2019高考数学总复习 第二章 基本初等函数(Ⅰ)2.3 幂函数(第一课时)教案 新人教A版必修1
- 格式:doc
- 大小:598.00 KB
- 文档页数:4
2.3 幂函数(第二课时)本单元的教学内容在模块内容体系中的地位和作用: 幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数, 类比研究一般函数,指数函数、对数函数的过程与方法后研究幂函数的图象和性质.而且在研究幂函数的过程中对第二章函数的单调性、奇偶性和反函数的知识进行再现.1.教学重点:从五个具体的幂函数中认识幂函数的概念和性质。
2.教学难点:从幂函数的图象中概括其性质。
一、复习引入(1)幂函数的定义及性质总结填写下表:二、讲授新课问题1:我们知道,分数指数幂可以与根式相互转化.把下列各函数先化成根式形式,再指出它的定义域和奇偶性.利用计算机画出它们的图象,观察它们的图象,看有什么共同点?(1)y=;(2)y=;(3)y=;(4)y=.问题2:仿照问题1研究下列函数的定义域和奇偶性,观察它们的图象看有什么共同点?(1)y=x-1;(2)y=x-2;(3)y=;(4)y=.思路:先将负指数幂化为正指数幂,再将分数指数幂化为根式,函数的定义域就是使这些分式和根式有意义的实数x的集合;(1)(2)(4)的定义域都是{x|x≠0},(3)的定义域是(0,+);(1)(4)是奇函数,(2)是偶函数,(3)既不是奇函数也不是偶函数.它们的图象都经过点(1,1),且在第一象限内函数单调递减,并且以两坐标轴为渐近线.总结:研究幂函数时,通常先将负指数幂化为正指数幂,再将分数指数幂化为根式(幂指数是负整数时化为分式);根据得到的分式或根式研究幂函数的性质.函数的定义域就是使这些分式和根式有意义的实数x 的集合;奇偶性和单调性直接利用定义进行判断.问题1和问题2中的这些幂函数我们要记住它们图象的变化趋势,有利于我们进行类比.[例1]讨论函数y=的定义域、值域、奇偶性、单调性,并画出图象的示意图.[例2]比较下列各组中两个数的大小:(1)1.5,1.7;(2)0.71.5,0.61.5;(3)(-1.2),(-1.25).解析:(1)考查幂函数y=的单调性,在第一象限内函数单调递增,∵1.5<1.7 ∴1.5<1.7(2)考查幂函数y=的单调性,同理0.71.5>0.61.5.(3)先将负指数幂化为正指数幂可知它是偶函数,∵(-1.2)=1.2,(-1.25)=1.25,又1.2>1.25∴(-1.2)>(-1.25)点评:比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.[例3]求函数y=+2x+4(x≥-32)值域.点评:这是复合函数求值域的问题,应用换元法.三、课时小结通过本节学习,大家能熟悉并掌握幂函数的图象,提高数学应用的能力.。
人教版高中数学必修一第二章知识点汇总第二章 基本初等函数(Ⅰ)〖2.1〗指数函数 【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.①这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.①n a =;当n a =;当n (0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.①正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ①()(0,,)r s rs a a a r s R =>∈①()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.①负数和零没有对数.①对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ①减法:log log log a a aM M N N-= ①数乘:log log ()na a n M M n R =∈ ①log a N a N =①log log (0,)b n a a nM M b n R b=≠∈ ①换底公式:log log (0,1)log b a b N N b b a =>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;①从原函数式()y f x =中反解出1()x f y -=;①将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.①函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.①若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.①一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.①过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).①单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.①奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.①图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠①顶点式:2()()(0)f x a x h k a =-+≠①两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.①已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ①若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ①当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.①二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ①对称轴位置:2bx a=- ①判别式:∆ ①端点函数值符号.①k <x 1≤x 2 ⇔①x 1≤x 2<k ⇔①x 1<k <x2 ⇔ af (k )<0①k 1<x 1≤x 2<k 2 ⇔①有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合①k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由①推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (①)当0a >时(开口向上) ①若2b p a -<,则()m f p = ①若2b p q a ≤-≤,则()2b m f a =- ①若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ①02b x a->,则()M f p =(①)当0a <时(开口向下)xxxxx xx①若2b p a -<,则()M f p = ①若2b p q a ≤-≤,则()2b M f a =- ①若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ①02b x a->,则()mf p =.xfxf xfxxx。
