2017-2018年北京市石景山区高三上学期数学期末试卷(理科)与解析
- 格式:pdf
- 大小:843.95 KB
- 文档页数:22
石景山区2017--2018学年第一学期高三期末考试试卷物理则在1s内发射的重离子个数为(e=1.6×10-19 C)A.3.0×1012 B.1.5×1013C.7.5×1013D.3.75×10145.发球机从同一高度向正前方依次水平射出两个初速度不同的乒乓球(忽略空气的影响)。
初速度较大的球越过球网,初速度较小的球没有越过球网。
其原因是A.初速度较大的球在相同时间间隔内下降的距离较大B.初速度较大的球通过同一水平距离所用的时间较少C.初速度较小的球在下降相同距离时在竖直方向上的速度较大D.初速度较小的球下降相同距离所用的时间较多9.如图所示,直线a 、b 和c 、d 是处于匀强电场中的两组平行线,M 、N 、P 和Q 是它们的交点,四点处的电势分别为M ϕ、N ϕ、P ϕ和Q ϕ。
一带正电的粒子由M 点分别运BA C Da第Ⅱ卷(共64分)二、本题共2小题,共18分。
13.(6分)现用频闪照相方法来研究物块的变速运动。
在一小物块沿斜面向下运动的过程中,用频闪相机拍摄的不同时刻物块的位置如图所示。
拍摄时频闪频率是10 Hz ;通过斜面上固定的刻度尺读取A 、B 、C 、D 和 E 5个连续影像间的距离依次为R R mAab A BCDE(3)若电阻1R 和2R 中有一个被短路,利用图(3)的电路可以判断出被短路的电阻,图(3)中R 为保护电阻。
则图中的d 点应和接线柱 (填“b ”或“c ”)相连。
判断依据是: 。
三、本题共5小题,共46分。
解答应写出必要的文字说明、方程和重要步骤。
只写出最后答案的不能得分。
有数值计算的题,答案中必须明确写出数值和单位。
15.(8分)如图所示,某台式弹簧秤的秤盘水平,一物块放在秤盘中处于静止状态。
试证明物块对秤盘的压力大小等于物块所受的重力大小。
16.(9分)有一辆质量为800 kg 的小汽车驶上圆弧半径为50 m 的拱桥。
正(主)视图侧(左)视图 俯视图21 11石景山区2017年高三统一练习数学(理)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{|210}A x x =-<,{|01}B x x =≤≤,那么等于( ) A .{|0}x x ≥ B .{|1}x x ≤C .1{|0}2x x << D .1{|0}2x x <≤2.已知实数,x y 满足06,,0,x y x y x y +⎧⎪-⎪⎨⎪⎪⎩2,≤≤≥≥则2z x y =+的最大值是( )A .4B .6C .10D .123.直线1cos 2ρθ=被圆1ρ=所截得的弦长为( ) A .1B .3C .2D .44.设∈R θ,“sin cos θθ=”是“cos20θ=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.我国南宋数学家秦九韶(约公元1202—1261年)给出了求*()n n ∈N次多项式1110n n n n a x a x a x a --++++. 当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为:3232103210(())a x a x a x a a x a x a x a +++=+++之后进行求值.运行如图所示的程序框图,能求得多项式( )的值. A .432234x x x x ++++B .4322345x x x x ++++C .3223x x x +++D .32234x x x +++6.某三棱锥的三视图如图所示,则该三棱锥 的表面积是( )A . 25+B . 225+C . 45+D . 5AB开始是 否结束7.如图,在矩形ABCD 中,2,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF ⋅=,则AE BF ⋅的值是( )A .22-B .1C .2D .28.如图,将正三角形ABC 分割成m 个边长为1的小正三角形和一个灰 色菱形,这个灰色菱形可以分割成n 个边长为1的小正三角形. 若:47:25m n =,则三角形ABC 的边长是( )A .10B .11C .12D .13二、填空题共6小题,每小题5分,共30分. 9.若复数i1ia +-是纯虚数,则实数a = . 10.在数列{}n a 中,11a =,12n n a a +⋅=-(123)n =,,,,那么8a 等于 . 11.若抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则p = . 12.如果将函数()sin(3)(π0)f x x ϕϕ=+-<<的图象向左平移π12个单位所得到的图象关于原点对称,那么ϕ= .13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是 .(用数字做答)14.已知42(),,()4,.a x x a xf x x x a x ⎧-+<⎪⎪=⎨⎪-⎪⎩≥①当1a =时,()3f x =,则x = ;②当1a -≤时,若()3f x =有三个不等实数根,且它们成等差数列,则a = .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知c b a ,,分别是△ABC 的三个内角,,A B C 的三条对边,且222c a b ab =+-. (Ⅰ)求角C 的大小;(Ⅱ)求B A cos cos 的最大值.16.(本小题共13分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a 的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为21s ,22s ,试比较21s 与22s 的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X ,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.频数频率/组距6 5 3 4 2 0 0.030 0.025 0.0150.020 a10 20 30 40 50 10 20 30 40 50 甲种酸奶日销售量/箱 乙种酸奶日销售量/箱 图甲 图乙17.(本小题共14分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑(bi ē n ào ).如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,E 为PC 中点,点F 在PB 上,且PB ⊥平面DEF ,连接BD ,BE .(Ⅰ)证明:DE ⊥平面PBC ;(Ⅱ)试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只写出结论);若不是,说明理由; (Ⅲ)已知2,2AD CD ==,求二面角F AD B --的余弦值.18.(本小题共13分)已知函数()ln f x x =. (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求证:当0x >时,1()1f x x-≥;(Ⅲ)若1ln x a x ->对任意1x >恒成立,求实数a 的最大值.ABCDEPF19.(本小题共14分) 已知椭圆2222:1(0)x y E a b a b+=>>过点(0,1).(Ⅰ)求椭圆E 的方程; (Ⅱ)设直线1:2l y x m =+与椭圆E 交于A C 、两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N ,问B 、N 两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20.(本小题共13分)已知集合12{(,,,),{0,1},1,2,,}(2)nn i R X X x x x x i n n ==∈=≥.对于12(,,,),n n A a a a R =∈ 12(,,,),n n B b b b R =∈定义A 与B 之间的距离为11221(,)nn n i i i d A B a b a b a b a b ==-+-+-=-∑.(Ⅰ)写出2R 中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M 满足:3M R ⊆,且任意两元素间的距离均为2,求集合M 中元素个数的最大值并写出此时的集合M ;(Ⅲ)设集合n P R ⊆,P 中有(2)m m ≥个元素,记P 中所有两元素间的距离的平均值为()d P ,证明()2(1)mnd P m ≤-.石景山区2017年高三统一练习数学(理)试卷答案及评分参考三、解答题共6小题,共80分. 15.(本小题共13分)解:(Ⅰ)因为222c a b ab =+-,所以2221cos 22a b c C ab +-==. ……3分 又因为(0,π)C ∈, 所以π3C =. …………6分 (Ⅱ)由(Ⅰ)知π3C =,又πA B C ++=, 所以2π3B A =-且2π(0,)3A ∈, 故2πcos cos cos cos()3A B A A +=+-2π2πcos cos cos sin sin 33A A A =++ 1πcos sin()26A A A =+=+. 又2π(0,)3A ∈,5π(,)666A ππ+∈, 所以当ππ62A +=即π3A =时,cos cos AB +的最大值为1. …13分 16.(本小题共13分)解:(Ⅰ)由图(乙)知,10(0.020.030.0250.015)1a ++++=解得0.01a =,2212s s >. ………………… 3分(Ⅱ)X 的所有可能取值1,2,3.则()124236115C C P X C ===,()214236325C C P X C ===,()304236135C C P X C ===, 其分布列如下:…………………8分 (Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2345620++++=个,其中有4个数据在区间(0,10]内.又因为分层抽样共抽取了12005%60⨯=个数据, 乙种酸奶的数据共抽取602040-=个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1, 故乙种酸奶的日销售量数据在区间(0,10]内有400.14⨯=个. 故抽取的60个数据,共有448+=个数据在区间(0,10]内. 所以,在1200个数据中,在区间(0,10]内的数据有160个.……………13分17.(本小题共14分)(Ⅰ)因为PD ⊥ 面ABCD ,BC ⊂面ABCD ,所以BC PD ⊥.因为四边形ABCD 为矩形,所以BC DC ⊥.PD DC D =, 所以BC ⊥面PDC .DE ⊂面PDC , DE BC ⊥, 在PDC ∆中,PD DC =,E 为PC 中点 所以DE PC ⊥. PC BC C =,所以DE ⊥面PBC . ……………………………………4分(Ⅱ)四面体DBEF 是鳖臑,其中π2BED FED ∠=∠=,π2BFE BFD ∠=∠=. ……………………………………9分(Ⅲ)以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.(0,0,0),(2,0,0),D A C P B .设PF PB λ=,则(2)F λ.DF PB ⊥得0DF PB =解得14λ=.所以1(,244F . ………11分 设平面FDA 的法向量(,,)n x y z =,10220n DF x y z n DA x ⎧⎧⊥++=⎪⎪⇒⎨⎨⊥⎪⎪⎩=⎩令1z = 得0,3x y ==-. 平面FDA 的法向量(0,3,1)n =-,平面BDA的法向量DP =,cos ,10n DP n DP n DP-<>===.二面角F AD B -- . …………………14分 18.(本小题共13分) 解:(Ⅰ)1()f x x'=, (1)1f '=, 又(1)0f =,所以切线方程为1y x =-; ……3分 (Ⅱ)由题意知0x >,令11()()(1)ln 1g x f x x xx=--=-+. 22111'()x g x x x x -=-= ………5分 令21'()0x g x x-==,解得1x =. ………6分易知当1>x 时,'()0g x >,易知当01x <<时,'()0g x <.即()g x 在(0,1)单调递减,在(1,)+∞单调递增 ………7分 所以min ()(1)0g x g ==,()(1)0g x g ≥=即1()()(1)0g x f x x =--≥,即1()(1)f x x≥-. ……8分(Ⅲ)设()1ln (1)h x x a x x =--≥,依题意,对于任意1,>x ()0h x >恒成立.'()1a x ah x x x-=-=, ………9分 1≤a 时,'(),h x >0()h x 在[1,)+∞上单调增,当1>x 时,()(1)0h x h >=,满足题意. ………11分1>a 时,随x 变化,'()h x ,()h x 的变化情况如下表:()h x 在(,)a 1上单调递减, 所以()()<=g a g 10即当 1>a 时,总存在()0<g a ,不合题意. ………12分 综上所述,实数a 的最大值为1. ………13分 19.(本小题共14分) 解:(Ⅰ)设椭圆的半焦距为c .因为点(0,1)在椭圆C 上,所以1b =.故221a c -=.又因为c e a ==c =2a =. 所以椭圆C 的标准方程为:2214x y +=. ……………………5分(Ⅱ) 设1122(,),(,)A x y C x y ,线段AC 中点为00(,)M x y . 联立 2214402y x m x y =++-=和,得:222220x mx m ++-=.由222(2)4(22)840m m m ∆=--=->,可得m <所以122x x m +=-,21222x x m =-. ……………8分 所以AC 中点为1(,)2M m m -. …………9分弦长||AC ===………10分 又直线l 与x 轴的交点(2,0)N m -, ………11分所以||MN == ………12分所以2222215||||||||||42BN BM MN AC MN =+=+=. 所以B 、N两点间距离为定值2. ………14分20.(本小题共13分)解:(Ⅰ)2{(0,0),(0,1),(1,0),(1,1)}R =,2,A B R ∈ ,max (,)2d A B =. …………………3分(Ⅱ)3R 中含有8个元素,可将其看成正方体的8个顶点,已知集合M 中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以{(0,0,0),(1,1,0),(1,0,1),(0,1,1)}M = 或{(0,0,1),(0,1,0),(1,0,0),(1,1,1)}M =,集合M 中元素个数最大值为4. ………………8分 (Ⅲ)2,1()(,)A B Pmd P d A B C ∈=∑,其中,(,)A B Pd A B ∈∑表示P 中所有两个元素间距离的总和.设P 中所有元素的第i 个位置的数字中共有i t 个1,i m t -个0,则,1(,)()ni i A B Pi d A B t m t ∈==-∑∑由于2()(1,2,,)4i i m t m t i n -≤=所以2,1(,)()4ni i A B P i nm d A B t m t ∈==-≤∑∑从而222,1()(,)42(1)A B P mmnm nmd P d A B C C m ∈=≤=-∑ …………………13分。
