人教版 七年级(上)学期数学 有理数的运算 专题训练
- 格式:doc
- 大小:1.19 MB
- 文档页数:10
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
人教版七年级数学上册1.3.1.2有理数的加法运算律同步训练卷一、选择题(共10小题,3*10=30)1.对算式(-8)+(+6)+(+18)运用加法交换律正确的是( )A.(-8)+(-18)+(+6)B.(+8)+(-6)+(+18)C.(+6)+(-18)+(+8)D.(-8)+(+18)+(+6)2.下列变形,运用运算律正确的是( )A .2+(-1)=1+2B .3+(-2)+5=(-2)+3+5C .[6+(-3)]+5=[6+(-5)]+3D .13+(-2)+⎝⎛⎭⎫+23=⎝⎛⎭⎫13+23+(+2)3.计算33+(-32)+7+(-8)的结果是( )A .0B .2C .-1D .54.下面的计算运用的运算律是( )-13+3.2+⎝⎛⎭⎫-23+7.8=-13+⎝⎛⎭⎫-23+3.2+7.8=-⎝⎛⎭⎫13+23+(3.2+7.8)=-1+11=10. A .加法交换律B .加法结合律C .先用加法交换律,再用加法结合律D .先用加法结合律,再用加法交换律5.下列运算中正确的是( )A .7+13+(-8)=13B .(-3.5)+4+(-3.5)=4C .334+(-334)+(-3)=-3 D .3.14+(-7)+3.14=-86. 某地一天早晨的气温是-3 ℃,到中午升高了5 ℃,下午又降低了3 ℃,到晚上又降低了5 ℃,则晚上的气温是( )A .6 ℃B .10 ℃C .-6 ℃D .-8 ℃7.对于算式⎝⎛⎭⎫-12+14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310,下列运算律运用恰当的是( ) A.⎣⎡⎦⎤⎝⎛⎭⎫-12+14+⎣⎡⎦⎤⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 B.⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+310 C.⎝⎛⎭⎫-12+⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 D.⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-25+⎣⎡⎦⎤14+⎝⎛⎭⎫+310 8.计算(-20)+379+20+⎝⎛⎭⎫-79,最简便的做法是( ) A .把一、三两个加数结合,二、四两个加数结合B .把一、二两个加数结合,三、四两个加数结合C .把一、四两个加数结合,二、三两个加数结合D .把一、二、四这三个加数先结合9.在数+6,-1,15,-3中,任取三个不同的数相加,其中和最小的是( )A .-3B .-1C .3D .210.在防范新冠病毒疫情的例行体温检测中,检查人员将高出37 ℃的部分记作正数,将低于37 ℃的部分记作负数,体温正好是37 ℃的记作“0”.一人在一周内的体温结果分别为+0.1,-0.3,-0.5,+0.1,+0.2,-0.6,-0.4,那么该人一周中测量体温的平均值是( )A .37.1 ℃B .37.31 ℃C .36.69 ℃D .36.8 ℃二.填空题(共8小题,3*8=24)11.计算:(-32)+72+(-8)=____.12. 运用加法结合律计算:[10+(-6)]+(-7)=10+________________=________.13.检修小组从A 地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.则收工时在A 地的____边____千米处.14.等式5+(-3)+7+(-9)+12=(5+7+12)+[(-3)+(-9)]运用了___________________________。
计算专项练习完成日期:1.计算:|﹣9|÷3+(﹣)×12﹣(﹣2)2.2.计算:|+×(﹣12)÷6﹣(﹣3)2|+|24+(﹣3)2|×(﹣5)3.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.4.计算:(1)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣];(2)(﹣24)×(﹣+)+(﹣2)3.5.计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.完成日期:1.计算:(1)(﹣12)+(+30)﹣(+65)﹣(﹣47)(2)(﹣1)2×7+(﹣2)6+8.2.计算:(1)﹣22+[(﹣4)×(﹣)﹣|﹣3|](2)﹣32+16÷(﹣2)×﹣(﹣1)2015.3.4.计算:﹣14﹣[2﹣(﹣3)2]÷()3.完成日期:1.计算:+(﹣)÷(﹣)2.计算:(1)(﹣12)×(﹣)(2)﹣2.3. [(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2| 4.计算:﹣23﹣(﹣1)2×+(﹣1)2005.5.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].1.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).2.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7)3.计算:(1)12﹣(﹣18)+(﹣7)﹣15(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.1.计算÷[32﹣(﹣2)2].29.计算:(1)﹣3﹣(﹣4)+2 (2)(﹣6)÷2×(﹣)(3)(﹣+﹣)×(﹣24)(4)﹣14﹣7÷[2﹣(﹣3)2]30.计算①(﹣6)×﹣8÷|﹣4+2|②(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.1.计算:(1)(2)2.计算:﹣14﹣×〔2﹣(﹣3)2〕×(﹣2)3 3.﹣10+8÷(﹣2 )2﹣(﹣4)×(﹣3)4..5.计算与化简:(1)计算:(2)25×.1.计算:(1)﹣(﹣)+(﹣0.75)(2)﹣2.5÷×(﹣)(3)﹣22﹣6÷(﹣2)×﹣|﹣9+5|.2.计算:.3.计算下列各式(1)﹣(﹣1)4+(1﹣)÷3×(2﹣23)(2)(﹣+)×(﹣12)4.计算:0.752﹣×+0.52.5.计算:(﹣1)3﹣×[2﹣(﹣3)2].1.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.2.25×﹣(﹣25)×+25×(﹣)3.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)4.计算(1)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](2)﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].5.计算:(﹣4)2×(﹣2)÷[(﹣2)3﹣(﹣4)].1.计算:﹣12+3×(﹣2)3+(﹣6)÷(﹣)2.2.计算:[(﹣3)2﹣(﹣5)2]÷(﹣8)+(﹣3)×(﹣1)3.计算:(﹣1)2003+(﹣3)2×|﹣|﹣43+(﹣2)4.4.a与b互为相反数,c与d互为倒数,求的值.5.计算:(1)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](2)﹣24÷(﹣2)2+5×(﹣)﹣0.25.1.