动能 动能定理2
- 格式:ppt
- 大小:537.50 KB
- 文档页数:7
练习2——2 动能动能定理一填空题1 一个质量为m,速度为v的物体,它的动能等于物体的质量与速度二次方乘积的一半。
2 动能是标量,它的国际单位是 J。
3 合力做的功等于物体动能的增量,这个结论叫做动能定理。
4 两物体的质量相等,速度大小相同,但方向不同,则它们的动能相同(填“相同”或“不相同”)5 合外力对物体做正功,物体的动能增加;合外力对物体做负功,物体的动能减少。
6 汽车的质量为6吨,速度为18km/h,其动能为75000J。
7估算你骑自行车时所具有的最大动能。
8一质量为m的物体在吊绳的拉力作用下,沿竖直方向由静止开始以加速度a 匀加速上升了h,在这一过程中物体动能的改变量为mah 。
9 我国发射的第一颗人造地球卫星的质量是173kg,轨道速度为7.2km/s,它的动能是 4.5×109J。
10 甲乙两物体,甲的质量是乙的4倍,甲的速度是5.0m/s,乙的速度必须是10 m/s,才具有和甲一样的动能。
11 甲的质量为m,速度为v;乙的质量为2m,速度为v/2.它们的动能之比为2:1 。
12 合外力对物体做了50J的功,则物体的动能变化情况是:动能增加了50 J。
13 质量为10kg的物体,由静止开始从6m长的斜面顶端加速滑下,加速度为3m/s2。
它到达斜面底端的速度为6m/s ,动能为180J。
二判断题1 动能是矢量,有负值。
(×)2 如果物体的质量减半,而速度增大一倍,则它的动能将保持不变。
(×)3 合外力对物体做正功时,物体的速度一定增大。
(√)4 只要合外力对物体做的功为零,物体的动能就不变。
(√)5 子弹的速度为v时,恰能射穿一块木板,若子弹的速度为2v时,则恰好能射穿两块同样的木板。
( ×)6 摩擦力对物体做功,有时也能使物体的动能增加。
(√)7 力对物体不做功,物体一定静止不动。
(×)8 动能的最小值是零,不可能有负值。
(√)9 物体受力越大,其动能的改变量越大。
第二节 动能 动能定理[学生用书P75])一、动能1.定义:物体由于运动而具有的能. 2.表达式:E k =12m v 2. 3.单位:焦耳,1 J =1 N ·m =1 kg ·m 2/s 2.4.矢标性:标量.1.判断正误(1)运动的物体具有的能量就是动能.( )(2)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.( )(3)处于平衡状态的物体动能一定保持不变.( )(4)做自由落体运动的物体,动能与下落时间的二次方成正比.( )(5)选择不同的参考系时,动能有可能为负值.( )提示:(1)× (2)√ (3)√ (4)√ (5)×二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12m v 22-12m v 21. 3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.2.(多选)关于动能定理的表达式W =E k2-E k1,下列说法中正确的是( )A .公式中的W 为不包含重力的其他力做的总功B .公式中的W 为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合外力再求合外力的功C .公式中的E k2-E k1为动能的增量,当W >0时动能增加,当W <0时动能减少D .动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功提示:BC对动能定理的理解及应用[学生用书P76]【知识提炼】1.动能定理公式中“=”体现的“三个关系”数量关系合力的功与物体动能的变化可以等量代换单位关系国际单位都是焦耳因果关系合力做的功是物体动能变化的原因2.“为参考系.3.适用范围:直线运动、曲线运动、恒力做功、变力做功、各个力同时做功、分段做功均可用动能定理.【典题例析】(2015·高考山东卷)如图甲所示,物块与质量为m的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接.物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球和右侧滑轮的距离为l.开始时物块和小球均静止,将此时传感装置的示数记为初始值.