旋转典型题专题训练(20161020)
- 格式:docx
- 大小:206.04 KB
- 文档页数:6
典型例题一例 如图,以点O 为旋转中心,将ABC ∆顺时针旋转45°,画出图形.分析 当旋转中心O 在图形之外时,O 是一个孤立的点,没有从O 出发的线段或射线作参照,就无法确定旋转的角度,因此,首先还须将O 与图形上的某点(或某些点)连结起来.解 如图,连结OA 、OB 、OC .将这三条线段绕O 点分别顺时针旋转45°,得C O B O A O '''、、,则C B A '''∆就是按题目要求得到的旋转后的图形.说明: 图形旋转后的效果有时不像平移那样直观,画图出现错误时可能不易发现,因此画图时要特别细心.典型例题二例 如图,正方形ABCD 中,E 是正方形内的一点,把AED ∆绕着点A 按逆时针旋转90°,画出旋转后的三角形,并回答:(1)图中有哪些等线段和等角?(2)哪两个三角形形状、大小都一样?分析 一个图形绕它的对称中心旋转一个角度后,图形中的每一点都绕旋转中心旋转了同样大小的角度.本例中可以发现AD 旋转90°后,刚好与AB 重合,于是将AE 旋转90°到E A '的位置,使︒='∠90E EA ,确定点E ',连E B ',则E AB '∆就是ADE ∆按要求旋转的三角形.(1)(2)中,根据图形旋转的特征,图形从一个位置旋转到另一个位置,形状和大小都没有改变,可确定相等的线段、相等的角以及形状相同的三角形.答案 (1)相等的线段有:E B DE E A AE CD BC AB AD '='====,,.相等的角有:E E E AB ADE E BA DAE '∠=∠'∠=∠'∠=∠,,.(2)ADE ∆与E AB '∆的形状和大小都一样.典型例题三例 如图,把一块砖ABCD 直立于地面上,然后将其轻轻推倒.在这个过程中,A 点保持不动,四边形ABCD 旋转到B C D A '''位置.(1)指出在这个过程中的旋转中心,并说出旋转的角度是多大?(2)指出图中的对应线段.分析(1)由于四边形B C D A '''是由四边形ADCB 旋转得到的,A 点保持不动,所以A 是旋转中心.又由于D A B ',,三点在一条直线上,且AB AD ⊥,所以旋转的角度是90°.(2)由于D C B A ,,,的对应点分别是D C B A ''',,,,所以不难找出图中的对应线段.答案 (1)A 是旋转中心,旋转的角度是90°.(2)CD BC AD AB ,,,的对应线段分别是D C C B D A B A '''''',,,.典型例题四例 (1)把长方形ABCD 绕着顶点A 逆时针旋转60°.如图.(2)把长方形ABCD 绕着长方形内一点P 逆时针旋转60°.解 (1)①AB 绕A 点逆时针旋转60°到B A '位置,.,60AB B A AB B ='︒='∠②连结AC ,作.,60AC C A AC C ='︒='∠③作.,60AD D A AD D ='︒='∠连结B C C D '''',,则四边形D C B A '''是四边形ABCD 逆时针旋转60°得到的图形.(2)①连结AP ,作︒='∠60PA A ,使.AP P A ='②用同样的方法作出D C B '''、、,连结A D D C C B B A ''''''''、、、.则四边形D C B A ''''是四边形ABCD 绕P 点逆时针旋转60°得到的图形.典型例题五例 画一个三角形,使通过这个三角形的旋转得到一个正六边形,指出这是一个什么三角形、旋转中心和每次旋转的角度、需要旋转多少次才能完成这个图形.分析 这个题目给了我们一个由三角形制作正多边形的方法.解 给出的三角形应该是正三角形,可以以它的任一个顶点为旋转中心,每次旋转60°,旋转六次便可完成这个图形.说明: 利用这个方法,可以画出任意边数的正多边形.请想一下,画正n 边形应该使用什么样的三角形?怎样旋转呢?典型例题六例 把8个同样大小的等腰梯形拼成如图所示的图形.(1)找出它的旋转中心.(2)当它旋转多少度后与自身重合.分析 (1)从图中可以看出,这八个等腰梯形的八个顶点H G F E D C B A ,,,,,,,恰好在同一个圆周上,该图形的旋转中心就是各顶点所在圆的圆心.因此只要把任意两腰延长,它们的延长线的交点就是旋转中心.(2)这八个等腰梯形将圆周八等分,因此,它只要旋转︒=︒458360后就能与自身重合. 答案 (1)任意延长任何梯形的两腰,这两腰延长线的交点就是旋转中心.(2)旋转的角度是45°.典型例题七例 找出下列图形中的旋转中心,旋转角以及旋转的“基本图案”。
数学旋转问题练习题在数学中,旋转是一个常见且重要的概念,它在几何学、代数学和物理学等领域中都有广泛的应用。
旋转问题是数学中常见的问题之一,它需要我们根据给定条件,灵活运用旋转的概念来解决问题。
下面将给出一些数学旋转问题的练习题,帮助读者加深对旋转的理解和运用能力。
练习题1:平面上的旋转问题描述:平面上有三个点A、B和C,以点A为中心,将线段BC顺时针旋转90度得到线段A'D,若点B的坐标为(2,3),点C的坐标为(4,5),则点D的坐标为多少?解题思路:根据旋转的性质,我们知道点D的坐标可以通过将BC绕点A逆时针旋转90度得到。
首先,我们需要计算向量AB和向量AC的坐标表示。
向量AB的坐标表示为(2-0, 3-0) = (2, 3),向量AC的坐标表示为(4-0, 5-0) = (4, 5)。