北京市石景山区—第一学期期末考试试卷高三数学(理科)考生须知 1. 本试卷为闭卷考试,满分为150分,考试时间为120分钟. 2. 本试卷共8页,各题答案均答在本题规定的位置.题号 一 二 三 总分 15 16 17 18 19 20 分数一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内. 1.设集合{}|12A x x =-≤≤,{}|04B x x =≤≤,则AB =( )A .]2,0[B .]2,1[C .]4,0[ D .]4,1[2.已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于( )A .144B .72C .54D .363.现有3名男生和2名女生站成一排,要求其中2名女生恰好站在两端的不同的排法种数为( ) A . 120 B .24 C .12 D .48 4.已知53)2sin(=-απ,则)2cos(απ-=( ) A .257B .2524C .257-D .2524-5.若|a |=2,|b |=2,且a b a ⊥-)(,则a 与b 的夹角是( )A .6π B .4π C .3π D .125π 6.nxx )1(+的展开式中常数项等于20,则n 等于( )A .4B .6C .8D .107.关于直线m ,n 与平面α,β,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ;②若,m n αβ⊥⊥且αβ⊥,则m n ⊥;③若,//m n αβ⊥且//αβ,则m n ⊥;④若//,m n αβ⊥且αβ⊥,则//m n .其中真命题的序号是( ) A .①② B .③④C .①④D .②③8.如图,点P 在边长为1的正方形的边上运动,设M 是CD 的中点,则当P 沿着路径--B A M C -运动时,点P 经过的路程x 与△APM 的面积y 的函数)(x f y =的图象的形状大致是图中的( )二、填空题:本大题共6个小题,每小题5分,共30分.把答案填在题中横线上. 9.计算:=+-∞→3423limn n n .10.复数ii+-12(i 是虚数单位)的实部为 . 11.不等式01|25|>--x 的解集是_______________________. 12.函数)2(log 221x x y -=的单调递减区间是__________________.13.某校对文明班的评选设计了e d c b a ,,,,五个方面的多元评价指标,并通过经验公式ed c b a S 1++=来计算各班的综合得分,S 的值越高则评价效果越好.若某班在自测过程中各项指标显示出a b e d c <<<<<0,则下阶段要把其中一个指标的值增加1个单位,而使得S 的值增加最多,那么该指标应为 .(填入e d c b a ,,,,中的某个字母)14.一种计算装置,有一个数据入口A 和一个运算出口B ,执行某种运算程序. (1)当从A 口输入自然数1时,从B 口得到实数31,记为=)1(f 31; (2)当从A 口输入自然数)2(≥n n 时,在B 口得到的结果)(n f 是前一结果3)1(21)1(2)1(+----n n n f 的倍.当从A 口输入3时,从B 口得到 ;要想从B 口得到23031, 则应从A 口输入自然数 .三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)已知:02<<-x π,51cos sin =+x x . (Ⅰ)求x 2sin 和x x sin cos -的值;(Ⅱ)求xxx tan 1sin 22sin 2-+的值.16.(本题满分12分)在某电视节目的一次有奖竞猜活动中,主持人准备了A 、B 两个相互的问题,并且宣布:幸运观众答对问题A 可获奖金1000元,答对问题B 可获奖金2000元,先答哪个题由观众自由选择,但只有第一个问题答对,才能再答第二题,否则终止答题.若你被选为幸运观众,且假设你答对问题A 、B 的概率分别为12、14. (Ⅰ)记先回答问题A 获得的奖金数为随机变量ξ,则ξ的取值分别是多少? (Ⅱ)你觉得应先回答哪个问题才能使你获得更多的奖金?请说明理由.17.(本题满分14分)正项数列{a n }的前n 项和为n S ,且12+=n n a S . (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设11+⋅=n n n a a b ,数列{n b }的前n 项和为n T ,求证:21<n T .18.(本题满分14分)已知:如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,1==AB PA ,2=BC .(Ⅰ)求证:平面PDC ⊥平面PAD ;(Ⅱ)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值;(Ⅲ)在BC 边上是否存在一点G ,使得D 点到平面PAG 的距离为1?若存在,求出BG 的值;若不存在,请说明理由.19.(本题满分14分) 已知:在函数x mx x f -=3)(的图象上,以),1(n N 为切点的切线的倾斜角为4π.(Ⅰ)求m ,n 的值;(Ⅱ)是否存在最小的正整数k ,使得不等式1993)(-≤k x f 对于]3,1[-∈x 恒成立?如果存在,请求出最小的正整数k ;如果不存在,请说明理由;PA BCDE(Ⅲ)求证:)21(2|)(cos )(sin |tt f x f x f +≤+(R x ∈,0>t ).20.(本题满分12分)对于定义域为D 的函数)(x f y =,若同时满足:①)(x f 在D 内单调递增或单调递减;②存在区间[b a ,]D ⊆,使)(x f 在],[b a 上的值域为],[b a ;那么把函数)(x f y =(D x ∈)叫做闭函数.(Ⅰ)求闭函数3x y -=符合条件②的区间],[b a ;(Ⅱ)判断函数)0(143)(>+=x xx x f 是否为闭函数?并说明理由; (Ⅲ)若2++=x k y 是闭函数,求实数k 的取值范围.北京市石景山区—第一学期期末考试试卷高三数学(理科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内. 题号 1 2 3 4 5 6 7 8 答案 A B C A B B D A二、填空题:本大题共6个小题,每小题5分,共30分.把答案填在题中横线上.注:第14题第1个空3分,第2个空2分.三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤.15.(本题满分14分) 解:(Ⅰ)∵ 51cos sin =+x x ,∴ 251)cos (sin 2=+x x . ∴ 2524cos sin 2-=x x ,即25242sin -=x . ………………………………4分∵ 02<<-x π,∴ x x sin cos >. ………………………………5分∴ 5725241cos sin 21)sin (cos sin cos 2=+=-=-=-x x x x x x . ………………………………8分(Ⅱ)xx x x x x x x x x x x x x cos sin cos )sin (cos sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 22-+=-+=-+x x x x x x x x x x x sin cos )cos (sin 2sin sin cos )sin (cos cos sin 2-+=-+=…………………12分=⨯-=5751)2524(17524-. ………………………………14分16.(本题满分12分)解:(Ⅰ)随机变量ξ的可能取值为0,1000,3000. …………………………3分 (Ⅱ)设先答问题A 获得的奖金为ξ元,先答问题B 获得的奖金为η元.则有21211)0(=-==ξP ,83)411(21)1000(=-⨯==ξP ,814121)3000(=⨯==ξP ,∴ 75086000813000831000210==⨯+⨯+⨯=ξE . ………………………7分 答案43 21 2|{<x x ,或}3>x(2,+∞)c351,24同理:43)0(==ηP ,81)2000(==ηP ,81)3000(==ηP , ∴ 62585000813000812000430==⨯+⨯+⨯=ηE . ……………………11分故知先答问题A ,所获得的奖金期望较多. ………………………………12分17.(本题满分14分)解:(Ⅰ)∵ 1211+=a S ,∴ 11=a . ………………………………2分 ∵ 0>n a ,12+=n n a S ,∴ 2)1(4+=n n a S . ① ∴ 211)1(4+=--n n a S (2≥n ). ② ①-②,得 1212224----+=n n n n n a a a a a ,即0)2)((11=--+--n n n na a a a ,而0>n a ,∴)2(21≥=--n a a n n . ………………………………6分故数列}{n a 是首项为1,公差为2的等差数列.∴ 12-=n a n . ………………………………8分 (Ⅱ))121121(21)12)(12(1+--=+-=n n n n b n . ………………………………10分n n b b b T +++= 21)121121(21)5131(21)311(21+--++-+-=n n 21)1211(21<+-=n . ………………………………14分18.(本题满分14分)解法一:(Ⅰ)证明: ∵ ⊥PA 平面ABCD ,∴ CD PA ⊥. …………1分 ∵ 四边形ABCD 是矩形,EP∴ CD AD ⊥. 又 A AD PA =⋂∴⊥CD 平面PAD . …………3分 又 ∵ ⊂CD 平面PDC ,∴ 平面⊥PDC 平面PAD . ……5分 (Ⅱ)解:设CD 的中点为F ,连结EF 、AF .∵ E 是PD 中点, ∴ EF ∥PC .∴ AEF ∠是异面直线AE 与PC 所成角或其补角. ……………………7分 由1==AB PA ,2=BC ,计算得2521==PD AE ,2621==PC EF ,217=AF , 10302625241746452cos 222-=⋅⋅-+=⋅-+=∠EF AE AF EF AE AEF ,…………………9分 ∴ 异面直线AE 与PC 所成角的余弦值为1030. ……………………10分 (Ⅲ)解:假设在BC 边上存在点G ,使得点D 到平面PAG 的距离为1. 设x BG =,过点D 作AG DM ⊥于M .∵ ⊥PA 平面ABCD ,∴ DM PA ⊥,A AG PA =⋂. ∴ ⊥DM 平面PAG .∴ 线段DM 的长是点D 到平面PAG 的距离,即1=DM . ……………12分又1121212=+=⋅=∆x DM AG S AGD , 解得 23<=x .所以,存在点G 且当3=BG 时,使得点D 到平面PAG 的距离为1.……………………14分解法二:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C(1,2,0),D (0,2,0),E (0,1,12),P (0,0,1).∴ CD =(-1,0,0),AD =(0,2,0),AP =(0,0,1), AE =(0,1,12), PC =(1,2,-1). …………2分(Ⅰ)∵ 0=⋅AD CD ,∴ AD CD ⊥.∵ 0=⋅AP CD ,∴ AP CD ⊥.又 A AD AP = ,∴ ⊥CD 平面PAD . …………………………5分∵ ⊂CD 平面PAD ,∴ 平面PDC ⊥平面PAD . ……………………7分(Ⅱ)∵ ||||,cos PC AE PC AE ⋅>=<10306411212=⋅+-=, …………………………9分 ∴ 异面直线AE 与PC 所成角的余弦值为1030. ………………10分(Ⅲ)假设BC 边上存在一点G 满足题设条件,令x BG =,则)0,,1(x G .作AG DQ ⊥于Q ,∵ ⊥PA 平面ABCD , ∴ DQ PA ⊥.又 A AG PA =⋂,∴ ⊥DQ 面PAG .∴ 线段DQ 的长是点D 到平面PAG 的距离,即1=DQ . …………12分 ∵ ADG S ∆2=S 矩形ABCD ,∴ 2||||||||=⋅=⋅AD AB DQ AG .QGzyxEDCBAP∴ 2||=AG . 又 12+=x AG ,∴ 23<=x .故存在点G ,当BG =3时,使点D 到平面PAG 的距离为1. …………14分19.(本题满分14分)解:(Ⅰ)13)(2-='mx x f ,依题意,得=')1(f 4tanπ,即113=-m ,32=m . ………………………………2分 ∵ n f =)1(, ∴ 31-=n . ………………………………3分 (Ⅱ)令012)(2=-='x x f ,得22±=x . ………………………………4分当221-<<-x 时,012)(2>-='x x f ;当2222<<-x 时,012)(2<-='x x f ; 当322<<x 时,012)(2>-='x x f . 又31)1(=-f ,32)22(=-f ,32)22(-=f ,15)3(=f . 因此,当]3,1[-∈x 时,15)(32≤≤-x f . ………………………………7分 要使得不等式1993)(-≤k x f 对于]3,1[-∈x 恒成立,则2008199315=+≥k . 