第十一章 裂隙水
- 格式:ppt
- 大小:2.37 MB
- 文档页数:35
第十一章 裂 隙 水11.1 概 述坚硬基岩在应力作用下产生各种裂隙:成岩过程中形成成岩裂隙;经历构造变动产生构造裂隙,风化作用可形成风化裂隙。
松散岩层中,空隙分布连续均匀,构成具有统一水力联系、水量分布均匀的层状含水系统。
但裂隙岩层只有在一些特殊的条件下才能形成水量分布比较均匀的层状含水系统。
例如,夹于厚层塑性岩层中的薄层脆性岩层、规模比较大的风化裂隙岩层等。
这些岩层中裂隙往往贮存并运移于裂隙基岩中的裂隙水,往往具有一系列与孔隙水不同的特点。
某些情况下,打在同一岩层中相距很近的钻孔,水量悬殊,甚至一孔有水而邻孔无水;有时在相距很近的井孔测得的地下水位差别很大,水质与动态也有明显不同;在裂隙岩层中开挖矿井,通常涌水量不大的岩层中局部可能大量涌水;在裂隙岩层中抽取地下水往往发生这种情况:某一方向上离抽水井很远的观测孔水位已明显下降,而在另一方向上离抽水井很近的观测孔水位却无变化。
所有上述现象说明,与孔隙水相比,裂隙水表现出更强烈的不均匀性和各向异性。
密集均匀,使整个含水层具有统一的水力联系,在其中布井几乎处处可取到水。
基岩的裂隙率比较低(通常比松散岩石的孔隙率低一到两个数量级),裂隙在岩层中所能占有的赋存空间很有限;这一有限的赋存空间在岩层中分布很不均匀;裂隙通道在空间上的展布具有明显的方向性。
因此,裂隙岩层一般并不形成具有统一水力联系、水量分布均匀的含水层,而通常由部分裂隙在岩层中某些局部范围内连通构成若干带状或脉状裂隙含水系统(图11—1)。
岩层中各裂隙含水系统内部具有统一的水力联系,水位受该系统最低出露点控制。
各个系统与系统之间没有或仅有微弱的水力联系,各有自己的补给范围、排泄点及动态特征,其水量的大小取决于自身的规模。
规模大的系统贮容能力大,补给范围广,水量丰富,动态比较稳定。
图11—1 裂隙含水系统〔参照Ланге,1950修改补充〕1—不含水张开裂隙;2—含水张开裂隙;3—包气带水流向;4—饱水带流向;5—地下水位;6—水井;7—自流井;8—无水干井;9—季节性泉;10—常年性泉规模小的系统贮存和补给有限,水量小而动态不稳定。
第十一章裂隙水第一节概述裂隙水:贮存并运动在基岩裂隙系统中的地下水。
一、裂隙含水系统的现象在基岩裂隙系统中,打井取水、开挖或观测地下水会有许多与孔隙水完全不同的现象:水量悬殊:某些情况下,打在同一岩层中相距很近的钻孔,出水量差异大,甚至一孔有水而邻孔无水;水位差异:在相距很近的井孔测得的地下水位差别很大,包括水质与动态也有明显不同;局部出现涌水:在裂隙岩层中开挖矿井,通常涌水量不大的岩层中局部可能大量涌水;在裂隙岩层中抽取地下水往往发生这种情况:不同方向变化差异:某一方向上离抽水井很远的观测孔水位已明显下降,而在另一方向上离抽水井很近的观测孔水位却无变化。
上述现象说明,与孔隙水相比,裂隙水表现出更强烈的不均匀性和各向异性。
二、裂隙水的特征(与孔隙水相比)裂隙水的特点(结合图11—1分析)①裂隙水空间分布不均匀:局部发育,呈脉状分布,导致同一岩层中相距很近的钻孔,水量悬殊;(如图11-1中自喷井,其两侧的井都是干井)②渗透的各向异性:一般第三方向不发育,空间展布具有方向性(不同方向发育差异);(图11-1中裂隙水沿2组方向分布)③水力联系不统一:裂隙连通性较差,很难形成统一的含水层,当不同方向相连通时形成裂隙含水系统。
(如图11-1中有四个独立的裂隙含水系统)④坚硬基岩的裂隙率,要比松散岩石的孔隙度小一到两个数量级。
图11—1裂隙含水系统〔参照Ланге,1950修改补充〕1—不含水张开裂隙;2—含水张开裂隙;3—包气带水流向;4—饱水带流向;5—地下水位;6—水井;7—自流井;8—无水干井;9—季节性泉;10—常年性泉裂隙含水系统的特点:裂隙岩层一般并不形成具有统一水力联系、水量分布均匀的含水层,而通常由部分裂隙在岩层中某些局部范围内连通构成若干带状或脉状裂隙含水系统(图11—1)。
岩层中各裂隙含水系统内部具有统一的水力联系,水位受该系统最低出露点控制。