现给小球施加一始终垂直于l段细绳的力,将小球缓慢拉起至细绳与竖直方向成60°角,如图乙所示,此时传感器装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍.不计滑轮的大小和摩擦,重力加速度的大小为g.求:甲乙(1)物块的质量;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功.[解析](1)设开始时细绳的拉力大小为F T1,传感装置的初始值为F1,物块质量为M,由平衡条件得对小球,F T1=mg ①对物块,F1+F T1=Mg ②当细绳与竖直方向的夹角为60°时,设细绳的拉力大小为F T2,传感装置的示数为F2,据题意可知,F2=1.25F1,由平衡条件得对小球,F T2=mg cos 60°③对物块,F2+F T2=Mg ④联立①②③④式,代入数据得M=3m. ⑤(2)设小球运动至最低位置时速度的大小为v,从释放到运动至最低位置的过程中,小球克服阻力所做的功为W f,由动能定理得mgl(1-cos 60°)-W f=12m v2 ⑥在最低位置,设细绳的拉力大小为F T3,传感装置的示数为F3,据题意可知,F3=0.6F1⑦对小球,由牛顿第二定律得F T3-mg=m v2l⑧对物块,由平衡条件得F3+F T3=Mg⑨联立①②⑤⑥⑦⑧⑨式得W f=0.1mgl.[答案](1)3m(2)0.1mgl应用动能定理的三理解(1)动能定理说明了合力对物体所做的功和动能变化量间的一种因果关系和数量关系.(2)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(3)动能定理的表达式是一个标量式,不能在某方向上应用动能定理.【跟进题组】考向1对动能定理的理解1.关于运动物体所受的合外力、合外力做的功及动能变化的关系.下列说法正确的是()A.合外力为零,则合外力做功一定为零B.合外力做功为零,则合外力一定为零C.合外力做功越多,则动能一定越大D.动能不变,则物体合外力一定为零解析:选A.由W=Fl cos α可知,物体所受合外力为零,合外力做功一定为零,但合外力做功为零,可能是α=90°,故A 正确,B 错误;由动能定理W =ΔE k 可知,合外力做功越多,动能变化量越大,但动能不一定越大,动能不变,合外力做功为零,但合外力不一定为零,C 、D 均错误.考向2 动能定理在变力做功中的应用2.(2015·高考全国卷Ⅰ)如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点 C .W =12mgR ,质点到达Q 点后,继续上升一段距离 D .W <12mgR ,质点到达Q 点后,继续上升一段距离 解析:选C.设质点到达N 点的速度为v N ,在N 点质点受到轨道的弹力为F N ,则F N -mg =m v 2N R ,已知F N =F ′N =4mg ,则质点到达N 点的动能为E k N =12m v 2N =32mgR .质点由开始至N 点的过程,由动能定理得mg ·2R +W f =E k N -0,解得摩擦力做的功为W f =-12mgR ,即克服摩擦力做的功为W =-W f =12mgR .设从N 到Q 的过程中克服摩擦力做功为W ′,则W ′<W .从N 到Q 的过程,由动能定理得-mgR -W ′=12m v 2Q -12m v 2N ,即12mgR -W ′=12m v 2Q ,故质点到达Q 点后速度不为0,质点继续上升一段距离.选项C 正确.考向3 动能定理在曲线运动中的应用3.(多选)(2016·高考全国卷丙)如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )A .a =2(mgR -W )mRB .a =2mgR -W mRC .N =3mgR -2W RD .N =2(mgR -W )R解析:选AC.质点由半球面最高点到最低点的过程中,由动能定理有:mgR -W =12m v 2,又在最低点时,向心加速度大小a =v 2R ,两式联立可得a =2(mgR -W )mR,A 项正确,B 项错误;在最低点时有N -mg =m v 2R ,解得N =3mgR -2W R,C 项正确,D 项错误. 动能定理在多阶段、多过程综合问题中的应用[学生用书P77]【知识提炼】1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.2.应用动能定理解题的基本思路【典题例析】如图所示,AB 是固定于竖直平面内的14光滑圆弧轨道,末端B 处的切线方向水平.