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.3.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.4.先化简,再求值:﹣2x2﹣[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣.5.先化简,再求值:(1)(5x+y)﹣(3x+4y),其中x=,y=;(2)(a﹣b)2+9(a﹣b)+15(a﹣b)2﹣(a﹣b),其中a﹣b=.1.有理数a、b在数轴上位置如图所示,试化简|1﹣3b|+2|2+b|﹣|3b﹣2|.2.去括号,合并同类项(1)﹣3(2s﹣5)+6s (2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)3.化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.4.已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.5.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.6.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)1.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.2.已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.3.先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.4.4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.5.化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中1.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.2.(1)计算:()﹣2+(3.14﹣π)0﹣|﹣5|(2)先化简,再求值:(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2,其中x=﹣.3.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.4.先化简,再求值:(x+y)2﹣2x(x+2y)+(x+3y)(x﹣3y),其中x=﹣1,y=2.5.当时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.1.先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B 的值.2.化简求值:5ab﹣2a2b+[3ab﹣2(4ab2﹣a2b)],其中a、b、c满足|a﹣1|+(b﹣2)2=0.3.9a2﹣[7a2+2a﹣(a2+3a)],其中a=﹣1.4.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中,.5.若单项式a3b n+1和2a2m﹣1b3是同类项,求3m+n的值.6.a是绝对值等于2的负数,b是最小的正整数,c的倒数的相反数是﹣2,求代数式4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3]的值.1.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.2.为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)3.合并同类项①3a﹣2b﹣5a+2b ②(2m+3n﹣5)﹣(2m﹣n﹣5)③2(x2y+3xy2)﹣3(2xy2﹣4x2y)4.已知A=2x2﹣3x,B=x2﹣x+1,求当x=﹣1时代数式A﹣3B的值.1.已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.2.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.3.化简求值:已知:(x﹣3)2=0,求3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2的值.4.已知A=x2+ax,B=2bx2﹣4x﹣1,且多项式2A+B的值与字母x的取值无关,求a,b的值.5.化简(1)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)(2)5ab2﹣[a2b+2(a2b﹣3ab2)]6.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.1.先化简再求值:(x+y)(x﹣y)﹣x(x﹣y)﹣xy,其中x=2016,y=﹣1.2.(1)已知(x+2)2+|y+1|=0,求x,y的值(2)化简:.3.化简:(1)2x2﹣3x+1﹣(5﹣3x+x2)(2).4.先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.5.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.6.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.1.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.2.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.3.已知A=,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.4.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.5.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式a2﹣2b+4ab的值.1.先化简,再求值:,其中.2.化简:(1)3a2+5b﹣2a2﹣2a+3a﹣8b(2)(8x﹣7y)﹣2(4x﹣5y)(3)﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].。