各个系统与系统之间没有或仅有微弱的水力联系,各有自己的补给范围、排泄点及动态特征,其水量的大小取决于自身的规模。
第十一章裂隙水概念:赋存在坚硬岩石裂隙之中的水。
在上一章中已经了解到,由于孔隙岩石中,孔隙的分布比较均匀、连续,决定了赋存其中的孔隙水水量分布均匀连续的特点,从而构成具有统一水力联系的层状孔隙含水系统。
然而,由于坚硬岩石裂隙发育和分布的复杂性,使得裂隙水呈现出与孔隙水相差甚远的赋存特征。
首先,由于坚硬岩石岩性的差异和所在构造部位的不同,使得岩石中裂隙发育和分布具有明显的不均匀性、明显的方向性以及各处裂隙连通程度的不一致性。
从而决定了裂隙水水量分布的不均匀性、方向性明显以及水力联系较差的特点。
坚硬岩石在多种地质营力的作用下,产生各种裂隙:①成岩裂隙;②风化裂隙;③构造裂隙。
赋存并运动在这些裂隙中的水,统称为裂隙水。
裂隙水的富水程度、分布特点、埋藏规律以及水动态状况,均受裂隙发育特点的控制。
所以裂隙水具有与裂隙发育类似的特点,即分布不均匀、各向异性,水力联系不佳。
一、构造裂隙水构造裂隙水是指赋存在由地质构造运动而产生的裂隙之中的水。
裂隙的发育情况决定着裂隙水的分布。
一般情况下,在构造应力集中之部位裂隙发育;坚硬的脆性岩石容易形成裂隙。
所以在背斜轴部,穹窿核部,枢纽的倾伏端处裂隙发育而富水;脆性岩石易破裂也富水,断裂带也富水。
(一)构造裂隙的发育规律与岩层的透水性在地质构造运动中,当岩石所承受的应力超过其强度极限时所产生的破裂称为构造裂隙,包括节理和劈理。
断层可视为一种特殊的构造裂隙。
根据应力性质,构造裂隙有张性、剪性和压性之分。
由于岩石的抗压强度远大于抗拉、抗剪强度,故一般主要发育张性裂隙和剪性裂隙。
两种裂隙具有不同的特点:张裂隙:张开性好,裂隙宽度大,隙面粗糙,延伸方向多与褶皱平面平行(纵张裂隙)和垂直(横张裂隙),有利于贮水和导水。
剪裂隙:隙面光滑平直,方向稳定,张开性较差,同一应力场中可产生两组共轭裂隙,斜交于褶皱轴,故称斜裂隙。
构造裂隙的发育状况,主要与所在的构造部位和岩性有关,在应力集中部位的脆性岩石中比较发育。
坚硬基岩在应力作用下产生各种裂隙:成岩过程中形成成岩裂隙;经历构造变动产生构造裂隙,风化作用可形成风化裂隙。
贮存并运移于裂隙基岩中的裂隙水,往往具有一系列与孔隙水不同的特点。
某些情况下,打在同一岩层中相距很近的钻孔,水量悬殊,甚至一孔有水而邻孔无水;有时在相距很近的井孔测得的地下水位差别很大,水质与动态也有明显不同;在裂隙岩层中开挖矿井,通常涌水量不大的岩层中局部可能大量涌水;在裂隙岩层中抽取地下水往往发生这种情况:某一方向上离抽水井很远的观测孔水位已明显下降,而在另一方向上离抽水井很近的观测孔水位却无变化。
所有上述现象说明,与孔隙水相比,裂隙水表现出更强烈的不均匀性和各向异性。
松散岩层中,空隙分布连续均匀,构成具有统一水力联系、水量分布均匀的层状含水系统。
但裂隙岩层只有在一些特殊的条件下才能形成水量分布比较均匀的层状含水系统。
例如,夹于厚层塑性岩层中的薄层脆性岩层、规模比较大的风化裂隙岩层等。
这些岩层中裂隙往往密集均匀,使整个含水层具有统一的水力联系,在其中布井几乎处处可取到水。
基岩的裂隙率比较低(通常比松散岩石的孔隙率低一到两个数量级),裂隙在岩层中所能占有的赋存空间很有限;这一有限的赋存空间在岩层中分布很不均匀;裂隙通道在空间上的展布具有明显的方向性。
因此,裂隙岩层一般并不形成具有统一水力联系、水量分布均匀的含水层,而通常由部分裂隙在岩层中某些局部范围内连通构成若干带状或脉状裂隙含水系统(图11—1)。
岩层中各裂隙含水系统内部具有统一的水力联系,水位受该系统最低出露点控制。
各个系统与系统之间没有或仅有微弱的水力联系,各有自己的补给范围、排泄点及动态特征,其水量的大小取决于自身的规模。
规模大的系统贮容能力大,补给范围广,水量丰富,动态比较稳定。
图11—1 裂隙含水系统〔参照Ланге, 1950 修改补充〕1—不含水张开裂隙;2—含水张开裂隙;3—包气带水流向;4—饱水带流向;5—地下水位;6—水井;7 —自流井;8—无水干井;9—季节性泉;10—常年性泉规模小的系统贮存和补给有限,水量小而动态不稳定。