一物体P (可视为质点)从圆弧最高点A 处由静止释放,滑到B 端飞出,落到地面上的C 点.测得C 点和B 点的水平距离OC =L ,B 点距地面的高度OB =h .现在轨道下方紧贴B 端安装一个水平传送带,传送带的右端与B 点的距离为L 2.当传送带静止时,让物体P 从A 处由静止释放,物体P 沿轨道滑过B 点后又在传送带上滑行并从传送带右端水平飞出,仍落在地面上的C 点.(1)求物体P 与传送带之间的动摩擦因数.(2)若在A 处给P 一个竖直向下的初速度v 0,物体P 从传送带右端水平飞出,落在地面上的D 点,求OD 的大小.(3)若传送带驱动轮顺时针转动,带动传送带以速度v 匀速运动.再把物体P 从A 处由静止释放,物体P 落在地面上.设着地点与O 点的距离为x ,求出x 可能的范围.[审题指导] 第(3)问中,若物体在传送带上全程减速,则x 最小;若物体在传送带上全程加速,则x 最大.[解析] (1)无传送带时,物体由B 运动到C ,做平抛运动,设物体在B 点的速度为v B ,则L =v B t① h =12gt 2 ② 由①②式得v B =L g 2h ③有传送带时,设物体离开传送带时的速度为v 2,则有L 2=v 2t ④ -μmgL 2=12m v 22-12m v 2B ⑤ 由①②④⑤式得v 2=L 2g 2h ⑥μ=3L 8h. ⑦ (2)设物体离开传送带时的速度为v ′2,则由动能定理有mgR -μmg L 2=12m v ′22-12m v 20 ⑧ mgR =12m v 2B⑨ OD =L 2+v ′2t ⑩由①②④⑤⑧⑨⑩式得OD =L 2+ L 24+2h v 20g . ⑪(3)物体在传送带上全程减速时,离开传送带的末速度v I =L 2g 2h,则x min =L 物体在传送带上全程加速时,离开传送带的末速度为 v Ⅱ,μmg L 2=12m v 2Ⅱ-12m v 2B ,v Ⅱ=v 2B +μgL =L 2 7g 2h . 则x max =L 2+v Ⅱ2h g =1+72L 故L ≤x ≤1+72L . [答案] (1)3L 8h (2)L 2+ L 24+2h v 20g(3)L ≤x ≤1+72L应用动能定理的两注意(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度和时间,比动力学研究方法更简便.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间过程的速度时,也可以全过程应用动能定理求解.(2017·江苏四市高三第二次调研考试)如图所示,光滑杆AB 长为L ,B 端固定一根劲度系数为k 、原长为l 0的轻弹簧,质量为m 的小球套在光滑杆上并与弹簧的上端连接.OO ′为过B 点的竖直轴,AB 杆与水平面间的夹角始终为θ.(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a 及小球速度最大时弹簧的压缩量Δl 1;(2)当球随杆一起绕OO ′轴匀速转动时,弹簧伸长量为Δl 2,求匀速转动的角速度ω;(3)若θ=30°,移去弹簧,当杆绕OO ′轴以角速度ω0= g L匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A 时球沿杆方向的速度大小为v 0,求小球从开始滑动到离开杆过程中,杆对球所做的功W .解析:(1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有mg sin θ=ma 解得a =g sin θ小球速度最大时其加速度为零,则k Δl 1=mg sin θ解得Δl 1=mg sin θk.(2)弹簧伸长Δl 2时,球受力如图所示,水平方向上有F N sin θ+k Δl 2cos θ=m ω2·(l 0+Δl 2)·cos θ竖直方向上有F N cos θ-k Δl 2sin θ-mg =0解得ω=mg sin θ+k Δl 2m (l 0+Δl 2)cos 2 θ.(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0,此时有mg tan θ=m ω20L 0cos θ解得L 0=2L 3此时小球的动能E k0=12m (ω0L 0cos θ)2 小球在最高点A 离开杆瞬间的动能E k A =12m [v 20+(ω0L cos θ)2] 根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0解得W =38mgL +12m v 20. 