有理数的乘法与除法 同步训练第Ⅰ卷(选择题 共30分)一 选择题(共10小题,每小题3分,共30分)1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D.可能为正,也可能为负2.如果|x-1|+|y+2|+|z-3|=0,则(x+1)(y-2)(z+3)的值是( )A. 48B. -48C. 0D.xyz3. 下列说法中,错误的是( )A.一个非零数与其倒数之积为1B.一个数与其相反数商为-1C.若两个数的积为1,则这两个数互为倒数D.若两个数的商为-1,则这两个数互为相反数4.两个有理数的商为正,则( )A.和为正B.和为负C.至少一个为正D.积为正数5.一个数加上5,减去2然后除以4得7,这个数是( )A.35B.31C.25D.286.2008个数的乘积为0,则( )A.均为0 B.最多有一个为0 C. 至少有一个为0 D.有两个数是相反数7.下列计算正确的是( ) A.43143-=÷⨯- B.4)151(5=-÷- C.91)53()52()65()32(-=-÷---⨯- D.4)2()32()3(-=+⨯+⨯+ 8.114-的倒数与4的相反数的商为( ) A .+5 B .15C .-5 D .15- 9.若a+b <0,ab <0,则 ( )A.a >0,b >0B. a <0,b <0C.a,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a,b 两数一正一负,且负数的绝对值大于正数的绝对值10.一服装店进了一批单价50元衬衫,标价80元,为了促销五一期间打7折销售,那么该商店每件( )A. 赚6元B. 亏了6元C. 赚了30元D. 亏了26 元第Ⅱ卷(非选择题 共90分)二、填空题(共8小题,每小题3分,共24分)11.已知:0,0≠=+b b a ,则=-b a ________;已知:1||-=ba ,则=+||ab ________. 12.有理数m<n<0时,(m+n )(m-n)的符号是__________.#13.规定a ﹡b=5a+2b-1,则(-4)﹡6的值为 .14.如果b a ⋅<0,那么=++abab b b a a.#15.在一次“节约用水,保护水资源”的活动中,学校提倡每人每天节约0.1升水,如果该市约有5万学生,估计该市全体学生一年的节水量为___________.#16.根据二十四点算法,现有四个数-2、4、-5、-10,每个数用且只用一次进行加、减、乘除,使其结果等于24,则列式为=24. &17. 若2||=a ,3||=b ,a ,b 异号,则-ab =______________18. 根据如图所示的程序计算,若输入x 的值为3,则输出y 的值为.三、解答题(共7小题,共66分)19.(8分)(1)38()(4)(2)4⨯-⨯-⨯-(2)12(13)(5)(6)(5)33-÷-+-÷-&20. (9分)现定义两种运算:“”,“”,对于任意两个整数a ,b ,a b=a+b-1,a b =a ×b-1,求4【(68)(35)】的值.21.(10分)()322492249524()836532125(⨯+⨯-⨯⨯+-+-22.在5.10与它的倒数之间有a 个整数,在5.10与它的相反数之间有b 个整数. 求2)()(+-÷+b a b a 的值.23.(10分)(8分)某超市以50元进了A 、B 两种商品,然后以A 商品提价20%,B 商品降价10%出售,在某一天中,A 商品10件,B 商品20件, 问这一天里超市作这两种买卖是赚了还是赔了?并说明理由.#24.(10分 )王明再一次期中考试时,若以语文90分为标准,其他科分数和语文成绩的相差分数如下表求:(1)数学的分数;(2)若七科平均分数是95分,生物的分数是多少?科目 语文 数学 英语 历史 地理 生物政治 相差分数0 +9 +6 -4 +3 ?+2#25.观察下列等式 111122=-⨯,1112323=-⨯,1113434=-⨯, 输入x 输出y 平方 乘以2 减去4 若结果大于0 否则将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n =+. (2)直接写出下列各式的计算结果: ①111112233420072008++++=⨯⨯⨯⨯; ②1111122334(1)n n ++++=⨯⨯⨯+.答案:一、选择题1. A2. B 提示:根据题意 x-1=0,y+2=0,z-3=0,即x=1,y=-2,z=3.3.B4. D 提示:商的符号与积的符号一样,既然两数商为正,则它们积也为正.5. C6. C 提示:几个因数相乘,如果有一个数是0,则积为0 ,所以至少有一个是0 .7. D 8.B9. D 提示: 因为 ab <0,可知a,b 异号,a+b <0,所以负数的绝对值大于正数的绝对值.10. A 提示:销售结果是80×0.7-50=+6(元).二、填空题11. 1,0 12. + 13.– 9 14 .-115. 1 825 000升 16. (-2)×(-5)-(-10)+ 4=24 17. 618.2三 、解答题19.解:(1)38()(4)(2)4⨯-⨯-⨯-38424⨯⨯⨯=-48-= (2)原式=121356533÷+÷11211363535⨯+⨯= 121136)335+⨯=(145⨯=20= 20.解:根据新运算的定义,(68)=6+8-1=13, (35)=3×5-1=14,则(68)(3 5)=1314=13+14-1=26 则4【(68)(35)】=4 26=4×26-1=10321. 解:通过细心观察算式的数值之间的关系,可先对第2个括号逆用乘法分配律,简便运算后,再对第1个括号正用乘法分配律,再次进行简便运算,使问题巧妙获解.)322492249524()836532125(⨯+⨯-⨯⨯+-+-=124)836532125()]329295(24[)836532125(⨯⨯+-+-=+-⨯+-+-=5920161024832465243224125-=+-+-=⨯+⨯-⨯+⨯-. 22.解:a=10,b=21,(a+b )÷(a -b )+2的值为119-. 23.解:在一天的两种商品的买卖中,超市不赚不赔.(2分)理由:10件A 商品一共卖了10×(1+20%)×50=600(元),20件B 商品一共卖了20×(1-10%)×50=900(元)则这30件商品一共卖了600+900=1500(元),而这30件商品的进价为1500元,超市不赚不赔.24.解:(1)90+(+9)=99(分)答:数学分数是99分.(2)93×7-(90×6+0+9+6-4+3+2)=651-(540+0+9+6-4+3+2)=651-556=95(分)答:生物的分数是95分.(3)99-86=13(分)答:最高分和最低分相差13分.25. 解:(1)1n -11n + (2)200720081n n +。
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.15有理数的混合运算大题专练(重难点培优)一、解答题1.(2022·湖北武汉·七年级期末)计算:(1)5+(―6)+3―(―4);(2)79÷(23―15)―13×(―4)2.【答案】(1)6;(2)―113.【解析】【分析】(1)根据有理数的加减运算法则计算即可;(1)根据有理数的混合运算法则计算即可.(1)解:5+(―6)+3―(―4)=5―6+3+4=6.(2)解:79÷―13×(―4)2=79÷715―13×16=79×157―163=53―163=―113.【点睛】本题考查有理数的混合运算法则,解题的关键是掌握混合运算的法则.2.(2022·山东菏泽·七年级期末)计算:(1)15+(-6)-(-7)+(―6)×4―(―21)÷3(2)―32÷23×1―(3)―14+16÷(―2)3×|―3―1|【答案】(1)-1(2)-6(3)-9【解析】【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先算括号中的减法及乘方,再从左到右依次计算即可得到结果;(3)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:15+(-6)-(-7)+(―6)×4―(―21)÷3=15-6+7-24+7=9+7-24+7=16+(-17)= -1;(2)解:―32÷23×(1―13)2=―9×32×49=―6;(3)解:―14+16÷(―2)3×|―3―1|=―1+16×(―18)×4=―1―8=―9.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022·河南南阳·七年级期末)计算:(1)(―1)2019―|―3―7|×(―15)÷(―12);(2)―14―(1―0.5)×13×[1―(―2)2].