微分与函数微分的运算法则,并学习基本初等函数的微分与函6通过例题讲解介绍其应用1.基本初等函数的微分公式由函数微分的定义可知,求函数()y f x =的微分,只需求函数()f x 的导数()f x ',再乘自变量的微分d x 即可.因此,基本初等函数的微分公式如下:(1)d()0C =(C 为常数);(2)1d()d x x x μμμ-=(μ为常数); (3)d(sin )cos d x x x =;(4)d(cos )sin d x x x =-; (5)2d(tan )sec d x x x =;(6)2d(cot )csc d x x x =-; (7)1d(ln )d x x x =;(8)1d(log )d (01)ln a x x a a x a=>≠,; (9)d(e )e d x x x =;(10)d()ln d (01)x x a a a x a a =>≠,; (11)21d(arcsin )d 1x x x=-;(12)21d(arccos )d 1x x x=--;(13)21d(arctan )d 1x x x =+;(14)21d(arccot )d 1x x x =-+. 2.函数微分的四则运算法则由于d ()()d f x f x x '=,因此,微分运算实际就是导数的运算,故可得d[()()][()()]d f x g x f x g x x '±=±, d[()()][()()]d f x g x f x g x x '=,22()()()()()()()()d ()()d d d d ()()()()f x f x f x g x f x g x f x g x x f x g x x x x g x g x g x g x '''''⎡⎤⎡⎤⎡⎤--===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2()d ()()d ()()g x f x f x g x g x -=.这样,我们就得到了函数微分的四则运算公式: (1)d[()()]d ()d ()f x g x f x g x ±=±;数微分的运算法则、微分的应用。
高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。
函数的性质:单调性、连续性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理等。
1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。
无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。
1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。
导数的概念:函数在某一点的导数表示函数在该点的切线斜率。
第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。
导数的计算:基本导数公式、导数的四则运算法则等。
2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。
微分的计算:微分的基本公式、微分的四则运算法则等。
2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。
积分的计算:基本积分公式、积分的换元法、分部积分法等。
2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。
第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。
微分方程的分类:常微分方程、偏微分方程等。
3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。
3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。
第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。
第九章多元函数微分法及其应用一、基本要求及重点、难点1. 基本要求(1)理解二元函数的概念,了解多元函数的概念。
(2)了解二元函数的极限、连续性概念,有界闭域上连续函数的性质。
(3)理解偏导数和全微分的概念,熟练掌握偏导数的计算,了解全微分存在的必要条件和充分条件。
(4)了解方向导数与梯度的概念及其计算方法。
(5)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。
(6)会求隐函数(包括由方程组确定的隐函数)的偏导数(主要是一阶)。
(7)了解曲线的切线和法平面及曲面的切平面与法线、并会求出它们的方程。
(8)理解多元函数极值和条件极值的概念,会求二元函数的极值。
了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。
2. 重点及难点(1)重点:多元函数概念,偏导数与全微分概念,偏导数计算,微分在几何上的应用,多元函数的极值的计算。
(2)难点:二重极限的定义与计算,多元函数连续;偏导数存在与可微之间的关系;复合函数的高阶偏导数;方向导数、偏导数、梯度之间的关系。
二、内容概述多元函数微分学是一元函数微分学的推广,因此两者之间有许多相似之处,但是要特别注意它们之间的一些本质差别。
1.多元函数的极限和连续(1)基本概念1)点集和区域。
2)多元函数的定义、定义域。
3)二元函数的极限、连续。
(2)基本定理1)多元初等函数在其定义域内是连续的。
2)多元连续函数在有界闭区域上一定有最大值M、最小值m;且必取到最大值M和最小值m之间的任何值。
2.多元函数微分法(1)基本概念偏导数、全微分、高阶偏导数的定义。
(2) 计算方法1) 偏导数:),(y x f z =在),(00y x 处对x 的偏导数x x xz =∂∂,就是一元函数),(0y x f z =在0x x =处的导数;对y 的偏导数x x xz =∂∂(同理)。