答案:见解析[学生用书P77])1.(2017·襄阳模拟)用竖直向上大小为30 N 的力F ,将2 kg 的物体从沙坑表面由静止提升1 m 时撤去力F ,经一段时间后,物体落入沙坑,测得落入沙坑的深度为20 cm.若忽略空气阻力,g 取10 m/s 2.则物体克服沙坑的阻力所做的功为( )A .20 JB .24 JC .34 JD .54 J解析:选C.对整个过程应用动能定理得:F ·h 1+mgh 2-W f =0,解得:W f =34 J ,C 对.2.(多选)(2016·高考浙江卷)如图所示为一滑草场.某条滑道由上、下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8).则( )A .动摩擦因数μ=67B .载人滑草车最大速度为 2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g 解析:选AB.由题意根据动能定理有,2mgh -W f =0,即2mgh -μmg cos 45°·h sin 45°-μmg cos 37°·h sin 37°=0,得动摩擦因数μ=67,则A 项正确;载人滑草车克服摩擦力做的功为W f =2mgh ,则C 项错误;载人滑草车在上下两段的加速度分别为a 1=g (sin 45°-μcos 45°)=214g ,a 2=g (sin 37°-μcos 37°)=-335g ,则载人滑草车在上下两段滑道上分别做加速运动和减速运动,则在上段底端时达到最大速度v ,由运动学公式有2a 1h sin 45°=v 2得,v = 2a 1h sin 45°= 2gh 7,故B 项正确,D 项错误.3.(多选)(2017·河北衡水中学模拟)如图所示,质量为0.1 kg的小物块在粗糙水平桌面上滑行4 m后以3.0 m/s的速度飞离桌面,最终落在水平地面上,已知物块与桌面间的动摩擦因数为0.5,桌面高0.45 m,若不计空气阻力,取g=10 m/s2,则下列说法错误的是()A.小物块的初速度是5 m/sB.小物块的水平射程为1.2 mC.小物块在桌面上克服摩擦力做8 J的功D.小物块落地时的动能为0.9 J解析:选ABC.小物块在桌面上克服摩擦力做功W f=μmgL=2 J,C错.在水平桌面上滑行,由动能定理得-W f=12-12m v20,解得v0=7 m/s,A错.小物块飞离桌面后做平抛运动,2m v有x=v t、h=12,联立解得x=0.9 m,B错.设小物块落地时动能为E k,由动能定理得mgh 2gt=E k-12,解得E k=0.9 J,D对.2m v4.用传感器研究质量为2 kg的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s内物体的加速度随时间变化的关系如图所示.下列说法正确的是()A.0~6 s内物体先向正方向运动,后向负方向运动B.0~6 s内物体在4 s时的速度最大C.物体在2~4 s内速度不变D.0~4 s内合力对物体做的功等于0~6 s内合力做的功解析:选D.由v=at可知,a-t图象中,图线与坐标轴所围面积表示质点的速度的变化量,0~6 s内物体的速度始终为正值,故一直为正方向,A项错;t=5 s时,速度最大,B项错;2~4 s内加速度保持不变且不为零,速度一定变化,C项错;0~4 s内与0~6 s内图线与坐标轴所围面积相等,故物体4 s末和6 s末速度相同,由动能定理可知,两段时间内合力对物体做功相等,D项对.5.(2016·高考天津卷)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m ,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1 530 J ,取g =10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大.解析:(1)运动员在AB 段做初速度为零的匀加速运动,设AB 的长度为x ,则有v 2B =2ax① 由牛顿第二定律有mg H x -F f =ma ②联立①②式,代入数据解得F f =144 N . ③ (2)设运动员到C 点时的速度为v C ,在由B 处运动到达C 点的过程中,由动能定理有mgh +W =12m v 2C -12m v 2B ④设运动员在C 点所受的支持力为F N ,由牛顿第二定律有F N -mg =m v 2C R ⑤由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R =12.5 m.