所以,存在最小的正整数2008=k ,使得不等式1993)(-≤k x f 对于 ]3,1[-∈x 恒成立. ………………………………9分(Ⅲ)方法一:|)(cos )(sin |x f x f +|)cos cos 32()sin sin 32(|33x x x x -+-=|)cos (sin )cos (sin 32|33x x x x +-+= |]1)cos cos sin (sin 32)[cos (sin |22-+-+=x x x x x x|31cos sin 32||cos sin |--⋅+=x x x x3|cos sin |31x x +=3|)4sin(2|31π+=x 322≤. …………………11分 又∵ 0>t ,∴ 221≥+t t ,14122≥+tt .∴ )21(2t t f +)]21()21(32[23tt t t +-+=]31)41(32)[21(222-++=tt t t 322)3132(22=-≥. …………………13分综上可得,)21(2|)(cos )(sin |tt f x f x f +≤+(R x ∈,0>t ). …………………………14分方法二:由(Ⅱ)知,函数)(x f 在 [-1,22-]上是增函数;在[22-,22]上是减函数;在[22,1]上是增函数. 又31)1(=-f ,32)22(=-f ,32)22(-=f ,31)1(-=f . 所以,当x ∈[-1,1]时,32)(32≤≤-x f ,即32|)(|≤x f . ∵ x sin ,x cos ∈[-1,1],∴ 32|)(sin |≤x f ,32|)(cos |≤x f . ∴ 3223232|)(cos ||)(sin ||)(cos )(sin |=+≤+≤+x f x f x f x f . ………………………………11分又∵0>t ,∴ 1221>≥+tt ,且函数)(x f 在),1[+∞上是增函数. ∴ 322]2)2(32[2)2(2)21(23=-=≥+f t t f . …………………13分综上可得,)21(2|)(cos )(sin |tt f x f x f +≤+(R x ∈,0>t ).……………14分20.(本题满分12分)解:(Ⅰ)由题意,3x y -=在[b a ,]上递减,则⎪⎩⎪⎨⎧>-=-=ab b a a b 33,解得⎩⎨⎧=-=11b a .所以,所求的区间为[-1,1] . ………………………3分 (Ⅱ)取11=x ,102=x ,则)(107647)(21x f x f =<=, 即)(x f 不是),0(+∞上的减函数. 取,1001,10121==x x )(100400310403)(21x f x f =+<+=, 即)(x f 不是),0(+∞上的增函数.所以,函数在定义域内既不单调递增也不单调递减,从而该函数不是闭函数.………………………6分 (Ⅲ)若2++=x k y 是闭函数,则存在区间[b a ,],在区间[b a ,]上,函数)(x f y =的值域为[b a ,].容易证明函数2++=x k y 在定义域内单调递增,∴ ⎪⎩⎪⎨⎧++=++=22b k b a k a .∴ b a ,为方程2++=x k x 的两个实数根.即方程22(21)20(2,)x k x k x x k -++-=≥-≥有两个不相等的实根.………………………8分当2-≤k 时,有⎪⎪⎩⎪⎪⎨⎧->+≥->∆22120)2(0k f ,解得249-≤<-k .当2->k 时,有⎪⎪⎩⎪⎪⎨⎧>+≥>∆k k k f 2120)(0,无解.综上所述,]2,49(--∈k . ………………………12分注:若有其它解法,请酌情给分.。
【高三】(试题全)北京市石景山区届高三上学期期末考试数学理试题(WORD试卷说明:石景山区―学年第一学期期末考试试卷高三数学(理科)本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合,,那么()A.B.C.D.2.复数()A.B.C.D.3.已知向量,,则“”是“∥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知数列为等差数列,,那么数列通项公式为()A.B.C.D.5.执行如图所示的程序框图,若输入的的值为,则输出的的值为()A.B.C.D. 6.在边长为的正方形中任取一点,则点恰好落在正方形与曲线围成的区域内(阴影部分)的概率为()A.B.C.D.7.用到这个数字,可以组成没有重复数字的三位偶数的个数为()A.B. C.D.8.已知函数满足,当时,,若在区间上方程有两个不同的实根,则实数的取值范围是()A.B.C.D.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.的参数方程为为参数,则圆的直角坐标方程为_______________,圆心到直线的距离为______. 1.中,角的对边分别为,若,,,则______.11.,满足约束条件则.12.中,,是上一点,以为圆心,为半径的圆与交于点,与切于点,,,则的长为,的长为. 13.的焦点为,准线为直线,过抛物线上一点作于,若直线的倾斜角为,则______. 14.是边长为的正方形,且平面,为上动点,过且垂直于的平面交于,那么异面直线与所成的角的度数为,当三棱锥的体积取得最大值时,四棱锥的长为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数.在上的最小值,并写出取最小值时相应的值.13分)北京市各级各类中小学每年都要测试,测试总成绩满分为分测试成绩在之间为体质优秀;在之间为体质良好;在之间为体质合格;在之间为体质不合格.现从某校高年级的名学生中随机抽取名学生体质测试成绩如下:1356801122333445667797056679645856(Ⅰ)试估计该校高年级体质为优秀的学生人数;名学生体质测试成绩名学生,再从这名学生中选出人.名学生中至少有名体质为优秀的概率;(?)记为名学生中体质为良好的人数,求的分布列及数学期望.如图,在四棱锥中,平面,底面是直角梯形,,∥,且,,为的中点.(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点(不与两点重合),使得∥平面?若存在,求出的长;若不存在,请说明理由.18.(本小题满分13分)已知函数(为自然对数的底数).(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)已知函数在处取得极小值,不等式的解集为,若,且,求实数的取值范围.19.(本小题满分14分)已知椭圆:()过点,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)若动点在直线上,过作直线交椭圆于两点,且,再过作直线.证明:直线恒过定点,并求出该定点的坐标.20.(本小题满分13分)已知集合,对于数列中.(Ⅰ)若项数列满足,,则数列中有多少项取值为零?()(Ⅱ)若各项非零数列和新数列满足().(?)若首项,末项,求证数列是等差数列;(?)若首项,末项,记数列的前项和为,求的最大值和最小值.石景山区―学年第一学期期末考试高三数学(理科)参考答案一、选择题共8小题,每小题5分,共40分.题号12345678答案DCAACBBD二、填空题共6小题,每小题5分,共30分.题号91011121314答案,,,(两空的题目第一空2分,第二空3分)三、解答题共6小题,共80分.15.(本小题共13分)解:(Ⅰ)............2分, (4)分,,,,...............6分所以函数的单调递增区间为.,, (9)分,,……………11分所以当,即时,函数取得最小值.13分)解:(Ⅰ)根据抽样,估计该校高三学生中体质为优秀的学生人数有人.(Ⅱ)依题意,体质为良好和优秀的学生人数之比为.,从体质为优秀的学生中抽取的人数为.……………6分(?)设“在选出的名学生中至少有名体质为优秀”为事件,则.名学生中至少有名体质为优秀的概率为.的所有取值为.,,.的分布列为: .因为平面,平面,所以. ……………1分取因为底面为直角梯形,∥,,且,所以四边形为正方形,所以,且,所以,即. ……………3分又,所以平面. ……………4分(Ⅱ)解:如图,以为坐标原点,所在直线分别为轴建立空间直角坐标系.……………5分则,,,,所以,,.因为平面,所以为平面的一个法向量.……………6分设平面的法向量为,由,得令,则,,所以是平面的一个法向量.……………8分所以因为二面角为锐角,所以二面角的余弦值为.……………9分(Ⅲ)解:假设在线段上存在点(不与两点重合),使得∥平面.设,则,.设平面的法向量为,由,得令,则,,所以是平面的一个法向量.因为∥平面,所以,即,……………13分解得,所以在线段上存在一点(不与两点重合),使得∥平面,且.8.(本小题共13分)解:(Ⅰ)当时,,,,得,……………2分所以曲线在点处的切线方程为. ……………3分(Ⅱ).当时,恒成立,此时的单调递增区间为,无单调递减区间;……………5分当时,时,,时,,此时的单调递增区间为,单调递减区间为.……………7分(Ⅲ)由题意知得,经检验此时在处取得极小值. ...............8分因为,所以在上有解,即使成立,...............9分即使成立,............10分所以.令,,所以在上单调递减,在上单调递增,则, (12)分所以. ……………13分19.(本小题共14分)解:(Ⅰ)因为点在椭圆上,所以,所以,……………1分因为椭圆的离心率为,所以,即,……………2分解得,……………4分所以椭圆的方程为. ……………5分(Ⅱ)设,,①当直线的斜率存在时,设直线的方程为,,,由得,……………7分所以,……………8分因为,即为中点,所以,即. 所以,……………9分因为直线,所以,所以直线的方程为,即,显然直线恒过定点. ……………11分②当直线的斜率不存在时,直线的方程为,此时直线为轴,也过点. ……………13分综上所述直线恒过定点. ……………14分20.(本小题共13分)解:(Ⅰ)设数列中项为分别有项.由题意知解得.所以数列中有项取值为零.……………3分(Ⅱ)(?)且,得到,若,则满足.此时,数列是等差数列;若中有个,则不满足题意;所以数列是等差数列.……………7分(?)因为数列满足,所以,根据题意有末项,所以.而,于是为正奇数,且中有个和个.要求的最大值,则只需前项取,后项取,所以(为正奇数).要求的最小值,则只需前项取,后项取,则(为正奇数).…………13分【注:若有其它解法,请酌情给分.】每天发布最有价值的高考资源每天发布最有价值的高考资源 1 12 每天发布最有价值的是输入输出开始结束否.(试题全)北京市石景山区届高三上学期期末考试数学理试题(WORD版,含答案)感谢您的阅读,祝您生活愉快。
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
石景山区2018—2018学年上学期期末考试试卷高三数学(理科)考生须知 1. 本试卷为闭卷考试,满分为150分,考试时间为120分钟.2. 本试卷共10页,其中第10页为草稿纸.各题答案均答在本题规定的位置.题号 一 二 三总分 15 16 17 18 19 20 分数一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内. 1.已知全集U R =,{22}M x x =-≤≤,{1}N x x =<,那么M N =I ( )A .{1}x x <B .{21}x x -<<C .{2}x x <-D .{21}x x -≤<2.复数11ii =-+( ) A .2B .2C .iD . i -3.幂函数()f x x α=的图象过点(2,4),那么函数()f x 的单调递增区间是( )A . (2,)-+∞B . [1,)-+∞C . [0,)+∞D . (,2)-∞-为14.如右图所示,一个空间几何体的主视图和左视图都是边长的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( ) A . π3 B . π2 C . π23 D . π45.右图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,那么甲、乙两人这几场比赛得分的中位数之和是( ) A . 65 B . 64 C . 63D . 624题图主视图俯视图左视图6.六名学生从左至右站成一排照相留念,其中学生甲和学生乙必须相邻.在此前提下,学生甲站在最左侧且学生丙站在最右侧的概率是( )A .130B .110C .140D . 1207.在ABC ∆中,AB 3=u u u r ,BC 1=u u u r , cos cos AC B BC A =u u u r u u u r,则AC AB ⋅=u u u r u u u r ( )A .32或2 B .32或2 C . 2D .3或2 8.如果对于函数()y f x =的定义域内的任意x ,都有()N f x M ≤≤(,M N 为常数)成立,那么称)(x f 为可界定函数,M 为上界值,N 为下界值.设上界值中的最小值为m ,下界值中的最大值为n .给出函数2()2f x x x =+,1(,2)2x ∈,那么n m +的值( ) A .大于9B .等于9C .小于9D .不存在二、填空题:本大题共6个小题,每小题5分,共30分.把答案填在题中横线上. 9.已知向量=(1,3)a ,=(3,)b n ,如果a 与b 共线,那么实数n 的值是______.10.阅读右面程序框图,如果输入的5n =,那么输出的S 的值为______.11.函数sin (0)y x x π=≤≤的图象与x 轴围成图形的面积为 .12.二元一次不等式组2,0,20,x y x y ≤⎧⎪≥⎨⎪-+≥⎩所表示的平面区域甲 乙3 1 8 6 3 24 59 7 3 2 6 714 5 75题图的面积为 , x y +的最大值为 .13.已知函数()31x f x x =+, 对于数列{}n a 有1()n n a f a -=(n N *∈,且2n ≥), 如果11a =,那么2a = ,n a = .14.给出下列四个命题:①命题“x x R x 31,2>+∈∃”的否定是“2,13x R x x ∀∈+>”;②在空间中,m 、n 是两条不重合的直线,α、β是两个不重合的平面,如果αβ⊥,n αβ=I ,m n ⊥,那么m β⊥;③将函数x y 2cos =的图象向右平移3π个单位,得到函数sin(2)6y x π=-的图象; ④函数()f x 的定义域为R ,且21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,若方程()f x x a =+有两个不同实根,则a 的取值范围为(,1)-∞. 其中正确命题的序号是 .三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数22()cos sin 2sin cos f x x x x x =-+.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值,并写出x 相应的取值.16.