【答案】(1)-5(2)―12【解析】【分析】(1)先算乘方,绝对值,除法转化为乘法,最后算加减即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.(1)解:(―1)2019―|―3―7|×(―15)÷(―12)=―1―10×(―15)×(―2)=―1―4=―5;(2)解:―14―(1―0.5)×13×[1―(―2)2].=―1―12×13×(1―4)=―1―16×(―3)=―1+12=―12.【点睛】本题主要考查有理数的混合运算,有理数的乘方、绝对值,解题的关键是对相应的运算法则的掌握.4.(2022·重庆梁平·七年级期末)计算(1)―22+3×(―1)2016―9÷(―3)(2)57÷――57×512―53÷4【答案】(1)2(2)―8584【解析】【分析】(1)先计算有理数的乘方、乘除,再计算加减;(2)将分数除法变形为分数乘法,再进行乘法和加减运算.(1)解:―22+3×(―1)2016―9÷(―3)=―4+3×1―9÷(―3)=―4+3―(―3)=―4+3+3=2(2)解:57÷――57×512―53÷4=―57×512―57×512―53×14=―2584―2584―512=―8584【点睛】本题考查带乘方的有理数的混合运算,属于基础题,掌握有理数的运算法则并正确计算是解题的关键.5.(2022·全国·七年级)计算:(―34―16+512)÷136.【答案】―18【解析】【分析】先将除法化为乘法,再利用乘法分配律计算后,最后计算加减即可.【详解】解:(―34―16+512)÷136=(―34―16+512)×36=―34×36―16×36+512×36=﹣27﹣6+15=﹣18.【点睛】本题考查有理数的混合运算.熟练掌握乘法分配律是解题关键.6.(2022·全国·七年级专题练习)计算:(1)(14+38―712)÷124;(2)(―1)2022×|―112|+0.5÷(―13).【答案】(1)1(2)-3【解析】【分析】(1)先化除为乘,再用乘法的分配率计算即可;(2)按照有理数的混合运算顺序,先算乘方,再算乘除,最后算加减即可;(1)38÷12438=14×24+38×24﹣712×24=6+9﹣14=1;(2)(﹣1)2021×|﹣112|+0.5÷(﹣13)=(﹣1)×32+12×(﹣3)=﹣32+(﹣32)=﹣3.【点睛】本题考查了有理数的混合运算,以及有理数的乘法分配率,解题的关键是熟悉有理数的混合运算顺序.7.(2022·全国·七年级专题练习)用简便方法计算:(1)(―8)×(―45)×(―1.25)×54;(2)(﹣93536)×18;(3)(―8)×(―16―512+310)×15.【答案】(1)-10(2)―17912(3)34【解析】【分析】(1)原式结合后,相乘即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式结合后,利用乘法分配律计算即可得到结果.(1)解:原式=﹣(8×1.25)×(45×54)=﹣10×1=﹣10;(2)原式=(﹣10+136)×18=﹣10×18+136×18=﹣180+12 =﹣17912;(3)原式=(﹣8×15)×(﹣16 ﹣512 + 310)=(﹣120)×(﹣16 ﹣512 +310)=﹣120×(﹣16)﹣120×(﹣512)﹣120×310 =20+50﹣36=34.【点睛】此题考查了有理数的混合运算,乘法分配律,熟练掌握运算法则及运算律是解本题的关键.8.(2022·全国·七年级专题练习)计算(1)2×(―3)3―4×(―3)+15;(2)(―2)3+(―3)×(―4)2+2―(―3)2÷(―2).【答案】(1)-27;(2)-57.5.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.(1)解:2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+12+15 =―27.(2)解:(―2)3+(―3)×(―4)2+2―(―3)2÷(―2)=―8+(―3)×18+9 2=―8―54+9 2=―57.5.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数混合运算的法则,正确计算即可.9.(2021·云南·普洱市思茅区第四中学七年级期中)计算:(1)(―21)+(+3)―(―4)―(+9)(2)42×―+―÷(―0.25)(3)―12+(―3―1)2―|―13|×(―3)2【答案】(1)―23(2)―11(3)12【解析】【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据含有乘方的有理数混合运算法则进行计算即可.(1)解:(―21)+(+3)―(―4)―(+9),=(―21)+(―9)+3+4=―23.(2)42×+÷(―0.25)=―14+×(―4)=―14+3=―11(3)―12+(―3―1)2―|―13|×(―3)2=―1+(―4)2―13×9=―1+16―3=12【点睛】本题主要考查了有理数混合运算法则,熟练掌握有理数混合运算法则,是解题的关键.10.(2021·云南·富源县第七中学七年级期中)计算下列各题(1)15+(―8)―(―4)―5(2)(―512+34―16)×(―48)(3)―10+8÷(―22)―(―4)÷(―13)(4)―14―(1―0.5)×13×5―(―3)2【答案】(1)6(2)-8(3)-24(4)―13【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)先算乘方、再有理数的除法和加减法可以解答本题;(4)先算乘方、再有理数的乘法和加减法可以解答本题.(1)解:原式=15+(―8)+4+(―5)=19+(―13)=6 (2)解:原式=512×48+34×(―48)+16×48=20―36+8=28―36=―8(3)解:原式=―10+8÷(―4)―(―4)×(―3)=―10―2―12=―24 (4)解:原式=―1―12×13×(―4)=―1+23=―13【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算顺序和方法.11.(2020·黑龙江·虎林市实验中学七年级期中)计算(1)26―(―15)(2)-3×4+(-28)÷7(3)(23―15+65)×15(4)(―1)3×2+(―2)2÷4【答案】(1)41(2)-16(3)25(4)-1【解析】【分析】(1)去括号,括号内数字变符号,然后进行计算;(2)先算乘除,后算加减;(3)先算括号内,然后与括号外数字相乘;(4)先算乘方,再算乘除,最后算加减.(1)解:26―(―15)=26+15=41;(2)-3×4+(-28)÷7=-12+(-4)=-16;(3)(23―15+65)×15=(23+1)×15=53×15=25;(4)(―1)3×2+(―2)2÷4=(―1)×2+4÷4=-2+1=-1.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算法则是解题的关键.12.(2022·江苏·七年级)计算:(1)―16―320+45×(―15×4);(2)120×―556+638―(3)(﹣18)÷214×49÷(﹣16);(4)12÷(―14)+(1―0.2÷35)×(―3);(5)312÷(―125)―821×(―134)―(―1+16)2+(―13)2×3.