答案:(1)144 N (2)12.5 m[学生用书P295(独立成册)])一、单项选择题1.(2017·宁波模拟)如图所示,木盒中固定一质量为m 的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F (F =mg ),若其他条件不变,则木盒滑行的距离( )A .不变B .变小C .变大D .变大变小均可能解析:选B.设木盒质量为M ,木盒中固定一质量为m 的砝码时,由动能定理可知,μ(m+M )gx 1=12(M +m )v 2,解得x 1=v 22μg;加一个竖直向下的恒力F (F =mg )时,由动能定理可知,μ(m +M )gx 2=12M v 2,解得x 2=M v 22(m +M )μg.显然x 2<x 1. 2.(2017·北京101中学检测)如图所示,质量为m 的物体静置在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮,由地面上的人以速度v 0向右匀速拉动,设人从地面上平台的边缘开始向右行至绳与水平方向夹角为45°处,在此过程中人所做的功为( )A.m v 202B.2m v 202C.m v 204D .m v 20 解析:选C.由题意知,绳与水平方向夹角为45°时,沿绳方向的速度v =v 0cos 45°=2v 02,故质量为m 的物体速度等于2v 02,对物体应用动能定理可知,在此过程中人所做的功为W =12m v 2-0=m v 204,C 正确. 3.如图所示,质量相等的物体A 和物体B 与地面的动摩擦因数相等,在力F 的作用下,一起沿水平地面向右移动L ,则( )A .摩擦力对A 、B 做功相等B .A 、B 动能的增量相同C.F对A做的功与F对B做的功相等D.合外力对A做的总功与合外力对B做的总功不相等解析:选B.对A、B分别受力分析,受力如图所示对A分析:F N-F sin α-G=0,f=μF N=μ(F sin α+G)对B分析:F N1=G,f1=μF N1=μG,W f=fL,W f1=f1L,因为f>f1,所以W f>W f1,故A 项错误;根据动能定理可知,A、B所受的合外力做的功等于A、B物体动能的变化,而A、B动能的变化量相等,所以合外力对A、B做的功相等,故B正确,D错误;F对B不做功,只对A做功,故C错误.4.如图,竖直平面内的轨道Ⅰ和Ⅱ都由两段细直杆连接而成,两轨道长度相等.用相同的水平恒力将穿在轨道最低点B的静止小球,分别沿Ⅰ和Ⅱ推至最高点A,所需时间分别为t1、t2;动能增量分别为ΔE k1、ΔE k2.假定球在经过轨道转折点前后速度的大小不变,且球与Ⅰ、Ⅱ轨道间的动摩擦因数相等,则()A.ΔE k1>ΔE k2;t1>t2B.ΔE k1=ΔE k2;t1>t2C.ΔE k1>ΔE k2;t1<t2D.ΔE k1=ΔE k2;t1<t2解析:选B.两轨道长度相等,球与Ⅰ、Ⅱ轨道间的动摩擦因数相等,W f=μ(mg cos α+F sin α)·s=μmgx+μFh,用相同的水平恒力使它们到达最高点,则水平恒力做功相等,摩擦力做功相等,重力做功相等,根据动能定理W F-mgh-W f=ΔE k知,动能的增量相等,即ΔE k1=ΔE k2.作出小球在轨道Ⅰ、Ⅱ上运动的v-t图象如图所示,则t1>t2.5.如图所示,某滑草场有两个坡度不同的滑道AB 和AB ′(均可看做斜面).质量相同的甲、乙两名游客先后乘坐同一滑草板从A 点由静止开始分别沿AB 和AB ′滑下,最后都停在水平草面上,斜草面和水平草面平滑连接,滑草板与草面之间的动摩擦因数处处相同,下列说法正确的是( )A .甲沿斜草面下滑过程中克服摩擦力做的功比乙的多B .甲、乙经过斜草面底端时的速率相等C .甲、乙最终停在水平草面上的同一位置D .甲停下时的位置与B 的距离和乙停下时的位置与B ′的距离相等解析:选C.