(本小题满分13分)已知数列}{n a ,其前n 项和为237()22n S n n n N *=+∈.(Ⅰ)求数列}{n a 的通项公式,并证明数列}{n a 是等差数列;(Ⅱ)如果数列}{n b 满足n n b a 2log =,请证明数列}{n b 是等比数列,并求其前n 项和; (Ⅲ)设9(27)(21)n n n c a a =--,数列{}n c 的前n 项和为n T ,求使不等式57n k T >对一切n N *∈都成立的最大正整数k 的值.17.(本小题满分14分)如图,四棱锥P ABCD -的底面为正方形,侧棱PA ⊥底面ABCD ,且2PA AD ==,,,E F H 分别是线段,,PA PD AB 的中点.(Ⅰ)求证:PB //平面EFH ; (Ⅱ)求证:PD ⊥平面AHF ; (Ⅲ)求二面角H EF A --的大小.18.(本小题满分13分)某品牌专卖店准备在春节期间举行促销活动,根据市场调查,该店决定从2种型号的洗衣机,2种型号的电视机和3种型号的电脑中,选出3种型号的商品进行促销.(Ⅰ)试求选出的3种型号的商品中至少有一种是电脑的概率;(Ⅱ)该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次..中奖都获得m 元奖金.假设顾客每次..抽奖时获奖与否的概率都是21,设顾客在三次抽奖中所获得的奖金总额(单位:元)为随机变量X ,请写出X 的分布列,并求X 的数学期望;(Ⅲ)在(Ⅱ)的条件下,问该店若想采用此促销方案获利,则每次中奖奖金要低于多少元?19.(本小题满分13分)将直径为d 的圆木锯成长方体横梁,横截面为矩形,横梁的强度同它的断面高的平方与宽x 的积成正比(强度系数为k ,0k >).要将直径为d 的圆木锯成强度最大的横梁,断面的宽x 应是多少? 20.(本小题满分14分)已知函数21()22f x ax x =+,()g x lnx =. dx横梁断面图(Ⅰ)如果函数()y f x =在[1,)+∞上是单调增函数,求a 的取值范围; (Ⅱ)是否存在实数0a >,使得方程()()(21)g x f x a x '=-+在区间1(,)e e内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.石景山区2018—2018学年第一学期期末考试试卷高三数学(理科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内.答案D D C C B C A B二、填空题:本大题共6个小题,每小题5分,共30分.把答案填在题中横线上.注:两空的题第1个空3分,第2个空2分.三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(Ⅰ) 22()cos sin 2sin cos f x x x x x =-+cos2sin 2x x =+ ………………………………4分 2sin(2)4x π=+ ………………………………6分所以函数()f x 的最小正周期22T ππ==. …………………………8分(Ⅱ)44x ππ-≤≤Q , ∴32444x πππ-≤+≤, ………………………………9分∴12sin(2)24x π-≤+≤, ………………………………11分∴当242x ππ+=,即8x π=时,()f x 有最大值2. …………………13分16.(本小题满分13分)解:(Ⅰ)当1n =时,115a S ==, ……………………………1分当2n ≥时,22137[(1)][(1)]22n n n a S S n n n n -=-=--+-- 37(21)3222n n =-+=+. ……………………………2分 又15a =满足32n a n =+, ……………………………3分 32()n a n n N *∴=+∈. ………………………………4分∵132[3(1)2]3n n a a n n --=+--+= (2,)n n N *≥∈,∴数列{}n a 是以5为首项,3为公差的等差数列. ………………5分(Ⅱ)由已知得2n an b = ()n N *∈, ………………………………6分题号 91011121314答案9 14 2 8,614,132n a n =-(n N *∈) ③④∵+1+13+12==2=2=82n n n n a a -a n a n b b ()n N *∈, ……………………7分 又11232ab ==,∴数列}{n b 是以32为首项,8为公比的等比数列. ………………8分∴数列}{n b 前n 项和为32(18)32(81)187n n-=--. ……………9分 (Ⅲ)91111()(27)(21)(21)(21)22121n n n c a a n n n n ===----+-+ ……10分∴1111111[()()()]213352121n T n n =-+-+⋅⋅⋅+--+ 11(1)22121nn n =-=++. ……………………11分 ∵110(23)(21)n n T T n n +-=>++ ()n N *∈,∴n T 单调递增. ∴min 11()3n T T ==. …………………12分 ∴1357k>,解得19k <,因为k 是正整数, ∴max 18k =. ………………13分17.(本小题满分14分) 解法一:(Ⅰ)证明:∵E ,H 分别是线段PA ,AB 的中点,∴EH //PB . ………………………2分又∵⊂EH 平面EFH ,⊄PB 平面EFH ,∴PB //平面EFH . ……………………………4分(Ⅱ)解:F Q 为PD 的中点,且PA AD =,PD AF ∴⊥,又PA ⊥Q 底面ABCD ,BA ⊂底面ABCD , AB PA ∴⊥. 又Q 四边形ABCD 为正方形,AB AD ∴⊥.又PA AD A =Q I ,AB ∴⊥平面PAD . ……………………………………7分又PD ⊂Q 平面PAD ,AB PD ∴⊥ . ……………………………………8分 又AB AF A =Q I ,PD ∴⊥平面AHF . ……………………………………9分 (Ⅲ)PA ⊥Q 平面ABCD ,PA ⊂平面PAB ,∴平面PAB ⊥平面ABCD ,AD ⊂Q 平面ABCD ,平面PAB I 平面ABCD AB =,AD AB ⊥, AD ∴⊥平面PAB ,E Q ,F 分别是线段PA ,PD 的中点, EF ∴//AD , EF ∴⊥平面PAB .EH ⊂Q 平面PAB ,EA ⊂平面PAB ,EF ∴⊥EH ,EF ∴⊥EA , ……………………10分HEA ∴∠就是二面角H EF A --的平面角. ……………………12分在Rt HAE ∆中,111,1,22AE PA AH AB ==== 45AEH ∴∠=o ,所以二面角H EF A --的大小为ο45. ………14分解法二:建立如图所示的空间直角坐标系A xyz -,(0,0,0),(2,0,0),(2,2,0),(0,2,0)A B C D ∴, )2,0,0(P ,)1,0,0(E ,)1,1,0(F ,(1,0,0)H .………………2分(Ⅰ)证明:∵(2,0,2)PB =-u u u r ,(1,0,1)EH =-u u u r, ∴2PB EH =u u u r u u u r,∵⊄PB 平面EFH ,且EH ⊂平面EFH , ……………………4分 ∴PB //平面EFH . ……………………5分(Ⅱ)解:(0,2,2)PD =-u u u r ,(1,0,0)AH =u u u r , (0,1,1)AF =u u u r, ……………………6分0021(2)10,0120(2)00.PD AF PD AH ⋅=⨯+⨯+-⨯=⋅=⨯+⨯+-⨯=u u u r u u u ru u u r u u u r ……………………8分,PD AF PD AH ∴⊥⊥, 又AF AH A =Q I ,PD ∴⊥平面AHF . ………………………9分(Ⅲ)设平面HEF 的法向量为),,(z y x n =,因为(0,1,0)EF =u u u r ,(1,0,1)EH =-u u u r,则0,0,n EF y n EH x z ⎧⋅==⎪⎨⋅=-=⎪⎩r u u u r r u u u r 取).1,0,1(=n ………………………………12分 又因为平面AEF 的法向量为),0,0,1(=m所以10012cos ,,2||||212m n m n m n ⋅++<>====⨯u r ru u r r u r r …………………13分,45,m n ∴<>=o u u r r所以二面角H EF A --的大小为ο45. …………………14分18.(本小题满分13分)解: (Ⅰ) 从2种型号的洗衣机,2种型号的电视机,3种型号的电脑中,选出3种型号的商品一共有37C 种选法. ……………………………2分 选出的3种型号的商品中没有电脑的选法有34C 种, ………………………4分所以选出的3种型号的商品中至少有一种是电脑的概率为353113734=-=C C P .………………………5分(Ⅱ)X 的所有可能的取值为0,m ,2m ,3m . ……………………6分0X =时表示顾客在三次抽奖中都没有中奖,所以(),8121210303=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛==C X P ……………………7分 同理可得(),8321212113=⎪⎭⎫⎝⎛⋅⎪⎭⎫⎝⎛==C m X P ……………………8分 (),83212121223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛==C m X P…………………9分 ().81212130333=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛==C m X P …………………10分X0 m 2m 3mP18 38 38 18于是顾客在三次抽奖中所获得的奖金总额的数学期望是m m m m EX 5.181383283810=⨯+⨯+⨯+⨯=. ……………………11分(Ⅲ)要使促销方案对商场有利,应使顾客获奖奖金总额的数学期望低于商场的提价数额,因此应有1.5150m <,所以100m <. ………………… 12分 故每次中奖奖金要低于100元,才能使促销方案对商场有利. …… 13分19.(本小题满分13分)解: 设断面高为h ,则222h d x =-.横梁的强度函数2()f x k xh =⋅,所以22()()f x kx d x =⋅- ,0x d <<. ……………………………5分 当()0,x d ∈时,令22()(3)0f x k d x '=-=. ……………………………7分解得33x d =±(舍负). ……………………………8分 当30 3x d <<时,()0f x '>; ……………………………9分 当33d x d <<时,()0f x '<. ……………………………10分 因此,函数()f x 在定义域(0,)d 内只有一个极大值点33x d =. 所以()f x 在33x d =处取最大值,就是横梁强度的最大值. ……………12分 即当断面的宽为33d 时,横梁的强度最大. ……………………13分 20.(本小题满分14分)解:(Ⅰ)当0a =时,()2f x x =在[1,)+∞上是单调增函数,符合题意.………1分 当0a >时,()y f x =的对称轴方程为2x a=-, 由于()y f x =在[1,)+∞上是单调增函数, 所以21a-≤,解得2a ≤-或0a >, 所以0a >. ……………………3分当0a <时,不符合题意.综上,a 的取值范围是0a ≥. ……………………4分 (Ⅱ)把方程()()(21)g x f x a x '=-+整理为2(21)lnxax a x=+-+, 即为方程2(12)0ax a x lnx +--=. ……………………5分设2()(12)H x ax a x lnx =+-- (0)x >,原方程在区间(1,e e )内有且只有两个不相等的实数根, 即为函数()H x 在区间(1,e e)内有且只有两个零点. ……………………6分1()2(12)H x ax a x'=+--22(12)1(21)(1)ax a x ax x x x+--+-== …………………7分令()0H x '=,因为0a >,解得1x =或12x a=-(舍) …………………8分 当(0,1)x ∈时, ()0H x '<, ()H x 是减函数;当(1,)x ∈+∞时, ()0H x '>,()H x 是增函数. …………………10分()H x 在(1,e e)内有且只有两个不相等的零点, 只需min 1()0,()0,()0,H e H x H e ⎧>⎪⎪<⎨⎪>⎪⎩…………………13分 即2222212(12)10,(1)(12)10,(12)1(2)(1)0,a a a e a e e e e H a a a ae a e e e a e ⎧--++++=>⎪⎪⎪=+-=-<⎨⎪+--=-+->⎪⎪⎩ ∴22,211,1,2e ea e a e a e e ⎧+<⎪-⎪⎪>⎨⎪-⎪>-⎪⎩解得2121e e a e +<<-, 所以a 的取值范围是(21,21e ee +-) . …………………14分注:若有其它解法,请酌情给分.。