2) `全微分:),(y x f z =的全微分dy yzdx x z dz ∂∂+∂∂=3) 复合函数求导法则:画出函数到自变量的路经,然后利用链式迭加法则:即同条路经的偏导数相乘,不同路经的偏导数相加,求出所要的偏导数。
第九章多元函数微分学
教学要求
多元函数定义域、区域、邻域、内点、边界点和有界性等概念;有界闭域上连续函数的性质;偏导数、全微分等概念;知道全微分存在的必要条件与充分条件;多元函数极值的概念;会求简单函数的高阶偏导数。
教学重点
方向导数与梯度的概念;曲线的切线与法平面及曲面的切平面与法线;极值存在的必要条件;求极值和用充分条件判断极大值极小值;用拉格朗日乘数法求条件极值;求解一些有关的实际最值问题。
教学难点
方向导数与梯度的计算方法;复合函数与隐函数的求导法则;
课时安排
本章安排16课时。
教学大纲
第一节多元函数
第二节偏导数
第三节全微分
第四节多元复合函数的微分法
第五节隐函数的微分法
第六节多元函数微分学在几何中的应用
第七节方向导数与梯度
第八节多元函数的极值与最值
主要概念
1.多元函数
2.偏导数,全微分
3.方向导数与梯度
4.多元函数的极值。
第九章多元函数微分法及其应用【教学目标与要求】1、理解多元函数的概念和二元函数的几何意义。
2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。
3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4、理解方向导数与梯度的概念并掌握其计算方法。
5、掌握多元复合函数偏导数的求法。
6、会求隐函数(包括由方程组确定的隐函数)的偏导数。
7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8、了解二元函数的二阶泰勒公式。
9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。
【教学重点】1、二元函数的极限与连续性;2、函数的偏导数和全微分;3、方向导数与梯度的概念及其计算;4、多元复合函数偏导数;5、隐函数的偏导数;多元函数极值和条件极值的求法;6、曲线的切线和法平面及曲面的切平面和法线;【教学难点】1、二元函数的极限与连续性的概念;2、全微分形式的不变性;3、复合函数偏导数的求法;4、二元函数的二阶泰勒公式;5、隐函数(包括由方程组确定的隐函数)的偏导数;6、拉格郎日乘数法,多元函数的最大值和最小值。
【教学课时分配】 (18学时)第1 次课§1第2 次课§2 第3 次课§3第4 次课§4 第5次课§5 第6次课§6第7次课§7 第8次课§8 第9次课习题课【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社§9. 1 多元函数的基本概念一、平面点集n 维空间1.区域由平面解析几何知道, 当在平面上引入了一个直角坐标系后, 平面上的点P 与有序二元实数组(x , y )之间就建立了一一对应. 于是, 我们常把有序实数组(x , y )与平面上的点P 视作是等同的. 这种建立了坐标系的平面称为坐标平面.二元的序实数组(x , y )的全体, 即R 2=R ⨯R ={(x , y )|x , y ∈R }就表示坐标平面.坐标平面上具有某种性质P 的点的集合, 称为平面点集, 记作E ={(x , y )| (x , y )具有性质P }.例如, 平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y )| x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成 C ={P | |OP |<r }.邻域:设P 0(x 0, y 0)是xOy 平面上的一个点, δ是某一正数. 与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体, 称为点P 0的δ邻域, 记为U (P 0, δ), 即}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x PU . 邻域的几何意义: U (P 0, δ)表示xOy 平面上以点P 0(x 0, y 0)为中心、δ >0为半径的圆的内部的点P (x , y )的全体.点P 0的去心δ邻域, 记作) ,(0δP U , 即}||0 |{) ,(00δδ<<=P P P P U .注: 如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点: 如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点;(2)外点: 如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点;(3)边界点: 如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .聚点: 如果对于任意给定的δ>0, 点P 的去心邻域),(δP U内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.满足1<x 2+y 2<2的一切点(x , y )都是E 的内点; 满足x 2+y 2=1的一切点(x , y )都是E 的边界点, 它们都不属于E ; 满足x 2+y 2=2的一切点(x , y )也是E 的边界点, 它们都属于E ; 点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集: 如果点集E 的点都是内点, 则称E 为开集.闭集: 如果点集的余集E c 为开集, 则称E 为闭集.开集的例子: E ={(x , y )|1<x 2+y 2<2}.闭集的例子: E ={(x , y )|1≤x 2+y 2≤2}.