设斜草面长度为l ,倾角为θ,游客在斜草面上下滑,克服摩擦力做功W =μmgl cos θ,因此甲克服摩擦力做的功少,选项A 错误;由A 点到斜草面底端过程,由动能定理有mgh -μmgl cos θ=12m v 2,可得v B >v ′B ,选项B 错误;游客由A 点开始下滑到停在水平草面上,设x 为游客最终停在水平草面上的位置与斜草面底端的距离,由动能定理有mgh -μmg (l cos θ+x )=0,则l cos θ+x =h μ,与斜草面的倾角无关,所以甲、乙最终停在水平草面上的同一位置,选项C 正确、D 错误.二、多项选择题6.如图甲所示,物体受到水平推力F 的作用,在粗糙水平面上做直线运动.通过力传感器和速度传感器监测到推力F 和物体速度v 随时间t 变化的规律如图乙所示.取g =10 m/s 2.则( )A .物体的质量m =1 kgB .物体与水平面间的动摩擦因数μ=0.4C .第2 s 内物体克服摩擦力做的功W =2 JD .前3 s 内物体克服摩擦力做功4 J解析:选BC.第2 s 内,根据速度-时间图象可知,物体的加速度a =2 m/s 2,第3 s 内,物体做匀速直线运动,F =F f =μmg =2 N ,根据牛顿第二定律有3 N -μmg =ma ,解得m =0.5kg ,μ=0.4,A 选项错误、B 选项正确;第2 s 内物体运动的位移为1 m ,摩擦力为2 N ,克服摩擦力做的功W =2 J ,C 选项正确;前3 s 克服摩擦力做功W ′f =6 J .D 错误. 7.(2017·南宁月考)在有大风的情况下,一小球自A 点竖直上抛,其运动轨迹如图所示(小球的运动可看做竖直方向的竖直上抛运动和水平方向的初速度为零的匀加速直线运动的合运动),小球运动轨迹上的A 、B 两点在同一水平直线上,M 点为轨迹的最高点.若风力的大小恒定,方向水平向右,小球在A 点抛出时的动能为4 J ,在M 点时它的动能为2 J ,落回到B 点时动能记为E k B ,小球上升时间记为t 1,下落时间记为t 2,不计其他阻力,则( )A .x 1∶x 2=1∶3B .t 1<t 2C .E k B =6 JD .E k B =12 J解析:选AD.由小球上升与下落时间相等即t 1=t 2得,x 1∶(x 1+x 2)=1∶22=1∶4,即x 1∶x 2=1∶3,A 正确,B 错误;A →M 应用动能定理得-mgh +W 1=12m v 2M -12m v 2, ① 竖直方向有v 2=2gh②①②式联立得W 1=2 JA →B 风力做功W 2=4W 1=8 J ,A →B 由动能定理W 2=E k B -E k A ,可求得E k B =12 J ,C 错误,D 正确.8.2022年北京和张家口将携手举办冬奥会,因此在张家口建造了高标准的滑雪跑道,来迎接冬奥会的到来.如图所示,一个滑雪运动员从左侧斜坡距离坡底8 m 处自由滑下,当下滑到距离坡底s 1处时,动能和势能相等(以坡底为参考平面);到坡底后运动员又靠惯性冲上斜坡(不计经过坡底时的机械能损失),当上滑到距离坡底s 2处时,运动员的动能和势能又相等,上滑的最大距离为4 m .关于这个过程,下列说法中正确的是( )A .摩擦力对运动员所做的功等于运动员动能的变化B .重力和摩擦力对运动员所做的总功等于运动员动能的变化C .s 1<4 m ,s 2>2 mD .s 1>4 m ,s 2<2 m解析:选BC.运动员在斜坡上滑行的过程中有重力做功,摩擦力做功,由动能定理可知A 错,B 对.从左侧斜坡s 处滑至s 1处过程中,由动能定理得:mg (s -s 1)sin α-W f =12m v 2 ①(其中s =8 m ,s 1是距坡底的距离)因为下滑到距离坡底s 1处动能和势能相等,所以有:mgs 1·sin α=12m v 2 ②由①②得:mg (s -s 1)sin α-W f =mgs 1·sin α③ 由③得:s -s 1>s 1,即s 1<4 m .同理,从右侧斜坡s 2处滑至s ′(s ′=4 m)处过程中,由动能定理得:-mg (s ′-s 2)·sin θ-W ′f =0-12m v 21④因为距坡底s 2处动能和势能相等,有mgs 2·sin θ=12m v 21 ⑤ 由④⑤得:mg (s ′-s 2)·sin θ+W ′f =mgs 2·sin θ ⑥由⑥式得:s ′-s 2<s 2,即s 2>2 m .综上所述,B 、C 正确.三、非选择题9.如图甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1 kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化的关系如图乙所示,滑块与AB 间的动摩擦因数为μ=0.25,与BC 间的动摩擦因数未知,g 取10 m/s 2.