石景山区2017年高三统一练习数 学(理)试 卷第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|210}A x x =-<,{|01}B x x =≤≤,那么等于( )A .{|0}x x ≥B .{|1}x x ≤C .1{|0}2x x <<D .1{|0}2x x <≤2.已知实数,x y 满足06,,0,x y x y x y +⎧⎪-⎪⎨⎪⎪⎩2,≤≤≥≥则2z x y =+的最大值是( )A .4B .6C .10D .123.直线1cos 2ρθ=被圆1ρ=所截得的弦长为( ) A .1BC .2D .44.设∈R θ,“sin cos θθ=”是“cos20θ=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A B I正(主)视图侧(左)视图俯视图211 15.我国南宋数学家秦九韶(约公元1202—1261年) 给出了求*()n n ∈N次多项式1110n n n n a x a x a x a --++++L当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九 韶算法”.例如,可将3次多项式改写为:3232103210(())a x a x a x a a x a x a x a +++=+++之后进行求值.运行如图所示的程序框图,能求得多项式( )的值. A .432234x x x x ++++ B .4322345x x x x ++++ C .3223x x x +++ D .32234x x x +++6.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A . 25+B . 225+C . 45+D . 57.如图,在矩形ABCD 中,2,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF ⋅=u u r u u u r,则AE BF ⋅u u r u u r的值是( )A .22-B .1C .2D .2DEFCBA开始是否 结束8.如图,将正三角形ABC 分割成m 个边长为1的 小正三角形和一个灰色菱形,这个灰色菱形可以 分割成n 个边长为1的小正三角形.若:47:25m n =,则三角形ABC 的边长是( )A .10B .11C .12D .13第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.若复数i1ia +-是纯虚数,则实数a = . 10.在数列{}n a 中,11a =,12n n a a +⋅=-(123)n =L ,,,,那么8a 等于 .11.若抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则p = . 12.如果将函数()sin(3)(π0)f x x ϕϕ=+-<<的图象向左平移π12个单位所得到的图象关于原点对称,那么ϕ= .13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是 .(用数字做答)14.已知42(),,()4,.a x x a xf x x x a x ⎧-+<⎪⎪=⎨⎪-⎪⎩≥①当1a =时,()3f x =,则x = ;②当1a -≤时,若()3f x =有三个不等实数根,且它们成等差数列,则a = .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知c b a ,,分别是△ABC 的三个内角,,A B C 的三条对边,且222c a b ab =+-. (Ⅰ)求角C 的大小;(Ⅱ)求B A cos cos +的最大值.16.(本小题共13分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a 的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为21s ,22s ,试比较21s 与22s 的大小(只需写出结论); (Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X ,求X 的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数. 17.(本小题共14分)频数频率/组距6 5 3 4 2 0 0.030 0.025 0.0150.020 a10 20 30 40 50 10 20 30 40 50 甲种酸奶日销售量/箱 乙种酸奶日销售量/箱 图甲 图乙《九章算术》中,将底面为长方形且有一条 侧棱与底面垂直的四棱锥称之为阳马,将四个面都 为直角三角形的四面体称之为鳖臑(biē nào ).如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD , 且PD CD =,E 为PC 中点,点F 在PB 上, 且PB ⊥平面DEF ,连接BD ,BE . (Ⅰ)证明:DE ⊥平面PBC ; (Ⅱ)试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由; (Ⅲ)已知2,2AD CD ==,求二面角F AD B --的余弦值.18.(本小题共13分)已知函数()ln f x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求证:当0x >时,1()1f x x-≥;(Ⅲ)若1ln x a x ->对任意1x >恒成立,求实数a 的最大值.19.(本小题共14分)已知椭圆2222:1(0)x y E a b a b+=>>过点(0,1),且离心率为32.(Ⅰ)求椭圆E 的方程; (Ⅱ)设直线1:2l y x m =+与椭圆E 交于A C 、两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N ,问B 、N 两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20.(本小题共13分)ABCDEPF已知集合12{(,,,),{0,1},1,2,,}(2)n n i R X X x x x x i n n ==∈=≥L L .对于12(,,,),n n A a a a R =∈L 12(,,,),n n B b b b R =∈L 定义A 与B 之间的距离为11221(,)nn n i i i d A B a b a b a b a b ==-+-+-=-∑L .(Ⅰ)写出2R 中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M 满足:3M R ⊆,且任意两元素间的距离均为2,求集合M 中元素个数的最大值并写出此时的集合M ;(Ⅲ)设集合n P R ⊆,P 中有(2)m m ≥个元素,记P 中所有两元素间的距离的平均值为()d P ,证明()2(1)mnd P m ≤-.石景山区2017年高三统一练习数学(理)试卷答案及评分参考三、解答题共6小题,共80分. 15.(本小题共13分)解:(Ⅰ)因为222c a b ab =+-,所以2221cos 22a b c C ab +-==. ……3分 又因为(0,π)C ∈, 所以π3C =. …………6分 (Ⅱ)由(Ⅰ)知π3C =,又πA B C ++=, 所以2π3B A =-且2π(0,)3A ∈, 故2πcos cos cos cos()3A B A A +=+-2π2πcos cos cos sin sin 33A A A =++ 1πcos sin()26A A A =+=+. 又2π(0,)3A ∈,5π(,)666A ππ+∈, 所以当ππ62A +=即π3A =时,cos cos AB +的最大值为1. …13分16.(本小题共13分)解:(Ⅰ)由图(乙)知,10(0.020.030.0250.015)1a ++++=解得0.01a =,2212s s >. ………………… 3分(Ⅱ)X 的所有可能取值1,2,3.则()124236115C C P X C ===,()214236325C C P X C ===,()304236135C C P X C ===, 其分布列如下:…………………8分 (Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2345620++++=个,其中有4个数据在区间(0,10]内.又因为分层抽样共抽取了12005%60⨯=个数据, 乙种酸奶的数据共抽取602040-=个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1, 故乙种酸奶的日销售量数据在区间(0,10]内有400.14⨯=个. 故抽取的60个数据,共有448+=个数据在区间(0,10]内. 所以,在1200个数据中,在区间(0,10]内的数据有160个.……………13分(Ⅰ)因为PD ⊥ 面ABCD ,BC ⊂面ABCD ,所以BC PD ⊥.因为四边形ABCD 为矩形,所以BC DC ⊥.PD DC D =I , 所以BC ⊥面PDC .DE ⊂面PDC , DE BC ⊥, 在PDC ∆中,PD DC =,E 为PC 中点 所以DE PC ⊥. PC BC C =I ,所以DE ⊥面PBC . ……………………………………4分(Ⅱ)四面体DBEF 是鳖臑,其中π2BED FED ∠=∠=,π2BFE BFD ∠=∠=. ……………………………………9分(Ⅲ)以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.(0,0,0),(2,0,0),D A C P B .设PF PB λ=u u u r u u u r,则(2)F λ.DF PB ⊥得0DF PB =u u u r u u u r g 解得14λ=.所以1(,,244F . ………11分 设平面FDA 的法向量(,,)n x y z =r,10220n DF x y z n DA x ⎧⎧⊥++=⎪⎪⇒⎨⎨⊥⎪⎪⎩=⎩r u u u r r u u u r 令1z = 得0,3x y ==-. 平面FDA 的法向量(0,3,1)n =-r, 平面BDA的法向量DP =u u u r,cos ,10n DP n DP n DP<>===-r u u u rr u u u r g r u u u r . 二面角F AD B --. …………………14分解:(Ⅰ)1()f x x'=, (1)1f '=, 又(1)0f =,所以切线方程为1y x =-; ……3分 (Ⅱ)由题意知0x >,令11()()(1)ln 1g x f x x xx=--=-+. 22111'()x g x x x x -=-= ………5分 令21'()0x g x x-==,解得1x =. ………6分易知当1>x 时,'()0g x >,易知当01x <<时,'()0g x <.即()g x 在(0,1)单调递减,在(1,)+∞单调递增 ………7分 所以min ()(1)0g x g ==,()(1)0g x g ≥=即1()()(1)0g x f x x =--≥,即1()(1)f x x≥-. ……8分 (Ⅲ)设()1ln (1)h x x a x x =--≥,依题意,对于任意1,>x ()0h x >恒成立.'()1a x ah x x x-=-=, ………9分 1≤a 时,'(),h x >0()h x 在[1,)+∞上单调增,当1>x 时,()(1)0h x h >=,满足题意. ………11分1>a 时,随x 变化,'()h x ,()h x 的变化情况如下表:()h x 在(,)a 1上单调递减, 所以()()<=g a g 10即当 1>a 时,总存在()0<g a ,不合题意. ………12分 综上所述,实数a 的最大值为1. ………13分解:(Ⅰ)设椭圆的半焦距为c .因为点(0,1)在椭圆C 上,所以1b =.故221a c -=.又因为2c e a ==,所以c =2a =. 所以椭圆C 的标准方程为:2214x y +=. ……………………5分 (Ⅱ) 设1122(,),(,)A x y C x y ,线段AC 中点为00(,)M x y .联立 2214402y x m x y =++-=和,得:222220x mx m ++-=.由222(2)4(22)840m m m ∆=--=->,可得m <所以122x x m +=-,21222x x m =-. ……………8分 所以AC 中点为1(,)2M m m -. …………9分弦长||AC === ………10分 又直线l 与x 轴的交点(2,0)N m -, ………11分所以||MN == ………12分 所以2222215||||||||||42BN BM MN AC MN =+=+=.所以B 、N ………14分解:(Ⅰ)2{(0,0),(0,1),(1,0),(1,1)}R =,2,A B R ∈ ,max (,)2d A B =. …………………3分 (Ⅱ)3R 中含有8个元素,可将其看成正方体的8个顶点,已知集合M 中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以{(0,0,0),(1,1,0),(1,0,1),(0,1,1)}M =或{(0,0,1),(0,1,0),(1,0,0),(1,1,1)}M =,集合M 中元素个数最大值为4. ………………8分 (Ⅲ)2,1()(,)A B P m d P d A B C ∈=∑ ,其中,(,)A B P d A B ∈∑表示P 中所有两个元素间距离的总和.设P 中所有元素的第i 个位置的数字中共有i t 个1,i m t -个0,则 ,1(,)()ni i A B P i d A B t m t ∈==-∑∑ 由于2()(1,2,,)4i i m t m t i n -≤=L 所以2,1(,)()4ni i A B P i nm d A B t m t ∈==-≤∑∑ 从而222,1()(,)42(1)A B P mmnm nm d P d A B C C m ∈=≤=-∑ …………………13分 【注:若有其它解法,请酌情给分】。