【答案】(1)6(2)―111(3)29(4)―4(5)―7936【解析】【分析】(1)根据乘法分配律拆开括号,进行运算即可;(2)根据乘法分配律拆开括号,进行运算即可;(3)把除法转化为乘法,再进行运算即可;(4)先计算括号内,把除法转化为乘法,再进行运算即可;(5)先把乘方进行计算,把除法转化为乘法,再进行运算即可.(1)原式=(―16―320+45―712)×(―60)=16×60+320×60―45×60+712×60=10+9―48+35=6;(2)原式=―120×356+120×518―120×2215=―700+765―176=―111;(3)原式=18×49×49×116=29;(4)原式=12×(―4)+(1―15×53)×(―3)=―2+(1―13)×(―3)=―2―23×3=―2―2=―4;(5)原式=―72×57+821×74―(―56)2+19×3=―52+23―2536+13=―52―2536+(23+13)=―11536+1=―7936.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.13.(2020·山西晋城·七年级期中)计算:(1)―5+7―(―3)―20(2)―23+6÷(―32)【答案】(1)-15(2)-12【解析】【分析】(1)原式先根据有理数减法法则变形,再进行加减运算即可;(2)原式先计算乘方和除法,然后再进行加减运算即可.(1)―5+7―(―3)―20=―5+7+3―20 =(7+3)+(―5―20) =10―25 =―15;(2)―23+6÷(―32)=―8―6×23 =―8―4 =―12【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14.(2022·黑龙江·绥化市第八中学校期中)计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)―52×34+25×12―25×14;(4)423+215―0.8+245―(―613).【答案】(1)8(2)-1(3)-12.5(4)15.2【解析】【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=-1 (3)解:―52×34+25×12―25×14=―25×34+25×12―25×14=―25×(34―12+14)=―25×12 =-12.5 (4)解:423+215―0.8+245―(―613)=423+215―45+245+613=(423+613)+(215―45+245)=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.15.(2021·山东省郓城第一中学七年级阶段练习)计算:(1)―30+17;(2)―67―(―29);(3)1.5―8.9;(4)×(5)―5+(―3.75);(6)―5――(7)―17+23+(―16)―(―17);(8)―3+2×|―2―3|―25.【答案】(1)―13;(2)―38;(3)―7.4;(4)76;(5)―9;(6)―2.25;(8)―18.【解析】【分析】(1)根据有理数的加法计算即可;(2)根据有理数的减法计算即可;(3)根据有理数的减法计算即可;(4)根据有理数的乘法计算即可;(5)根据有理数的加法计算即可;(6)根据有理数的减法计算即可;(7)根据有理数的加减计算即可;(8)根据有理数的混合运算法则计算即可.(1)解:―30+17=―13.(2)解:―67―(―29)=―67+29=―38.(3)解:1.5―8.9=―7.4.(4)解:×―=76.(5)解:―+(―3.75)=―5.25+(―3.75)=―9.(6)解:――――5.75+3.5=―2.25.(7)解:―17+23+(―16)―(―17)=―17+23―16+17=7.(8)解:―3+2×|―2―3|―25=―3+10―25=―18.【点睛】本题考查有理数加法,减法,乘法以及混合运算,解题的关键是掌握有理数的运算法则,正确计算.16.(2022·黑龙江·哈尔滨德强学校期中)计算:(1)(―2)2×5―(―2)3÷4(2)23÷×34―34【答案】(1)22(2)54【解析】【分析】(1)原式先计算乘方,再计算乘除法,最后算加减即可;(2)原式先计算小括号内的减法,再计算乘除法,最后算加减即可.(1)(―2)2×5―(―2)3÷4=4×5+8÷4=20+2=22;(2)23÷×34―34=23÷14×34―34=23×4×34―34=2―34=54.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.17.(2022·全国·七年级课时练习)计算:(1)(12―13)×6÷|―15|(2)(―1)2018+(―10)÷12×2―[2―(―3)3]【答案】(1)5(2)﹣68【解析】【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1)解:(12―13)×6÷|―15|=(12―13)×6×5 =(12―13)×30=12×30―13×30=15―10=5(2)(―1)2018+(―10)÷12×2―[2―(―3)3]=1+(―10)×2×2―(2+27)=1―40―29=―68【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.18.(2022·黑龙江·哈尔滨市萧红中学校期中)(1)(―20)+(+3)―(―5)―(+7)(216―×12(3)―2.5÷58×(4)2×(―3)3―4×(―3)+15【答案】(1)-19;(2)-1;(3)1;(4)-27【解析】【分析】(1)先去括号再求解;(2)先去括号再求解;(3)先把除号变成乘号再求解;(4)先计算―3立方,再依次计算即可得到答案.【详解】(1)(―20)+(+3)―(―5)―(+7)=(―20)+3+5―7=―19;(2)+16×12=14×12+16×12―12×12=3+2―6=―1;(3)―2.5÷58×―=―52×85×=4×14=1;(4)2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+27=―27.【点睛】本题考查有理数的混合运算,解题的关键是熟练掌握有理数的运算法则.19.(2022·云南·景谷傣族彝族自治县教育体育局教研室七年级期末)计算:(1)13―7―(―7);(2)18×――8÷(―2);(3)―22×(―9)―|―4×5|.【答案】(1)13(2)-2(3)16【解析】(1)解:原式=6+7=13;(2)解:原式=-6+4=-2;(3)解:原式=-4×(-9)-20=36-20=16.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.(2020·江西景德镇·七年级期中)计算:2+÷3(2)―22×1―4÷―1.4【答案】(1)3(2)-9【分析】(1)根据有理数的混合计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)―23÷=―23×(―36)=16×(―36)―23×(―36)+512×(―36)=―6+24―15 =3;(2)解:―22×14―4÷―1=―4×14―4÷49―1=―1―4×94―1=―1―9+1=―9.【点睛】本题主要考查了含乘方的有理数混合计算,有理数的四则混合运算,熟知相关计算法则是解题的关键.21.(2022·黑龙江绥化·期中)计算:(1)―6.5+(―3.3)―(―2.5)―(+4.7);(2)6××(―12)×116;(3)―32+2×4―1÷2(4)492425×(―5)(5)999×11845+999×――999×1835【答案】(1)―12(2)63(3)―9(4)―24945(5)99900【解析】根据有理数的加减乘除运算法则求解即可.