根据旋转的性质,向量A'D的坐标表示为(-3, 2)。
最后,我们可以通过点A的坐标(0, 0)和向量A'D的坐标(-3, 2)计算出点D的坐标为(0-3, 0+2) = (-3, 2)。
练习题2:三维空间的旋转问题描述:在三维空间中,点O(0,0,0)为坐标原点,点P(2,3,4)为某点的坐标。
将点P绕坐标轴x轴逆时针旋转90度,得到点P',求点P'的坐标。
解题思路:首先,我们需要计算点P绕坐标轴x轴逆时针旋转90度后的变化。
根据旋转的性质,点P'(x',y',z')可以表示为点P(x,y,z)绕坐标轴x轴旋转后的坐标。
对于点P(x,y,z),绕坐标轴x轴逆时针旋转90度后,x'保持不变,y'和z'的坐标可以表示为y' = y*cos(90°) - z*sin(90°) = y*0 - z*1 = -z,z' = y*sin(90°) + z*cos(90°) = y*1 + z*0 = y。
旋转专项练习题在几何学中,旋转是一种常见的变换操作,它可以将一个图形沿着中心点或轴线旋转一定角度。
通过多次练习旋转操作,不仅可以锻炼我们的思维能力,还能够提高我们的几何学知识。
本文将为您提供一些旋转专项练习题,帮助您巩固和拓展相关知识。
题目一:旋转矩形对于给定的矩形ABCD,中心点为O,若将该矩形按顺时针方向绕O点旋转90度,求旋转后各点的坐标。
解析:根据旋转规则,顺时针旋转90度可以理解为每个点的坐标绕O点逆时针旋转90度。
已知矩形ABCD的坐标如下:A(0, 0) B(4, 0) C(4, 2) D(0, 2)根据旋转规则,逆时针旋转90度后的坐标为:A'(-0, 0) B'(0, -4) C'(-2, -4) D'(-2, 0)题目二:旋转三角形对于给定的三角形ABC,中心点为O,若将该三角形按逆时针方向绕O点旋转180度,求旋转后各点的坐标。
解析:根据旋转规则,逆时针旋转180度可以理解为每个点的坐标绕O点旋转180度。
已知三角形ABC的坐标如下:A(0, 0) B(4, 0) C(2, 3)根据旋转规则,旋转180度后的坐标为:A'(0, 0) B'(-4, 0) C'(-2, -3)题目三:旋转正方形对于给定的正方形ABCD,中心点为O,若将该正方形按逆时针方向绕O点旋转270度,求旋转后各点的坐标。
解析:根据旋转规则,逆时针旋转270度可以理解为每个点的坐标绕O点逆时针旋转270度。
已知正方形ABCD的坐标如下:A(0, 0) B(4, 0) C(4, 4) D(0, 4)根据旋转规则,逆时针旋转270度后的坐标为:A'(0, 0) B'(0, 4) C'(-4, 4) D'(-4, 0)题目四:旋转圆形对于给定的圆形O,若将该圆形按逆时针方向绕O点旋转45度,求旋转后各点的坐标。
解析:由于圆形的每个点到中心点的距离都相等,因此旋转后每个点的坐标仍然是相对于中心点O的极坐标系。
旋转专题练习题一、基础知识梳理旋转是在平面上围绕一个中心点旋转图形,通过旋转可以改变图形的位置和角度。
在几何学中,我们常常通过专门的练习题来巩固和应用旋转的基本概念和性质。
二、选择题1. 下图中的图形经过逆时针旋转90°后变为:A. 图形AB. 图形BC. 图形CD. 图形D2. 若图形A经过顺时针旋转90°后变为B,那么B经过逆时针旋转90°后会变为:A. 图形AB. 图形CC. 图形DD. 图形E3. 若图形A绕原点逆时针旋转90°后变为图形B,那么B绕原点逆时针旋转90°后会变为:A. 图形AB. 图形CC. 图形DD. 图形E4. 下图中的图形经过逆时针旋转180°后变为:A. 图形AB. 图形BC. 图形CD. 图形D5. 若图形A经过逆时针旋转90°后变为B,图形B经过逆时针旋转90°后又变为A,那么图形A和B分别是:A. 旋转对称图形B. 旋转镜像图形C. 旋转相似图形D. 旋转等边图形三、填空题1. 图形A绕中心点顺时针旋转90°,变为图形B,则图形B的坐标为(x,y) = _________。
2. 图形A绕原点逆时针旋转180°,变为图形B,则图形B的坐标为(x,y) = _________。
3. 图形A绕点P顺时针旋转270°,变为图形B,则图形B的坐标为(x,y) = _________。
4. 图形A绕点Q逆时针旋转360°,变为图形B,则图形B的坐标为(x,y) = _________。
四、解答题1. 图形A绕点P逆时针旋转60°,变为图形B,求图形B的坐标(x,y)。
2. 图形A经过逆时针旋转90°,变为图形B,图形B相对于A的旋转中心的坐标为(2,3),求图形A的坐标(x,y)。
3. 有两个点A(-5,2)、B(3,4),分别绕原点顺时针旋转90°得到点A'和B',求A'和B'的坐标。