2018年石景山区高三统一测试数学(理)试卷第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( ) A .{|13}x x -<< B .{|11}x x -<< C .{|12}x x << D .{|23}x x <<2.下列函数中既是奇函数,又在区间(0,)+∞上单调递减的函数为( ) A.y = B .3y x =- C .12log y x = D .1y x x =+3.执行如图所示的程序框图,则输出的S 的值是( A .1 B .2 C .4 D .74.在ABC △中,60A =︒,4AC =,BC =ABC △的面积为( )A .B .4C .D .5.若某多面体的三视图(单位:cm )如图所示, 则此多面体的体积是( )A.378cmB. 323cmC. 356cmD.312cm6.现有4种不同颜色对如图所示的四个部分进行 涂色,要求有公共边界的两块不能用同一种颜色, 则不同的涂色方法共有( )A .24种B .30种C .36种D .48种 7.设,a b ∈R ,则“a b >”是“a a b b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件8.如图,已知线段AB 上有一动点D (D 异于A B 、),线段C D A B ⊥,且满足2CD AD BD λ=⋅(λ是大于0且不等于1的常数),则点C 的运动轨迹为( )A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.双曲线2212x y -=的焦距是________,渐近线方程是________. 10.若变量,x y 满足2,239,0,x y x y x +⎧⎪-⎨⎪⎩≤≤≥则22x y +的最大值是____________.B CD11.已知圆C 的参数方程为cos ,sin 2,x y θθ=⎧⎨=+⎩(θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为sin cos 1ρθρθ+=,则直线截圆C 所得的弦长是_____________.12. 已知函数31,1(),1x f x x x x ⎧⎪=⎨⎪<⎩≥,若关于x 的方程()f x k =有两个不同零点,则k 的取值范围是_____________.13.如图所示:正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股 树”.若某勾股树含有1023个正方形,且其最大的正方形的边长________. 14.设W 是由一平面内的(3n n ≥)个向量组成的集合.若a W ∈ ,且a 的模不小于W 中除a外的所有向量和的模.则称a是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量,a b,在该平面内总存在唯一的平面向量c a b =-- ,使得{}=,,W a b c中的每个元素都是极大向量;③若{}{}11232123=,,=,,W a a a W b b b,中的每个元素都是极大向量,且12,W W 中无公共元素,则12W W 中的每一个元素也都是极大向量. 其中真命题的序号是_______________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数2()2cos cos 1f x x x x =+-. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上的最小值和最大值.16.(本小题共13分)抢“微信红包”已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内 20名同学今年春节期间抢到红包金额x (元)如下(四舍五入取整数):102 52 41 121 72 162 50 22 158 46 43 136 95 192 59 99 22 68 98 79对这20个数据进行分组,各组的频数如下:(Ⅰ)写出m ,n 的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;(Ⅱ)记C 组红包金额的平均数与方差分别为1v 、21s ,E 组红包金额的平均数与方差分别为2v 、22s ,试分别比较1v 与2v 、21s 与22s 的大小;(只需写出结论)(Ⅲ)从A ,E 两组的所有数据中任取2个数据,记这2个数据差的绝对值为ξ,求ξ的分布列和数学期望.17.(本小题共14分)如图,四边形ABCD 是正方形,PA ⊥平面ABCD ,EB //PA ,4AB PA ==,2EB =,F 为PD 的中点.(Ⅰ)求证:AF PC ⊥; (Ⅱ)求证:BD //平面PEC ; (Ⅲ)求二面角D PC E --的大小.18.(本小题共13分)在平面直角坐标系xOy 中,动点E 到定点(1,0)的距离与它到直线1x =-的距离相等.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设动直线:l y kx b =+与曲线C 相切于点P ,与直线1x =-相交于点Q .证明:以PQ 为直径的圆恒过x 轴上某定点.19.(本小题共14分)已知2()x f x e ax =-,曲线()y f x =在(1,(1))f 处的切线方程为1y bx =+. (Ⅰ)求,a b 的值;(Ⅱ)求()f x 在[0,1]上的最大值;(Ⅲ)当x ∈R 时,判断()y f x =与1y bx =+交点的个数.(只需写出结论,不要求证明)20.(本小题共13分)对于项数为m (1m >)的有穷正整数数列{}n a ,记12max{,,,}k k b a a a = (1,2,,k m = ),即k b 为12,,k a a a 中的最大值,称数列{}n b 为数列{}n a 的“创新数列”.比如1,3,2,5,5的“创新数列”为1,3,3,5,5.(Ⅰ)若数列{}n a 的“创新数列”{}n b 为1,2,3,4,4,写出所有可能的数列{}n a ; (Ⅱ)设数列{}n b 为数列{}n a 的“创新数列”,满足12018k m k a b -++=(1,2,,k m = ),求证:k k a b =(1,2,,k m = );(Ⅲ)设数列{}n b 为数列{}n a 的“创新数列”,数列{}n b 中的项互不相等且所有项的和等于所有项的积,求出所有的数列{}n a .2018年石景山区高三统一测试数学(理)试卷答案及评分参考二、填空题共6小题,每小题5分,共30分.三、解答题共6小题,共80分. 15.(本小题共13分)已知函数2()2cos cos 1f x x x x =+-. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上的最小值和最大值.15.(本小题共13分)解:(Ⅰ)2()2cos cos 1f x x x x =+-cos2x x = 12(cos 22)2x x =+π2sin(2)6x =+ ………………5分 所以周期为2ππ2T ==. ………………6分(Ⅱ)因为ππ2x ≤≤, 所以7ππ13π2666x ≤+≤. ………………7分 所以当π13π266x +=时,即πx =时max ()1f x =.当π3π262x +=时,即2π3x =时min ()2f x =-. …………13分16.(本小题共13分)抢“微信红包”已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内 20名同学今年春节期间抢到红包金额x (元)如下(四舍五入取整数):102 52 41 121 72 162 50 22 158 46 43 136 95 192 59 99 22 68 98 79对这20个数据进行分组,各组的频数如下:(Ⅰ)写出m ,n 的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;(Ⅱ)记C 组红包金额的平均数与方差分别为1v 、21s ,E 组红包金额的平均数与方差分别为2v 、22s ,试分别比较1v 与2v 、21s 与22s 的大小;(只需写出结论)(Ⅲ)从A ,E 两组的所有数据中任取2个数据,记这2个数据差的绝对值为ξ,求ξ的分布列和数学期望.16.(本小题共13分)解:(Ⅰ)m =4,n =2,B ; ………………… 3分(Ⅱ)1v <2v ,21s <22s ; ………………… 6分(Ⅲ)ξ的可能取值为0,30,140,170,ξ的数学期望为111132503014017066333E ξ=⨯+⨯+⨯+⨯=.………………… 13分 17.(本小题共14分)如图,四边形ABCD 是正方形,PA ⊥平面ABCD ,EB //PA ,4AB PA ==,2EB =,F 为PD 的中点.(Ⅰ)求证:AF PC ⊥; (Ⅱ)求证:BD //平面PEC ; (Ⅲ)求二面角D PC E --的大小.17.(本小题共14分)(Ⅰ)证明:依题意,PA ⊥平面ABCD .如图,以A 为原点,分别以AD 、AB 、AP的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系. ……2分 依题意,可得(0,0,0)A ,(0,4,0)B ,(4,4,0)C ,(4,0,0)D ,(0,0,4)P ,(0,4,2)E ,(2,0,2)F .因为(2,0,2)AF = ,(4,4,4)PC =-,所以80(8)0AF PC ⋅=++-=. ……5分所以AF PC⊥(Ⅱ)证明:取PC的中点M,连接EM.因为(2,2,2)M,(2,2,0)EM=-,(4,BD=-所以2BD EM=,所以//BD EM.分又因为EM⊂平面PEC,BD⊄平面PEC,所以//BD平面PEC.……9分(Ⅲ)解:因为AF PD⊥,AF PC⊥,PD PC P=,所以AF⊥平面PCD,故(2,0,2)AF=为平面PCD的一个法向量.……10分设平面PCE的法向量为(,,)n x y z=,因为(4,4,4)PC=-,(0,4,2)PE=-,所以0,0,n PCn PE⎧⋅=⎪⎨⋅=⎪⎩即4440,420,x y zy z+-=⎧⎨-=⎩令1y=-,得1x=-,2z=-,故(1,1,2)n=---.……12分所以cos,AF n<>==……13分所以二面角D PC E--的大小为5π6.……14分18.(本小题共13分)在平面直角坐标系xOy中,动点E到定点(1,0)的距离与它到直线1x=-的距离相等.(Ⅰ)求动点E的轨迹C的方程;(Ⅱ)设动直线:l y kx b=+与曲线C相切于点P,与直线1x=-相交于点Q.证明:以PQ为直径的圆恒过x轴上某定点.18.(本小题共13分)(Ⅰ)解:设动点E 的坐标为(,)x y ,由抛物线定义知,动点E 的轨迹是以(1,0)为焦点,1x =-为准线的抛物线,所以动点E 的轨迹C 的方程为24y x =. ……………5分(Ⅱ)证明:由24y kx b y x=+⎧⎨=⎩,消去x 得:2440ky y b -+=. 因为直线l 与抛物线相切,所以16-160kb ∆==,即1b k =. ……8分 所以直线l 的方程为1y kx k =+. 令1x =-,得1y k k=-+. 所以Q 11,k k ⎛⎫--+ ⎪⎝⎭. ……………10分 设切点坐标00(,)P x y ,则20044+0ky y k -=, 解得:212(,)P k k, ……………11分 设(,0)M m ,2121(1)()k MQ MP m m k k k ⎛⎫⋅=---+-+ ⎪⎝⎭221=2m m m k -+-- 所以当22=0-10m m m ⎧+-⎨=⎩,即10m MQ MP =⋅= 时,所以MQ MP ⊥所以以PQ 为直径的圆恒过x 轴上定点(1,0)M . ……………13分19.(本小题共14分)已知2()x f x e ax =-,曲线()y f x =在(1,(1))f 处的切线方程为1y bx =+.(Ⅰ)求,a b 的值;(Ⅱ)求()f x 在[0,1]上的最大值;(Ⅲ)当x ∈R 时,判断()y f x =与1y bx =+交点的个数.(只需写出结论,不要求证明)19.(本小题共14分)解:(Ⅰ)()2x f x e ax '=-,由已知可得(1)2f e a b '=-=,(1)1f e a b =-=+解之得1,2a b e ==-. …………3分(Ⅱ)令()'()2x g x f x e x ==-.则'()2x g x e =-, …………5分 故当0ln 2x ≤<时,'()0g x <,()g x 在[0,ln 2)单调递减;当ln 21x <≤时,'()0g x >,()g x 在(ln 2,1]单调递增;所以min ()(ln 2)22ln 20g x g ==->, …………8分故()f x 在[0,1]单调递增,所以max ()(1)1f x f e ==-. ………11分(Ⅲ)当x R ∈时,()y f x =与1y bx =+有两个交点. ………14分20.(本小题共13分)对于项数为m (1m >)的有穷正整数数列{}n a ,记12max{,,,}k k b a a a = (1,2,,k m = ),即k b 为12,,k a a a 中的最大值,称数列{}n b 为数列{}n a 的“创新数列”.比如1,3,2,5,5的“创新数列”为1,3,3,5,5.(Ⅰ)若数列{}n a 的“创新数列”{}n b 为1,2,3,4,4,写出所有可能的数列{}n a ;(Ⅱ)设数列{}n b 为数列{}n a 的“创新数列”,满足12018k m k a b -++=(1,2,,k m = ),求证:k k a b =(1,2,,k m = );(Ⅲ)设数列{}n b 为数列{}n a 的“创新数列”,数列{}n b 中的项互不相等且所有项的和等于所有项的积,求出所有的数列{}n a .20.(本小题共13分)解:(Ⅰ)所有可能的数列{}n a 为1,2,3,4,1;1,2,3,4,2;1,2,3,4,3;1,2,3,4,4 …………3分 (Ⅱ)由题意知数列{}n b 中1k k b b +≥.又12018k m k a b -++=,所以12018k m k a b +-+= …………4分 111(2018)(2018)0k k m k m k m k m k a a b b b b +--+-+--=---=-≥ 所以1k k a a +≥,即k k a b =(1,2,,k m = ) …………8分 (Ⅲ)当2m =时,由1212b b b b +=得12(1)(1)1b b --=,又12,b b N *∈ 所以122b b ==,不满足题意;当3m =时,由题意知数列{}n b 中1n n b b +>,又123123b b b b b b ++= 当11b ≠时此时33b >,12333,b b b b ++<而12336b b b b >,所以等式成立11b =; 当22b ≠时此时33b >,12333,b b b b ++<而12333b b b b ≥,所以等式成立22b =; 当11b =,22b =得33b =,此时数列{}n a 为1,2,3. 当4m ≥时,12m m b b b mb +++< ,而12(1)!m m m b b b m b mb ≥-> ,所以不存在满足题意的数列{}n a .a依次为1,2,3. …………13分综上数列{}n【注:若有其它解法,请酌情给分】。