第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用【必修二】第一章空间几何体1.1空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式第四章圆与方程4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型【必修四】第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象和性质1.5函数的图象1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换【必修五】第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式选修2—1第一章常用逻辑用语1—1命题及其关系1-2充分条件与必要条件1-3简单的逻辑联结词1-4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2—1曲线与方程2-2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2-3双曲线探究与发现2-4抛物线探究与发现阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章空间向量与立体几何3-1空间向量及其运算阅读与思考向量概念的推广与应用3—2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1—1变化率与导数1-2导数的计算1-3导数在研究函数中的应用1—4生活中的优化问题举例1-5定积分的概念1-6微积分基本定理1-7定积分的简单应用小结复习参考题第二章推理与证明2-1合情推理与演绎推理2-2直接证明与间接证明2-3数学归纳法第三章数系的扩充与复数的引入3—1数系的扩充和复数的概念3—2复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1—1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1-2排列与组合探究与发现组合数的两个性质1—3二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2—1离散型随机变量及其分布列2-2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2-3离散型随机变量的均值与方差2-4正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3-1回归分析的基本思想及其初步应用3-2独立性检验的基本思想及其初步应用实习作业小结复习参考题。
2.3 幂函数(第一课时)
幂函数作为一类重要的函数模型,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。
学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成。
因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究,,,
,等函数的图象和性质,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数
时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为淅近线,在方法上,我们应注意从特殊到一般进行类比研究幂函数的性质,并注意与指数函数进行对比学习。
1.教学重点:从五个具体的幂函数中认识幂函数的概念和性质。
2.教学难点:从幂函数的图象中概括其性质。
一、创设问题情景
阅读教材P90的具体实例(1)~(5),思考下列问题:
1.它们的对应法则分别是什么?
2.以上问题中的函数有什么共同特征?
(答案)1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).2.上述问题中涉及到的函数,都是形如的函数,其中是自变量,是常数.
二、新知探究
材料一:幂函数定义及其图象.
一般地,形如
的函数称为幂函数,其中为常数.
下面我们举例学习这类函数的一些性质.
作出下列函数的图象:
(1);(2);(3);
(4);(5).
[解] 1 列表(略)
2 图象
材料三:观察与思考
观察图象,总结填写下表:
材料五:例题
[例1](教材P92例题)
[例2] 比较下列两个代数值的大小:
(1),
(2),
[例3] 讨论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.
三、学以致用
1.利用幂函数的性质,比较下列各题中两个幂的值的大小:
(1),;
(2),;
(3),;
(4),.
2.作出函数的图象,根据图象讨论这个函数有哪些性质,并给出证明.
3.作出函数和函数的图象,求这两个函数的定义域和单调区间.
4.用图象法解方程:
(1);(2).
四、当堂检测
1.如图所示,曲线是幂函数在第一象限内的图象,已知分别取四个值,则相应图象依次为:.
2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?
(1)和;
(2)和.
3.在函数中,幂函数的个数为:
A.0 B.1 C.2 D.3
4.已知幂函数的图象过点,试求出这个函数的解析式.
5.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R与管道半径r的四次方成正比.(1)写出函数解析式;
(2)若气体在半径为3cm的管道中,流量速率为400cm3/s,求该气体通过半径为r的管道时,其流量速率R 的表达式;
(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率.
6.1992年底世界人口达到54.8亿,若人口的平均增长率为x%,2008年底世界人口数为y(亿),写出:(1)1993年底、1994年底、2000年底的世界人口数;
(2)2008年底的世界人口数y与x的函数解析式.
五、课堂小结
1.谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?
2.幂函数与指数函数的不同点主要表现在哪些方面?。