(1)解:―6.5+(―3.3)―(―2.5)―(+4.7)=―6.5―3.3+2.5―4.7=―(6.5+3.3+4.7)+2.5=―14.5+2.5=―12;(2)解:6××(―12)×116=6×34×12×76=63;(3)解:―32+2×4―1÷2=―9+2×(4―4)=―9;(4)解:492425×(―5)=49×(―5)=―49×5―2425×5=―245―245=―24945;(5)解:999×11845+999×―999×1835=999×118+45―15―18=999×100=99900.【点睛】本题考查有理数的加减乘除混合运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.22.(2022·全国·七年级课时练习)计算(1)4×(―12―34+2.5)×3―|―6|(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)](3)―14―(1―0.5)×13―[2―(―3)2](4)(―2)4÷(―4)×―12【答案】(1)9(2)2(3)356(4)―2【解析】(1)解:4×(―12―34+2.5)×3―|―6|=4×54×3―6=15―6=9.(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)]=―1×(―12)÷[16+(―10)]=―1×(―12)÷6=12÷6=2.(3)―14―(1―0.5)×13―[2―(―3)2]=―1―12×13―(2―9)=―1―16+7=6―1 6=356.(4)(―2)4÷(―4)×―12=16÷(―4)×14―1=―4×14―1=―1―1=―2.【点睛】本题考查了有理数的混合运算,正确计算是解题的关键.。
第一章 有理数 训练题 (6)一、单选题1.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( )A .1B .23b +C .23a -D .1-2.马小哈在计算一道有理数运算()3-+■时,一不小心将墨水泼在作业本上了,其中“■”是被墨水污染看不清的一个数,他便问同桌,同桌故弄玄虚地说:“该题计算的结果等于6”,那么被墨水遮住的数是( ) A .3B .3-C .9D .3-或93.港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾;桥隧全长55千米,用科学记数法表示这个数为( ) A .55×104mB .5.5×103 mC .5.5×104mD .0.55×103m4.在数轴上表示5和-3的两点间的距离是( ) A .5+3B .5-3C .-(5+3)D .3-55.如果22(3)m =-,则m 的值是( ) A .-3 B .3C .-3或3D .96.在数轴上表示有理数a ,b ,c 的点如图所示,若0,0ac b c <+<.则下列式子一定成立的是( )A .0a c +>B .0abc <C .||||b c <D .||||b c >7.|﹣2020|的倒数等于( ) A .2020B .﹣2020C .12020D .12020-8.数轴上,2-对应的点在( )A .点A 、B 之间 B .点B 与C 之间C .点C 与D 之间D .点E 与F 之间9.的倒数是A.B.C.D. 210.省统计局日前公布年安徽省人口变动情况抽样调查主要数据公报,数据显示,去年安徽常住人口突破6200万,用科学记数法表示6200万正确的是A.B.C.D.11.2020年初全球处于新型冠状病毒引起的巨变之中,中国有2万名以上的医护人员在短时间就集结完毕,他们是我们心中的“最美逆行者”其中数据2万用科学记数法表示为A.B.C.D.12.下列算式中,计算结果为负数的有A. 1个B. 2个C. 3个D. 4个二、填空题13.计算:=______,14.“壮丽70年,奋斗新时代”.70年来,云南城镇居民收入连续翻番,1950年,云南城镇居民人均可支配收入仅为117.6元,2018年达到33488元,累计增长283.7倍.数据33488用科学记数法表示为__________.15.计算:(-4)×0.25=__________,(+4)×(-18)=______,(-52)×(-103)=_______. 16.近几年来,某市加大教育信息化投入,投资221000000元,初步完成了教育公共云服务平台基础工程,教学点数字教育资源全覆盖.将221000000用科学记数法表示为_____________. 17.计算:12--=_____. 18.绝对值不大于3的所有整数之和是 .三、解答题19.有 8 筐白菜,以每筐 25 千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这 8 筐白菜中最接近标准重量的这筐白菜重 千克; (2)这 8 筐白菜的平均重量为多少千克?20.先画数轴,在数轴上表示以下各数,并用“<”号按从小到大的顺序连接起来.()112031322--++-,,,,, 21.(1)(49)(91)(5)(9)--+--+- 16(2)(1)0.8()37-÷⨯-22.计算()3315130.75524828⎛⎫⎛⎫⎛⎫-++-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1215232122346⎛⎫-÷⨯-+-⨯ ⎪⎝⎭23.计算(1)114 1.55( 2.75)45⎛⎫-+--- ⎪⎝⎭ (2)321|2|3182⎛⎫--+⨯- ⎪⎝⎭24.某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:-7,-10, +9,+2,-1,+5,-8,+10,+4,+9. (1)最高分和最低分各是多少? (2)求他们的平均成绩. 25.计算(1)-3+2-4×(-5);(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ 26.对于有理数,a b ,定义一种新运算“”,规定||||ab a b a b =++-.(1)计算()23-的值.(2)当,a b 在数轴上的位置如图所示时,化简ab .(3)当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. (4)已知()8aa a a =+,求a 的值.【答案与解析】一、单选题 1.B 解析:B根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.由数轴可知b <−1,1<a <2,且|a|>|b|, ∴a +b >0,a -1>0,b+2>0则|a +b|−|a−1|+|b +2|=a +b−(a−1)+(b +2)=a +b−a +1+b +2=2b +3. 故选:B . 【点睛】此题考查了整式的加减,数轴,以及绝对值,判断出绝对值里边式子的正负是解本题的关键.2.D解析:D设这个数为x ,根据绝对值的性质可得−3+x =−6或−3+x =6,求出x 即可. 解:设这个数为x ,则()36x -+=, ∴−3+x =−6或−3+x =6, ∴x =−3或x =9, 故选:D . 【点睛】本题考查了绝对值的性质,注意绝对值等于一个正数的数有两个,它们互为相反数.3.C解析:C科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10, n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解:55千米=55000米,∴55千米,用科学记数法表示这个数为5.5×104m . 