第二周旋转周清试题一、选择题(共16小题)1.观察图中的图案,它们绕各自的中心旋转一定的角度后,能与自身重合,其中旋转角可以为120°的是()A.B.C.D.2.如下所示的4组图形中,左边图形与右边图形成中心对称的有()A.1组B.2组C.3组D.4组3.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=,则BB′的长为()A.2B.3C.4D.64.下列图形中,既是轴对称图形,又是中心对称图形的是()A.(1)、(2)B.(1)、(3)C.(2)、(3)D.(1)、(4)5.剪纸是中国的民间艺术.剪纸的方法很多,下面提供一种剪纸方法:如图所示,先将纸折叠,然后再剪,展开即得到图案:下面四个图形中,不能用上述方法剪出图案的是()A.B.C.D.6.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19(6) (7)7.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B的对应点B′坐标为()A.(3,4) B.(7,4) C.(7,3) D.(3,7)8.在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()(8) (9)A.(1.4,﹣1) B.(1.5,2)C.(1.6,1)D.(2.4,1)9.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C,设点A′的坐标为(a,b),则点A的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1) C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)10.已知点M(x,y)在第二象限内,且|x|=2,|y|=3,则点M关于原点的对称点的坐标是()A.(﹣3,2)B.(﹣2,3)C.(3,﹣2)D.(2,﹣3)11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(3a﹣1,b),则a与b的数量关系为()(11) (12)A.3a+b=1 B.3a+b=﹣1 C.3a﹣b=1 D.a=b12.如图,D是等腰直角△ABC内一点,BC是斜边,如果将△ABD绕点A逆时针方向旋转到△ACD 的位置(B与C重合,D与D′重合),则∠ADD′的度数是()A.25°B.30°C.35°D.45°13.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是()cm2.(13)(14)A.12.5 B.C.D.不能确定14.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3 B.1.5 C.D.15.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2 B.2 C.4 D.﹣416.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°二.填空题(共7小题)17.点P(2,3)绕着原点逆时针方向旋转90°与点P′重合,则P′的坐标为.18.如图,在等腰Rt△ABC中,∠A=90°,AC=9,点O在AC上,且AO=2,点P 是AB上一动点,连接OP将线段OP绕O逆时针旋转90°得到线段OD,要使点D 恰好落在BC上,则AP的长度等于.(18) (19) (20)19、将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=度20、如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.21.如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,如果CD=2DA=2,那么CC′=.(21)(22)(23)22.如图,菱形ABCD的对角线交于平面直角坐标系的原点,顶点A坐标为(﹣2,3),现将菱形绕点O顺时针方向旋转180°后,A点坐标变为.23.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°三、解答题(共5小题)24.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.25、如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.26、如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.27、请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:;特征2:.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).28、【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.29、小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).图1请回答:图1中∠APB的度数等于? 图2中∠PP′C的度数?参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A 坐标为(,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC. 当C(x,y)在第一象限内时,求y与x之间的函数表达式.。
旋转典型题专题训练
一、作图题
1.如下左图,在边长为1的正方网格内有一个三角形ABC.