2018年石景山区高三统一测试数学(理)试卷第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|(1)(2)0}Ax x x ,集合{|13}B x x ,则A B ()A .{|13}x xB .{|11}x xC .{|12}x xD .{|23}x x2.下列函数中既是奇函数,又在区间(0,)上单调递减的函数为()A .yx B .3yxC .12log yxD .1y xx1,1i S 3.执行如图所示的程序框图,则输出的S 的值是()A .1B .2C .4D .74.在ABC △中,60A,4AC,23BC,则ABC △的面积为()A .43B .4C .23D .22考生须知1.本试卷共6页,共三道大题,20道小题,满分150分.考试时间120分钟.2.试题答案一律填涂或书写在答题卡上,选择题、作图题请用2B 铅笔作答,其他试题请用黑色字迹签字笔作答,在试卷上作答无效.是开始否3i ≤输出S结束1SS i 1i i5.若某多面体的三视图(单位:cm )如图所示,则此多面体的体积是()A.378cm B.323cmC. 356cm D.312cm6.现有4种不同颜色对如图所示的四个部分进行涂色,要求有公共边界的两块不能用同一种颜色,则不同的涂色方法共有()A .24种B .30种C .36种D .48种7.设,a bR ,则“a b ”是“a ab b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件8.如图,已知线段AB 上有一动点D (D 异于A B 、),线段C DA B ,且满足2CDAD BD (是大于0且不等于1的常数),则点C 的运动轨迹为()A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.双曲线2212xy的焦距是________,渐近线方程是________. 10.若变量,x y 满足2,239,0,xy xy x ≤≤≥则22xy 的最大值是____________.BACD11.已知圆C 的参数方程为cos ,sin2,x y(为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为sin cos 1,则直线截圆C 所得的弦长是_____________.12. 已知函数31,1(),1x f x xx x≥,若关于x 的方程()f x k 有两个不同零点,则k 的取值范围是_____________.13.如图所示:正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,,,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有1023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.14.设W 是由一平面内的(3n n ≥)个向量组成的集合.若a W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量,a b ,在该平面内总存在唯一的平面向量c a b ,使得=,,W a b c 中的每个元素都是极大向量;③若11232123=,,=,,W a a a W b b b ,中的每个元素都是极大向量,且12,W W 中无公共元素,则12W W 中的每一个元素也都是极大向量.其中真命题的序号是_______________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数2()2cos 23sin cos 1f x xx x .(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间π,π2上的最小值和最大值.16.(本小题共13分)抢“微信红包”已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内20名同学今年春节期间抢到红包金额x (元)如下(四舍五入取整数):102 52 41 121 72 162 50 22 158 46 43 136 95 192 59 9922689879对这20个数据进行分组,各组的频数如下:组别红包金额分组频数A 0≤x <40 2 B 40≤x <80 9 C 80≤x <120 m D 120≤x <160 3 E160≤x <200n(Ⅰ)写出m ,n 的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;(Ⅱ)记C 组红包金额的平均数与方差分别为1v 、21s ,E 组红包金额的平均数与方差分别为2v 、22s ,试分别比较1v 与2v 、21s 与22s 的大小;(只需写出结论)(Ⅲ)从A ,E 两组的所有数据中任取2个数据,记这2个数据差的绝对值为,求的分布列和数学期望.如图,四边形ABCD 是正方形,PA平面ABCD ,EB //PA ,4ABPA ,2EB ,F 为PD 的中点.(Ⅰ)求证:AFPC ;(Ⅱ)求证:BD //平面PEC ;(Ⅲ)求二面角DPCE 的大小.18.(本小题共13分)在平面直角坐标系xOy 中,动点E 到定点(1,0)的距离与它到直线1x 的距离相等.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设动直线:l ykx b 与曲线C 相切于点P ,与直线1x相交于点Q .证明:以PQ 为直径的圆恒过x 轴上某定点.19.(本小题共14分)已知2()xf x eax ,曲线()yf x 在(1,(1))f 处的切线方程为1y bx .(Ⅰ)求,a b 的值;(Ⅱ)求()f x 在[0,1]上的最大值;(Ⅲ)当xR 时,判断()y f x 与1y bx 交点的个数.(只需写出结论,不要求证明)FEPBAD C对于项数为m (1m )的有穷正整数数列{}n a ,记12max{,,,}kk b a a a (1,2,,km ),即k b 为12,,k a a a 中的最大值,称数列{}n b 为数列{}n a 的“创新数列”.比如1,3,2,5,5的“创新数列”为1,3,3,5,5.(Ⅰ)若数列{}n a 的“创新数列”{}n b 为1,2,3,4,4,写出所有可能的数列{}n a ;(Ⅱ)设数列{}n b 为数列{}n a 的“创新数列”,满足12018kmk a b (1,2,,km ),求证:kk a b (1,2,,km );(Ⅲ)设数列{}n b 为数列{}n a 的“创新数列”,数列{}n b 中的项互不相等且所有项的和等于所有项的积,求出所有的数列{}n a .2018年石景山区高三统一测试数学(理)试卷答案及评分参考一、选择题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案ABCCADCB二、填空题共6小题,每小题5分,共30分.(两空题目,第一空2分,第二空3分)三、解答题共6小题,共80分.15.(本小题共13分)解:(Ⅰ)2()2cos 23sin cos 1f x x x x cos23sin2xx题号91011121314 答案23,22yx1020,1()132②③132(cos2sin 2)22x x π2sin(2)6x,,,,,,5分所以周期为2ππ2T. ,,,,,,6分(Ⅱ)因为ππ2x ,所以7ππ13π2666x.,,,,,,7分所以当π13π266x时,即πx 时max ()1f x . 当π3π262x时,即2π3x时min()2f x .,,,,13分16.(本小题共13分)解:(Ⅰ)m=4,n=2,B ;………………… 3分(Ⅱ)1v <2v ,21s <22s ;………………… 6分(Ⅲ)的可能取值为0,30,140,170,030140170P16161313的数学期望为111132503014017066333E.………………… 13分17.(本小题共14分)(Ⅰ)证明:依题意,PA平面ABCD .如图,以A 为原点,分别以AD 、AB 、AP 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.,,2分依题意,可得(0,0,0)A ,(0,4,0)B ,(4,4,0)C ,(4,0,0)D ,(0,0,4)P ,(0,4,2)E ,(2,0,2)F .因为(2,0,2)AF,(4,4,4)PC,所以80(8)0AF PC .,,5分所以AFPC . ,,6分(Ⅱ)证明:取PC 的中点M ,连接EM .因为(2,2,2)M ,(2,2,0)EM ,(4,4,0)BD,所以2BDEM ,所以//BD EM .,,8分又因为EM平面PEC ,BD平面PEC ,所以//BD 平面PEC .,,9分(Ⅲ)解:因为AFPD ,AFPC ,PD PC P ,所以AF 平面PCD ,故(2,0,2)AF为平面PCD 的一个法向量.,,10分设平面PCE 的法向量为(,,)n x y z ,因为(4,4,4)PC,(0,4,2)PE,所以0,0,n PC n PE即4440,420,x y z yz令1y ,得1x,2z ,故(1,1,2)n.,,12分所以2043cos ,2226AF n,,,13分所以二面角D PC E 的大小为5π6.,,14分zyxM F EPBADC18.(本小题共13分)(Ⅰ)解:设动点E 的坐标为(,)x y ,由抛物线定义知,动点E 的轨迹是以(1,0)为焦点,1x为准线的抛物线,所以动点E 的轨迹C 的方程为24yx .……………5分(Ⅱ)证明:由24y kx byx,消去x 得:2440kyyb.因为直线l 与抛物线相切,所以16-160kb,即1bk.……8分所以直线l 的方程为1ykx k.令1x,得1yk k.所以Q 11,kk.……………10分设切点坐标00(,)P x y ,则20044+0ky y k,解得:212(,)P k k,……………11分设(,0)M m ,2121(1)()kMQ MPm m kkk221=2m mm k所以当22=0-10mm m ,即10m MQ MP 时,所以MQMP所以以PQ 为直径的圆恒过x 轴上定点(1,0)M .……………13分19.(本小题共14分)解:(Ⅰ)()2xf x eax , 由已知可得(1)2f eab ,(1)1f e ab解之得1,2ab e .…………3分(Ⅱ)令()'()2xg x f x ex .则'()2xg x e ,…………5分故当0ln 2x时,'()0g x ,()g x 在[0,ln 2)单调递减;当ln 21x时,'()0g x ,()g x 在(ln 2,1]单调递增;所以min()(ln 2)22ln 20g x g ,…………8分故()f x 在[0,1]单调递增,所以max()(1)1f x f e .………11分(Ⅲ)当x R 时,()yf x 与1y bx 有两个交点. ………14分20.(本小题共13分)解:(Ⅰ)所有可能的数列{}n a 为1,2,3,4,1;1,2,3,4,2;1,2,3,4,3;1,2,3,4,4,,,,3分(Ⅱ)由题意知数列{}n b 中1kk b b .又12018km k a b ,所以12018km ka b ,,,,4分111(2018)(2018)0kkm k m k mk mka ab b b b 所以1kk a a ,即kk a b (1,2,,km ),,,,8分(Ⅲ)当2m 时,由1212b b b b 得12(1)(1)1b b ,又12,b b N所以122b b ,不满足题意;当3m 时,由题意知数列{}n b 中1n n b b ,又123123b b b b b b 当11b 时此时33b ,12333,b b b b 而12336b b b b ,所以等式成立11b ;高三数学(理科)第11页(共11页)当22b 时此时33b ,12333,b b b b 而12333b b b b ,所以等式成立22b ;当11b ,22b 得33b ,此时数列{}n a 为1,2,3. 当4m 时,12m m b b b mb ,而12(1)!m m m b b b m b mb ,所以不存在满足题意的数列{}n a .综上数列{}n a 依次为1,2,3.,,,,13分【注:若有其它解法,请酌情给分】。
2017-2018学年北京市石景山区高三(上)期末数学试卷(理科)副标题一、选择题(本大题共8小题,共40.0分)1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A. B. C. 0, D. 1,2.设i是虚数单位,则复数在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.用计算机在0~1之间随机选取一个数a,则事件“<<”发生的概率为()A. 0B. 1C.D.4.以角θ的顶点为坐标原点,始边为x轴的非负半轴,建立平面直角坐标系,角θ终边过点P(2,4),则=()A. B. C. D. 35.“m>10”是“方程表示双曲线”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.给定函数①,②,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A. ①④B. ①②C. ②③D. ③④7.《九章算术》卷五商功中有如下问题:今有刍甍(底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.如图网格纸中实线部分为此刍甍的三视图,设网格纸上每个小正方形的边长为1丈,那么此刍甍的体积为()A. 3立方丈B. 5立方丈C. 6立方丈D. 12立方丈8.小明在如图1所示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30s,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t(s),他与教练间的距离为y(m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A. 点MB. 点NC. 点PD. 点Q二、填空题(本大题共6小题,共30.0分)9.若,,,则a,b,c的大小关系为______.10.执行如图的程序框图,若输入的x的值为-1,则输出的y的值是______.11.若实数x,y满足则z=3x+y的取值范围为______.12.设常数a∈R,若(x2+)5的二项展开式中x7项的系数为-10,则a=______.13.在△ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=______.14.若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的.请写出满足上述条件的一个有序数组(a,b,c,d)______,符合条件的全部有序数组(a,b,c,d)的个数是______.三、解答题(本大题共6小题,共80.0分)15.如图,在△ABC中,D为边BC上一点,AD=6,BD=3,DC=2.(Ⅰ)若,求∠BAC的大小;(Ⅱ)若,求△ABC的面积.16.摩拜单车和ofo小黄车等各种共享单车的普及给我们的生活带来了便利.已知某共享单车的收费标准是:每车使用不超过1小时(包含1小时)是免费的,超过1小时的部分每小时收费1元(不足1小时的部分按1小时计算,例如:骑行2.5小时收费为2元).现有甲、乙两人各自使用该种共享单车一次.设甲、乙不超过1小时还车的概率分别为,;1小时以上且不超过2小时还车的概率分别为,;两人用车时间都不会超过3小时.(Ⅰ)求甲乙两人所付的车费相同的概率;(Ⅱ)设甲乙两人所付的车费之和为随机变量ξ,求ξ的分布列及数学期望Eξ.17.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,BC=1,AB=2,,E为PA中点.(Ⅰ)求证:PC∥平面BED;(Ⅱ)求二面角A﹣PC﹣D的余弦值;(Ⅲ)在棱PC上是否存在点M,使得BM⊥AC?若存在,求的值;若不存在,说明理由.18.已知函数.