故选:C . 【点睛】此题考查科学记数法,解题关键在于掌握科学计数法的一般形式.4.A解析:A= 故选A.5.C解析:C根据有理数乘方的意义和乘法法则进行选择即可. 因为()239-=,()223m =- 所以29m =根据乘法法则可知()()33=9339⨯-⨯-=, 所以3m =± 故答案选C. 【点睛】本题考查的是有理数乘方的意义和乘法法则,能够解答出29m =是解题的关键.6.D解析:D根据各数在数轴上的位置得到a b c <<,结合0,0ac b c <+<对各选项进行分析可得解. 解:由数轴可得a b c <<,又0,0ac b c <+<,0a b c ∴<<<,且b c >0,0,a c abc b c∴+<>> 即A 、B 、C 错误,D 正确, 故选:D 【点睛】本题主要考查了数轴和绝对值,也考查了有理数的运算,掌握运算法则是解题关键.7.C解析:C根据绝对值的性质和倒数的概念求解即可. |﹣2020|,即2020的倒数等于12020. 故答案选:C . 【点睛】本题主要考查绝对值的性质和倒数的概念.8.B解析:B找到能开得尽方的两个数,满足一个比2小,一个比2大,从而确定表示实的点所在的范围.解:因为1<2<4,即1<2<2,所以-2<-2<-1,即表示实数-2的点在点B与点C之间.故选:B.【点睛】本题主要考查了无理数的估算,找到接近-2且能开得尽方的两个数是解决本题的关键.9.A解析:A【分析】本题考查倒数的意义:乘积为1的两个数互为倒数根据倒数的意义进行解答即可.【解答】解:根据倒数的定义可知:的倒数是.故选A.10.B解析:B解:用科学记数法表示6200万正确的是.故选:B.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.11.B解析:B解:将数据“2万”用科学记数法表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.12.D二、填空题13.-2;解析:-2;根据乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0. 原式=-1-1=-2. 【点睛】本题考查了有理数的乘方法则,解题时牢记法则是关键,此题比较简单,易于掌握.14.{解析}科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;当原数的绝对值 解析:43.348810⨯{解析}科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 33488=3.3488×104, 故答案为:3.3488×104. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.-1-解析:-1, -12, 253∵(-4)×0.25=-1, (+4)×(-18)=-12, (-52)×(-103)=253. 故答案为(1). -1, (2). -12, (3). 25316.21×108解析:21×108因为科学记数法的正确表示形式为:10n a ⨯(其中110a ≤<,n 是整数),按照科学记数法正确表示形式表示即可.解:因为科学记数法的正确表示形式为:10n a ⨯(其中110a ≤<,n 是整数), 所以将221000000用科学记数法表示为2.21×108, 故答案为: 2.21×108. 【点睛】本题主要考查科学记数法的表示形式,解决本题的关键是要熟练掌握科学记数法的正确表示形式.17.{解析}先化简绝对值然后求其相反数即可解:故答案为:【点睛】本题考查绝对值的化简和求一个数的相反数掌握绝对值的意义和相反数的概念是本题的解题关键解析:12-{解析}先化简绝对值,然后求其相反数即可. 解:1122--=- 故答案为:12-. 【点睛】本题考查绝对值的化简和求一个数的相反数,掌握绝对值的意义和相反数的概念是本题的解题关键.18.0解析:0 【分析】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.找出绝对值小于等于10的所有整数,求出之和即可. 【解答】解:绝对值不大于10的整数有:,,,0,1,2,3,它们之和是0. 故答案为0.三、解答题19.(1)24.5;(2)24.5(1)绝对值最小的数,就是最接近标准重量的数; (2)用25加上图中八个数的和的平均重量即可求得.解:(1)最接近的是:绝对值最小的数,因而是250.524.5-=(千克); (2)()251320.532 2.528+-+-+---÷()250.5=+-24.5=(千克).故这8筐白菜的平均重量为24.5千克.故答案为:24.5. 【点睛】本题考查正数和负数表示某种意义的量,有理数的加减法运算,掌握运算法则是关键.20.()1131322-+<-+-<0<<2<{解析}先在数轴上正确描出各数,然后根据数轴上的点表示的数右边的总比左边的大,可得答案.解:()33-+=-,33-=. 如图所示:()1131322-+<-+-<0<<2<. 【点睛】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:当数轴正方向朝右时,右边的数总比左边的数大,要熟练掌握. 21.(1)-144;(2)107(1)先去括号,然后进行加减计算即可; (2)先化为分数,再约分即可. (1)原式=499159144--+-=- (2)原式=456103477⎛⎫-⨯⨯-= ⎪⎝⎭ 【点睛】此题主要考查有理数的混合运算,熟练掌握,即可解题. 22.(1)12;(2)314- (1)先将绝对值计算,然后将分母相同的利用加法交换律计算,最后用有理数的运算法则计算;(2)先利用除法法则计算,然后根据乘法分配律计算21512346⎛⎫+-⨯ ⎪⎝⎭,注意整体思想的处理,最后根据有理数的法则计算. (1)解:原式3335132+544882⎛⎫⎛⎫⎛⎫=-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1652=-12=(2)解:原式11215312121222346⎛⎫=-⨯⨯-⨯+⨯-⨯⎪⎝⎭()3-83104=-+-314=-【点睛】掌握有理数的运算法则是解题关键,注意符号的处理.23.(1)0;(2)37 4 -(1)根据有理数的加减法法则及加法运算律计算即可;(2)根据有理数的乘方的意义、乘法法则、加减法法则及绝对值的代数意义计算即可.解:(1)原式=[414﹣(﹣2.75)]+[﹣1.5+(﹣512)]=7+(﹣7)=0;(2)原式=1 2918()8 -+⨯-=9 74 --=374 -.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则、运算顺序及有理数的加法运算律是解决本题的关键.24.(1)90,80;(2)91.3.试题分析:(1)从题目中的记录中可知,计为+10的考试成绩超过90分最多,即90+10=100(分);计为-10的考试成绩不足90分,与90分差距最大,即90-10=80(分);(2)先求得这组新数的平均数,然后再加上90,即为他们的平均成绩.试题解析:解:(1)∵在记录结果中,+10最大,-10最小,∴90+10=100(分),90-10=80(分),∴最高分为100分,最低分为80分;(-7-10+9+2-1+5-8+10+4+9)÷10+90=13÷10+90=91.3(分)∴他们的平均成绩为91.3分.考点:正负数的意义;有理数的混合运算.25.(1)19;(2)-11 3(1)原式先计算乘法运算,再进行回头运算即可得到结果;(2)原式先计算乘方和括号内的,再计算乘除运算,最后进行加减运算即可.