求:(1)滑块到达B 处时的速度大小;(2)若到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,则滑块在半圆弧轨道上克服摩擦力所做的功是多少?解析:(1)因为F -x 图象中图线与坐标轴围成的图形面积表示F 做的功,所以设0~2 m 力F 做功W 1,3~4 m 力F 做功W 2,则W 1=12×40×2 J =40 J ,W 2=-10×1 J =-10 J 对滑块从A 到B 的过程,由动能定理得W 1+W 2-μmgx =12m v 2B即:40-10-0.25×1×10×4=12×1×v 2B 解得v B =210 m/s.(2)当滑块恰好能到达最高点C 时,有mg =m v 2C R设摩擦力做功为W ,对滑块从B 到C 的过程,由动能定理得:W -mg ×2R =12m v 2C -12m v 2B 代入数值得W =-5 J ,即克服摩擦力做的功为5 J.答案:(1)210 m/s (2)5 J10.(2015·高考浙江卷)如图所示,用一块长L 1=1.0 m 的木板在墙和桌面间架设斜面,桌子高H =0.8 m ,长L 2=1.5 m .斜面与水平桌面的倾角θ可在0~60°间调节后固定.将质量m =0.2 kg 的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数μ1=0.05,物块与桌面间的动摩擦因数为μ2,忽略物块在斜面与桌面交接处的能量损失.(重力加速度取g =10 m/s 2;最大静摩擦力等于滑动摩擦力)(1)当θ角增大到多少时,物块能从斜面开始下滑;(用正切值表示)(2)当θ角增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数μ2;(已知sin 37°=0.6,cos 37°=0.8)(3)继续增大θ角,发现θ=53°时物块落地点与墙面的距离最大,求此最大距离x m . 解析:(1)为使小物块下滑,应有mg sin θ≥μ1mg cos θθ满足的条件tan θ≥0.05即当θ=arctan 0.05时物块恰好从斜面开始下滑.(2)克服摩擦力做功W f=μ1mgL1cos θ+μ2mg(L2-L1cos θ) ①由动能定理得mgL1sin θ-W f=0 ②代入数据得μ2=0.8.(3)由动能定理得mgL1sin θ-W f=12m v2 ③结合①式并代入数据得v=1 m/s由平抛运动规律得H=12gt2,x1=v t解得t=0.4 sx1=0.4 mx m=x1+L2=1.9 m.答案:(1)arctan 0.05(2)0.8(3)1.9 m11.(2017·江苏五校第二次联考)如图所示,在水平轨道竖直安放一个与水平面夹角为θ,长度为L0,以v0逆时针匀速转动的传送带和一半径为R的竖直圆形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为L;水平轨道左侧有一轻质弹簧,左端固定,弹簧处于自然伸长状态.小物块A轻放(初速度为0)在传送带顶端,通过传送带、水平轨道、圆形轨道、水平轨道后与弹簧接触,之后A压缩弹簧并被弹簧弹回(弹回速度为刚与弹簧接触时速度的一半),经水平轨道返回圆形轨道,物块A可视为质点.已知R=0.2 m,θ=37°,L0=1.8 m,L=1.0 m,v0=6 m/s,物块A质量为m=1 kg,与传送带间的动摩擦因数为μ1=0.5,与PQ段间的动摩擦因数为μ2=0.2,轨道其他部分摩擦不计,物块从传送带滑到水平轨道时机械能不损失.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物块A滑到传送带底端时速度的大小;(2)物块A刚与弹簧接触时速度大小;(3)物块A返回到圆形轨道的高度;(4)若仅调节PQ段的长度L,当L满足什么条件时,A物块能返回圆形轨道且能沿轨道运动而不会脱离轨道?解析:(1)物块A在传送带上受重力和摩擦力的作用做加速运动,求得:a=g据运动学公式得v 2=2aL 0,解得:v =v 0=6 m/s.(2)以物块A 为研究对象,从传送带底端运动到P 的过程中,由动能定理得:-μ2mgL =12m v 21-12m v 20代入数据解得:v 1=4 2 m/s.