集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性: 如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域): 连通的开集称为区域或开区域. 例如E ={(x , y )|1<x 2+y 2<2}.闭区域: 开区域连同它的边界一起所构成的点集称为闭区域. 例如E = {(x , y )|1≤x 2+y 2≤2}. 有界集: 对于平面点集E , 如果存在某一正数r , 使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集: 一个集合如果不是有界集, 就称这集合为无界集.例如, 集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域; 集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域.2. n 维空间设n 为取定的一个自然数, 我们用R n 表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合, 即R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n )| x i ∈R , i =1, 2, ⋅ ⋅ ⋅, n }.R n 中的元素(x 1, x 2, ⋅ ⋅ ⋅ , x n )有时也用单个字母x 来表示, 即x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ). 当所有的x i (i =1, 2, ⋅ ⋅ ⋅, n )都为零时, 称这样的元素为R n 中的零元, 记为0或O . 在解析几何中, 通过直角坐标, R 2(或R 3)中的元素分别与平面(或空间)中的点或向量建立一一对应, 因而R n 中的元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )也称为R n 中的一个点或一个n 维向量, x i 称为点x 的第i 个坐标或n 维向量x 的第i 个分量. 特别地, R n 中的零元0称为R n 中的坐标原点或n 维零向量.二. 多元函数概念例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系V =πr 2h .这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定.例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系VRT p =, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定.定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D )其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量.上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ).值域: f (D )={z | z =f (x , y ), (x , y )∈D }.函数的其它符号: z =z (x , y ), z =g (x , y )等.类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数.一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为u =f (x 1, x 2, ⋅ ⋅ ⋅ , x n ), (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D ,或简记为u =f (x ), x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D ,也可记为u =f (P ), P (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D .关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而, 对这类函数, 它的定义域不再特别标出. 例如,函数z =ln(x +y )的定义域为{(x , y )|x +y >0}(无界开区域);函数z =arcsin(x 2+y 2)的定义域为{(x , y )|x 2+y 2≤1}(有界闭区域).二元函数的图形: 点集{(x , y , z )|z =f (x , y ), (x , y )∈D }称为二元函数z =f (x , y )的图形, 二元函数的图形是一张曲面.三. 多元函数的极限与一元函数的极限概念类似, 如果在P (x , y )→P 0(x 0, y 0)的过程中, 对应的函数值f (x , y )无限接近于一个确定的常数A , 则称A 是函数f (x , y )当(x , y )→(x 0, y 0)时的极限.定义2 :设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果存在常数A , 对于任意给定的正数ε总存在正数δ, 使得当),(),(0δP U D y x P ⋂∈时, 都有|f (P )-A |=|f (x , y )-A |<ε成立, 则称常数A 为函数f (x , y )当(x , y )→(x 0, y 0)时的极限, 记为A y x f y x y x =→),(lim ),(),(00, 或f (x , y )→A ((x , y )→(x 0, y 0)),也记作 A P f P P =→)(lim 0或f (P )→A (P →P 0).上述定义的极限也称为二重极限.例4. 设22221sin)(),(y x y x y x f ++=, 求证0),(lim )0,0(),(=→y x f y x . 