(1)把△ABC沿着x轴向右平移5个单位得到△A1B1C1,请你画出△A1B1C1;
(2)请你以O点为旋转中心画出△ABC的中心对称图形△A2B2C2;
(3)请你以O点为旋转中心画出△ABC顺时针旋转90度后的图形△A3B3C3.
2.如
上右
图,△
ABC
三个
顶点
的坐
标分
别为
A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
3.如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标.
(2)写出顶点B,C,B1,C1的坐标.
4.如图,由正方形ABCD通过一次旋转得到正方形BCFE,其可能的旋转中心有个.5.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.
二、与角度有关的计算
6.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()
A.30°B.35°C.40°D.50°
7.如上中图,将△ABC绕点A逆时针旋转一定的角度后,得到△ADE,且点B的对应点D恰好落在BC边上,若∠B=70°,则∠CAE的度数是()
A.70°B.50°C.40°D.30°
8.如上右图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()
A.60°B.85°C.75°D.90°
9.如下左图,△0AB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠AOD 的度数为.
10.如上右
图,△ABC
和△BED
是等边三
角形,则图中三角形ABE绕B点旋转度能够与三角形重合.
三、与长度、面积有关的计算
11.如图,三角板ABC中,∠ACB=90°,∠A=30°,AB=16cm,将三角板ABC绕直角顶点C逆时针旋转,当起始位置时的点B恰好落在边A1B1上时,BB1的长是cm.
12.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长等于()
A.B.C.D.
13.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是cm2.
14.如下左图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则点B转过的路径长为(结果保留π).
15.如上中图,边长为3的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是多少?
16.如上右图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=.
17.(1)操作发现:
如图,有两条长9cm,宽3cm的矩形重合后绕中心O旋转的
到ABCD,试判断四边形ABCD是什么特殊四边形?并说明
理由.
(2)尝试探索:
在旋转过程中,四边形ABCD的最小面积是cm2,
在旋转过程中,四边形ABCD的最大面积是多少?画图计算.
四、与坐标有关的计算
18.已知点P坐标为(1,1),将点P绕原点逆时针旋转45°得点P1,则点P1的坐标为.19.已知点A、B关于x轴上的点P(﹣1,0)成中心对称,若点A的坐标为(1,2),则点B坐标是.
20.如下左图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时
针旋转60°后得到△AO′B′,则点B′的坐标是.
21.如上中图,多边形OABCDE在平面直角坐标系中,O为坐标原点,点A和点E分别在y轴和x轴上,其中AB∥CD∥x轴,DE∥BC∥y轴,已知点B(4,6),点D(6,4),若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.
22.等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是.23.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④、…则三角形⑩的直角顶点与坐标原点的距离
为.
五、与旋转全等有关的典型题
24.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.
25.如图,点O是等边△ABC内的一点.∠BOC=α,将△BOC绕点C按顺时针旋转60°
得到△ADC,连接OD.
(1)当α=100°时,∠ODA=;当α=120°时,∠ODA=;
(2)若α=150°,OB=5,OC=6.求OA的长.
26.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,求四边形APBQ的面积.
27.如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.
28.如图,已知等边三角形ABC在BC的延长线上取一点E,以CE为边作等边三角形DCE (△ABC与△DCE在同一侧)连接AE、BD.点M是BD的中点,点N是AE的中点.(1)在图中找出两对可以通过旋转而相互得到的三角形,并指出旋转中心及旋转角度数(2)△CMN是什么三角形?为什么?
29.如图:以△ABC的边AB、AC为边分别向外作正方形ADEB、ACGF,连接DC、BF 相交于M,DC、AB相交于N.
(1)从旋转的角度看,△ADC是绕点逆时针旋转度,可以得到△ABF.(2)CD与BF有何关系?请说明理由.
30.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,则CF,BC,CD三条线段之间有什么关系?并说明理由.
31.如图,在正方形ABCD中作∠EAF=45°,分别交边BC、CD于点E、F(不与顶点重合),把△ABE绕点A逆时针旋转90°,落在△ADG的位置.
(1)请你在图中画出△ADG(不写作法);
(2)试说明线段BE、DF与EF之间存在怎样的数量关系.。