(Ⅰ)若a=1,确定函数f(x)的零点;(Ⅱ)若a=-1,证明:函数f(x)是(0,+∞)上的减函数;(Ⅲ)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y=0平行,求a的值.19.已知椭圆:>>离心率等于,P(2,3)、Q(2,-3)是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ)A,B是椭圆上位于直线PQ两侧的动点.当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由.20.如果n项有穷数列{a n}满足a1=a n,a2=a n-1,…,a n=a1,即a i=a n-i+1(i=1,2,…,n),则称有穷数列{a n}为“对称数列”.例如,由组合数组成的数列,,,,就是“对称数列”.(Ⅰ)设数列{b n}是项数为7的“对称数列”,其中b1,b2,b3,b4成等比数列,且b2=3,b5=1.依次写出数列{b n}的每一项;(Ⅱ)设数列{c n}是项数为2k-1(k∈N*且k≥2)的“对称数列”,且满足|c n+1-c n|=2,记S n为数列{c n}的前n项和;(ⅰ)若c1,c2,…c k是单调递增数列,且c k=2017.当k为何值时,S2k-1取得最大值?(ⅱ)若c1=2018,且S2k-1=2018,求k的最小值.答案和解析1.【答案】A【解析】解:B={x|-2<x<1},A={-2,-1,0,1,2};∴A∩B={-1,0}.故选:A.解一元二次不等式,求出集合B,然后进行交集的运算即可.考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.【答案】A【解析】解:∵=,∴复数在复平面内所对应的点的坐标为(),位于第一象限.故选:A.直接利用复数代数形式的乘除运算化简,求出复数在复平面内所对应的点的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.3.【答案】D【解析】解:用计算机在0~1之间随机选取一个数a,则事件“”发生的概率为P==.故选:D.根据几何概型的概率公式,计算所求的区间长度比即可.本题考查了几何概型的概率计算问题,是基础题.4.【答案】A【解析】解:∵角θ终边过点P(2,4),∴tanθ==2,则==-3,故选:A.利用任意角的三角函数的定义求得tanθ,再利用两角和的正切公式,求得要求式子的值.本题主要考查任意角的三角函数的定义,两角和的正切公式的应用,属于基础题.5.【答案】A【解析】解:根据题意,若m>10,则有m-10>0,m-8>0,则方程表示双曲线,反之,若方程表示双曲线,则有(m-10)(m-8)>0,解可得m >10或m<8,则“方程表示双曲线”不一定有“m>10”;故“m>10”是“方程表示双曲线”的充分不必要条件;故选:A.根据题意,由双曲线的标准方程分析可得若m>10,则方程表示双曲线,反之不一定成立,又由充分必要条件的定义,分析可得答案.本题考查双曲线的标准方程,涉及充分必要条件的判定,关键是掌握双曲线标准方程的形式.6.【答案】C【解析】解:对于①函数在(0,+∞)递增,不合题意;对于②函数在(0,1)递减,符合题意;对于③x<1时,y=1-x,在(0,1)递减,符合题意;对于④函数在(0,1)递增,不合题意;故选:C.根据常见函数的单调性分别判断即可.本题考查了常见函数的单调性问题,熟练掌握常见函数的性质是关键,本题是一道基础题.7.【答案】B【解析】解:由三视图还原原几何体如图:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的体积V1=×3×1×2=3,四棱锥的体积V2=×1×3×1=1,由三视图可知两个四棱锥大小相等,∴此刍甍的体积V=V1+2V2=5(立方丈),故选:B.由已知中的三视图,可知该几何体是组合体,由一个三棱柱和两个相同的四棱锥构成,分别求出体积累加得答案.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.8.【答案】D【解析】解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C、假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小明的距离等于经过30秒时教练到小明的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选:D分别假设这个位置在点M、N、P、Q,然后结合函数图象进行判断.利用排除法即可得出答案.此题考查了动点问题的函数图象,解答本题要注意依次判断各点位置的可能性,点P的位置不好排除,同学们要注意仔细观察.9.【答案】a<b<c【解析】解:a=ln<0,b=∈(0,1),c=>1.∴a<b<c.故答案为:a<b<c.利用指数与对数函数的单调性即可得出.本题考查了指数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.10.【答案】13【解析】解:模拟执行程序框图,可得x=-1满足条件x<2,x=0满足条件x<2,x=1满足条件x<2,x=2不满足条件x<2,y=13输出y的值为13.故答案为:13.模拟执行程序框图,依次写出得到的x,y的值,当x=2时不满足条件x<2,计算并输出y的值为13.本题主要考查了循环结构的程序框图,属于基本知识的考查.11.【答案】[3,6]【解析】解:作出实数x,y满足对应的平面区域如图:由z=3x+y得y=-3x+z,平移直线y=-3x+z,由图象可知当直线y=-3x+z,经过点A时,直线的截距最大,此时z最大.由,解得即A(,),此时z max=3×+=6,当直线y=-3x+z,经过点B时,直线的截距最小,此时z最小.由,解得即B(0,3),此时z min=3×0+3=3,故3≤z≤6,故答案为:[3,6].作出不等式组对应的平面区域,利用z的几何意义,利用数形结合,即可得到结论.本题主要考查线性规划的应用,利用数形结合是解决本题的关键.12.【答案】-2【解析】解:的展开式的通项为T r+1=C5r x10-2r()r=C5r x10-3r a r令10-3r=7得r=1,∴x7的系数是aC51∵x7的系数是-10,∴aC51=-10,解得a=-2.故答案为:-2.利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.本题主要考查了二项式系数的性质.二项展开式的通项公式是解决二项展开式的特定项问题的工具.13.【答案】【解析】解:设,则=(1-k)+k.=,∴故答案为:设,则=(1-k)+k.=,即可本题考查了向量的线性运算,属于中档题.14.【答案】(3,2,1,4);6【解析】解:根据条件分别讨论得:(3,2,1,4),(2,3,1,4)(3,1,2,4)(3,1,4,2)(4,1,3,2)(2,1,4,3)任选一个即可,第二空2分)故答案为:(3,2,1,4);6根据集合相等,分别进行讨论即可.本题主要考查集合相等的应用,根据条件分别进行讨论是解决本题的关键.15.【答案】解:(Ⅰ)设∠BAD=α,∠CAD=β,则,,所以,因为α+β∈(0,π),所以,即.(Ⅱ)过点A作AH⊥BC交BC的延长线于点H,因为,所以,所以;所以△ .【解析】(Ⅰ)直接利用三角函数关系式的恒等变换,利用诱导公式求出结果.(Ⅱ)利用解直角三角形和三角形的面积公式求出结果.本题考查的知识要点:三角函数关系式的恒等变换,解直角三角形的应用,三角形面积公式的应用.16.【答案】解:(Ⅰ)甲租车时间超过2小时的概率为1--=,乙租车时间超过2小时的概率为1--=;则甲乙两人所付的租车费用相同的概率为P=×+×+×=;(Ⅱ)甲乙两人所付租车费用之和为随机变量ξ,则ξ的所有取值为0,1,2,3,4;且P(ξ=0)=×=,P(ξ=1)=×+×=,P(ξ=2)=×+×+×=,P(ξ=3)=×+×=,P(ξ=4)=×=;数学期望为Eξ=0×+1×+2×+3×+4×=.【解析】(Ⅰ)分别求出甲、乙租车时间超过2小时的概率,再计算甲乙两人所付的租车费用相同的概率值;(Ⅱ)根据题意知随机变量ξ的所有取值,计算对应的概率值,写出ξ的分布列,计算数学期望值.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.17.【答案】证明:(Ⅰ)设AC与BD的交点为F,连结EF.因为ABCD为矩形,所以F为AC的中点.在△PAC中,由已知E为PA中点,所以EF∥PC.又EF⊂平面BFD,PC⊄平面BFD,所以PC∥平面BED.(Ⅱ)取CD中点O,连结PO.因为△PCD是等腰三角形,O为CD的中点,所以PO⊥CD.又因为平面PCD⊥平面ABCD,PO⊂平面PCD,所以PO⊥平面ABCD.取AB中点G,连结OG,由题设知四边形ABCD为矩形,所以OF⊥CD.所以PO⊥OG.如图建立空间直角坐标系O-xyz,则A(1,-1,0),C(0,1,0),P(0,0,1),D(0,-1,0),B(1,1,0),O(0,0,0),G(1,0,0).=(-1,2,0),=(0,1,-1).设平面PAC的法向量为=(x,y,z),则,令z=1,得=(2,1,1).平面PCD的法向量为=(1,0,0).设,的夹角为α,所以cosα==.由图可知二面角A-PC-D为锐角,所以二面角A-PC-B的余弦值为.(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.因此点M(0,λ,1-λ),=(-1,λ-1,1-λ),=(-1,2,0).由,得1+2(λ-1)=0,解得.因为∈[0,1],所以在棱PC上存在点M,使得BM⊥AC.此时,=.【解析】(Ⅰ)设AC与BD的交点为F,连结EF,推导出EF∥PC.由此能证明PC∥平面BED.(Ⅱ)取CD中点O,连结PO.推导出PO⊥CD,取AB中点G,连结OG,建立空间直角坐标系O-xyz,利用向量法能求出二面角A-PC-B的余弦值.(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.利用向量法能求出在棱PC上存在点M,使得BM⊥AC.此时,=本题考查线面平行的证明,考查二面角的余弦值的求法,考查线段比值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.【答案】解:(Ⅰ)a=1时,f(x)=,令f(x)=0,即ln(x-1)=0,即x-1=1,解得:x=2,故函数的零点是1;(Ⅱ)当a=-1时,f(x)=,∴函数的定义域为(-1,0)∪(0,+∞),∴f′(x)=,设g(x)=x-(x+1)ln(x+1),∴g′(x)=1-[ln(x+1)+1]=-ln(x+1),∴g′(x)<0在(0,+∞)上恒成立,∴g(x)在(0,+∞)上为减函数,∴g(x)<g(0)=0,∴f′(x)<0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上为减函数.(Ⅲ)∵f′(x)=,∴k=f′(1)=,∵y=f(x)在点(1,f(1))处的切线与直线x-y=0平行∴=1,即ln(1-a)=,分别画出y=ln(1-x)与y=的图象,由图象可知交点为(0,0)∴解得a=0.【解析】(Ⅰ)代入a的值,令f(x)=0,解出即可;(Ⅱ)先求导,得到f′(x),再构造函数g(x)=x-(x+1)ln(x+1),求出g(x)的最大值为0,继而得到f′(x)<0在(0,+∞)上恒成立,问题得以证明;(Ⅲ)欲求a的值,根据在点(1,f(1))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,解方程即可得.本题考查导数和函数的单调性最值的关系,以及导数的几何意义,考查了不等式的证明问题,培养了学生的转化能力,运算能力,处理问题的能力,属于难题解得a=4,b=,c=2.∴椭圆C的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),当∠APQ=∠BPQ,则PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为-k,直线PA的直线方程为y-3=k(x-2),联立,得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0.∴ .同理直线PB的直线方程为y-3=-k(x-2),可得=.∴,,====,∴AB的斜率为定值.【解析】(Ⅰ)由题意列式关于a,b,c的方程组,求解可得a,b的值,则椭圆C的方程可求;(Ⅱ)设直线PA的斜率为k,则PB的斜率为-k,PA的直线方程为y-3=k(x-2)将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得x1+2,同理PB的直线方程为y-3=-k(x-2),可得x2+2,从而得出AB的斜率为定值.本题考查的知识点是椭圆的标准方程,直线与圆锥曲线的综合问题,考查直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.20.【答案】解:(I)由题意可得:b5=b3=1,又b2=3,∴公比q=.∴数列{b n}的每一项分别为:9,3,1,,1,3,9.(II)(i)∵c1,c2,…c k是单调递增数列,满足|c n+1-c n|=2,∴n≤k-1时,c n+1-c n=2.∴c k=c1+2(k-1)=2017,解得c1=2019-2k,∴c k-1=c k-2=2015.∴S2k-1=2×-c k=4036k-2k2=-2(k-1009)2+2036162.∴当k=1009值时,S2k-1取得最大值2036162.(ii)由题意可得:c1,c2,…c k是单调减增数列,c n+1-c n=-2,n≤k-1时,k取得最小值.∴c k=c1-2(k-1)=2018-2(k-1)=2020-2k,S2k-1=2×-c k=4040k-2k2-2020=2018,化为:k2-2020k+2019=0,k≥2.解得k=2019.∴k的最小值为2019.【解析】(I)由题意可得:b5=b3=1,又b2=3,可得公比q=.利用通项公式即可得出.(II)(i)由c1,c2,…c k是单调递增数列,满足|c n+1-c n|=2,可得n≤k-1时,c n+1-c n=2.因此c k=c1+2(k-1)=2017,解得c1,c k-1=c k-2.可得S2k-1=2×-c k,利用二次函数的即可得出.(ii)由题意可得:c1,c2,…c k是单调减增数列,c n+1-c n=-2,n≤k-1时,k取得最小值.可得c k=c1-2(k-1)=2020-2k,S2k-1=2×-c k=2018,解出即可得出.本题考查了等差数列的通项公式与求和公式、等差数列的性质、数列的单调性,考查了推理能力与计算能力,属于难题.。