(3)A 反弹速度v 2=12v 1=2 2 m/s A 向右经过PQ 段,由v 23-v 22=-2μ2gL代入数据解得速度:v 3=2 m/sA 滑上圆形轨道,由动能定理得:-mgh =0-12m v 23可得,返回到圆形轨道的高度为h =0.2 m =R ,符合实际.(4)物块A 以v 0冲上PQ 段直到回到PQ 段右侧,据牛顿运动定律得:v 21-v 20=-2μ2gL ′v 2=12v 1 v 23-v 22=-2μ2gL ′联立可得,A 回到PQ 段右侧速度v 23=v 204-52μ2gL ′=(9-5L ′)(m/s)2 要使A 能返回右侧轨道且能沿圆形轨道运动而不脱离轨道,则有:A 沿轨道上滑至最大高度h 时,速度减为0,则h 满足:0<h ≤R 又12m v 23=mgh v 3>0联立可得,1 m ≤L ′<1.8 m综上所述,要使A 物块能返回圆形轨道并沿轨道运动而不脱离轨道,L 满足的条件是1 m ≤L <1.8 m.答案:见解析。
高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。
在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。
可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。
ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。
(3)理解:①外力对物体做的总功等于物体动能的变化。
W 总=△E K =E K2-E K1 。
它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。
可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。
外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。
②注意的动能的变化,指末动能减初动能。
用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。
③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。
(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。
②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。
高中物理动能定理的内容与公式高中物理动能定理公式是W=(1/2)mV₁²-(1/2)mVo²=Ek₂-Ek₁,W为外力做的功,Vo是物体初速度,V₁是末速度,Ek₂表示物体的末动能,Ek₁表示物体的初动能。
W是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
动能定理研究的对象是单一的物体,或者可以称单一物体的物体系。
动能定理的计算式是等式,一般以地面为参考系。
动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;里可以是分段作用,也可以是同时作用,只要可以求出各个力的正负代数和。
拓展阅读:高中物理动能定理的知识点动能定理的基本概念合外力做的功,等于物体动能的改变量,这就是动能定理的内容。
动能定理还可以表述为:过程中所有分力做的功的代数和,等于动能的改变量。
这里的合外力指研究对象受到的所有外力的合力。
动能定理的表达式动能定理的基本表达式:F合s=W=ΔEk;动能定理的其他表示方法:∫Fds=W=ΔEk;F1s1+F2s2+F3s3+……=ΔEk;功虽然是标量,但有正负一说。
最为严谨的公式是第二个公式;最常用的,有些难度的却是第三个公式。
动能定理根源我们来推导动能定理,很多学生可能认为这是没有必要的,其实恰恰相反。
近几年的高考物理试题,特别注重基础知识的推导和与应用。
理解各个知识点之间的关联,能够帮你更好的理解物理考点。
在内心理解了动能定理,知道了它的本源,才能在考试中科学运用动能定理来解题。
动能定理的推导分为如下两步:(1)匀变速直线运动下的动能定理推导过程物体做匀变速直线运动,则其受力情况为F合=ma;由匀变速直线运动的公式:2as=v2-v02;方程的两边都乘以m,除以2,有:mas=½(mv2-v02)=Ek2-Ek1=ΔEk;上述方程的左端mas=F合s=W;因此有:F合s=W=ΔEk;这就是动能定理在匀变速直线运动情况下的推导过程。