证 因为2222222222 |1sin ||| |01sin)(||0),(|y x y x y x y x y x y x f +≤+⋅+=-++=-, 可见∀ε >0, 取εδ=, 则当δ<-+-<22)0()0(0y x , 即),(),(δO U D y x P ⋂∈时, 总有|f (x , y )-0|<ε,因此0),(lim )0,0(),(=→y x f y x . 必须注意:(1)二重极限存在, 是指P 以任何方式趋于P 0时, 函数都无限接近于A .(2)如果当P 以两种不同方式趋于P 0时, 函数趋于不同的值, 则函数的极限不存在. 讨论:函数⎪⎩⎪⎨⎧=+≠++=000 ),(2222y x y x y x xy y x f 在点(0, 0)有无极限?提示: 当点P (x , y )沿x 轴趋于点(0, 0)时,00lim )0 ,(lim ),(lim 00)0,0(),(===→→→x x y x x f y x f ; 当点P (x , y )沿y 轴趋于点(0, 0)时,00lim ) ,0(lim ),(lim 00)0,0(),(===→→→y y y x y f y x f . 当点P (x , y )沿直线y =kx 有22222022 )0,0(),(1lim lim k k x k x kx y x xy x kxy y x +=+=+→=→. 因此, 函数f (x , y )在(0, 0)处无极限.极限概念的推广: 多元函数的极限.多元函数的极限运算法则: 与一元函数的情况类似.例5 求x xy y x )sin(lim)2,0(),(→. 解: y xy xy x xy y x y x ⋅=→→)sin(lim )sin(lim)2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim →→⋅==1⨯2=2. 四. 多元函数的连续性定义3 设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)为D 的聚点, 且P 0∈D . 如果),(),(lim 00),(),(00y x f y x f y x y x =→,则称函数f (x , y )在点P 0(x 0, y 0)连续.如果函数f (x , y )在D 的每一点都连续, 那么就称函数f (x , y )在D 上连续, 或者称f (x , y )是D 上的连续函数.二元函数的连续性概念可相应地推广到n 元函数f (P )上去.例6设f (x ,y )=sin x , 证明f (x , y )是R 2上的连续函数.证 设P 0(x 0, y 0)∈ R 2. ∀ε>0, 由于sin x 在x 0处连续, 故∃δ>0, 当|x -x 0|<δ时, 有|sin x -sin x 0|<ε.以上述δ作P 0的δ邻域U (P 0, δ), 则当P (x , y )∈U (P 0, δ)时, 显然|f (x , y )-f (x 0, y 0)|=|sin x -sin x 0|<ε,即f (x , y )=sin x 在点P 0(x 0, y 0) 连续. 由P 0的任意性知, sin x 作为x , y 的二元函数在R 2上连续. 类似的讨论可知, 一元基本初等函数看成二元函数或二元以上的多元函数时, 它们在各自的定义域内都是连续的.定义4设函数f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果函数f (x , y )在点P 0(x 0, y 0)不连续, 则称P 0(x 0, y 0)为函数f (x , y )的间断点.例如函数⎪⎩⎪⎨⎧=+≠++=000 ),(2222y x y x y x xy y x f ,其定义域D =R 2, O (0, 0)是D 的聚点. f (x , y )当(x , y )→(0, 0)时的极限不存在, 所以点O (0, 0)是该函数的一个间断点.又如, 函数11sin 22-+=y x z , 其定义域为D ={(x , y )|x 2+y 2≠1}, 圆周C ={(x , y )|x 2+y 2=1}上的点都是D 的聚点, 而f (x , y )在C 上没有定义, 当然f (x , y )在C 上各点都不连续, 所以圆周C 上各点都是该函数的间断点.注: 间断点可能是孤立点也可能是曲线上的点.可以证明, 多元连续函数的和、差、积仍为连续函数; 连续函数的商在分母不为零处仍连续; 多元连续函数的复合函数也是连续函数.多元初等函数: 与一元初等函数类似, 多元初等函数是指可用一个式子所表示的多元函数, 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.例如2221y y x x +-+, sin(x +y ), 222z y x e ++都是多元初等函数. 一切多元初等函数在其定义区域内是连续的. 所谓定义区域是指包含在定义域内的区域或闭区域.例7 求xy y x y x +→)2,1(),(lim. 一般地, 求)(lim 0P f P P →时, 如果f (P )是初等函数, 且P 0是f (P )的定义域的内点, 则f (P )在点P 0处连续, 于是)()(lim 00P f P f P P =→. 例8 求xyxy y x 11lim )0 ,0(),(-+→. 五、多元连续函数的性质:性质1 (有界性与最大值最小值定理)在有界闭区域D 上的多元连续函数, 必定在D 上有界, 且能取得它的最大值和最小值.性质1就是说, 若f (P )在有界闭区域D 上连续, 则必定存在常数M >0, 使得对一切P ∈D , 有|f (P )|≤M ; 且存在P 1、P 2∈D , 使得f (P 1)=max{f (P )|P ∈D }, f (P 2)=min{f (P )|P ∈D },性质2 (介值定理) 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值.小结1. 区域的概念;2. 多元函数的定义;3. 多元函数的极限及其求解;4. 多元函数的连续性。