(1)-3+2-4×(-5)=-3+2+20=19;(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ =771169153÷-⨯ =51633- =113- 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.26.(1)6;(2)-2b ;(3)不一定,理由见解析;(4)83或-85.(1)原式利用题中的新定义计算即可得到结果;(2)根据数轴上点的位置判断出a+b 与a-b 的正负,利用绝对值的代数意义计算即可得到结果;(3)当a ⊙b=a ⊙c 时,不一定有b=c 或者b=-c ,举例即可;(4)分类讨论a 的正负,利用新定义将已知等式化简,即可求出a 的值.(1)根据题中的新定义得:2⊙(-3)=|2+(-3)|+|2-(-3)|=1+5=6;(2)从a ,b 在数轴上的位置可得a+b <0,a-b >0,∴a ⊙b=|a+b|+|a-b|=-(a+b )+(a-b )=-2b ;(3)由a ⊙b=a ⊙c 得:|a+b|+|a-b|=|a+c|+|a-c|,不一定有b=c 或者b=-c ,例如:取a=5,b=4,c=3,则|a+b|+|a-b|=|a+c|+|a-c|=10,此时等式成立,但b≠c 且b≠-c ;(4)当a≥0时,(a ⊙a )⊙a=2a ⊙a=4a=8+a ,解得:a=83; 当a <0时,(a ⊙a )⊙a=(-2a )⊙a=-4a=8+a ,解得:a=-85. 故a 的值为:83或-85. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
初一数学有理数计算题分类及混合运算练习题(100题)有理数加法1、(-9)+(-13)2、(-12)+273、(-28)+(-34) =-22 =15 =-62原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号。
7、|52+(-31)| =1518、(-52)+|―31| =-151 9、 38+(-22)+(+62)+(-78)=010、(-8)+(-10)+2+(-1) 11、(-32)+0+(+41)+(-61)+(-21) =-17 =-121316、 72+65+(-105)+(-28) 17、(-23)+|-63|+|-37|+(-77) =4 =018、19+(-195)+47 18、(+18)+(-32)+(-16)+(+26) =-129 =-420、(-0.8)+(-1.2)+(-0.6)+(-2.4) 21、(-8)+(-321)+2+(-21)+12=-5 =2 有理数减法7-9 ―7―9 0-(-9) (-25)-(-13) =-2 =-16 =9 =-12(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5) =-8 =39.5 =-23(+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+71)―(-72)―73=―7011 =-10 =00.5+(-41)-(-2.75)+21 (+4.3)-(-4)+(-2.3)-(+4)=3.5 =2原则三:结果的形式要与题目中数的形式保持一致。
如确定是分数还是小数,分数必须是带分数或真分数,不得是假分数,过程中无所谓。
有理数乘法 (-9)×32(-132)×(-0.26) (-2)×31×(-0.5)=-6 =0.04 =3131×(-5)+31×(-13) (-4)×(-10)×0.5×(-3) (-83)×34×(-1.8)=-6 =-60 =0.9(-0.25)×(-74)×4×(-7) (-73)×(-54)×(-127)=-4 =-51(-0.5)-(-341)+6.75-521 (+6.1)―(-4.3)―(-2.1)―5.1=4 =7.4 (-32)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)=1 =2.5-843-597+461-392 -443+61+(-32)―25 =-13127 =-743(-8)×4×(-21)×(-0.75) 4×(-96)×(-0.25)×481=-12 =2(74-181+143)×56 (65―43―97)×36=32—63+12 =30—27—28 =19 =-2525×43-(-25)×21+25×41 (-36)×(94+65-127) =25×(43+21+41) =-16-30+21=25×121 =-25 =3721原则四:巧妙运用运算律(187+43-65+97)×7231×(2143-72)×(-58)×(-165)=28+54-60+56 =31×(1427)×(-58)×(-165)=78 =289有理数除法18÷(-3) (-24)÷6 (-57)÷(-3) (-53)÷52(-42)÷(-6)= -6 =-4 =19 =-23 =7 (+215)÷(-73) (-139)÷9 0.25÷(-81) -36÷(-131)÷(-32)=-95 = -131=-2 =-4021-3÷(31-41) (-2476)÷(-6) 2÷(5-18)×181=-36 =471=-1171131÷(-3)×(-31) -87×(-143)÷(-83) (43-87)÷(-65) =274 =-21 =203(-1)÷(-4)÷74 3÷(-76)×(-97) 0÷[(-341)×(-7)] =167 =1849 =0(29-83+43)÷(-43) -3.5 ×(61-0.5)×73÷21 -172÷(-165)×183×(-7) =-6+21-1 =-27×(-31)×73×2 =-79×116×811×7 =-621 =1 =-427=-643原则五:结果的形式要与题目中数的形式保持一致。
人教版七年级数学上册期末复习:有理数混合运算、整式化简、方程计算训练(三)1.计算:(1)(﹣6)÷(﹣1)×0.75×|﹣1|÷|﹣3|2;(2)﹣92××[(﹣)2×(﹣)﹣240÷(﹣4)×].2.计算①.②.3.计算:(1)|﹣|÷(﹣)﹣×(﹣2)3;(2)(﹣+)÷(﹣).4.计算下列各题(1)9+(﹣5)﹣(﹣8)﹣(+10);(2)(﹣2)÷5×;(3);(4)﹣12022+(﹣2)3×.5.计算:(1)6.14+(﹣2)﹣(﹣5.86)﹣(+)(2)24÷(﹣)﹣6×22 (3)(﹣1)2020+[18×(﹣)+24×(﹣)]﹣36×(﹣+1)﹣02019 (4)(﹣)2018×32021+(﹣2)3÷2.5×|﹣3﹣|6.化简:(1)﹣3a2﹣2a+2+6a2+1+5a;(2)x+2(3y2﹣2x)﹣4(2x﹣y2).7.已知:A=2x2+3xy﹣5x+1,B=﹣x2+xy+2.(1)求A+2B.(2)若A+2B的值与x的值无关,求y的值.8.化简:(1)(5a2+2a﹣1)﹣4[3﹣2(4a+a2)].(2)3x2﹣[7x﹣(4x﹣3)﹣2x2]9.若(2x2+ax﹣y﹣b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求a、b的值10.(1)2x3﹣6x﹣6x3﹣2+9x+8 (2)2(2a﹣7b)﹣3(2b﹣5a)11.解方程:(1)5x﹣2(3﹣2x)=﹣3 (2)12.解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)13.解方程:(1)=1;(2).14.解下列方程:(1)3(x﹣3)=x﹣(2x﹣1);(2).15.解方程:(1)﹣=2x+1;(2)[x﹣(x﹣1)]=(x﹣2).参考答案1.解:(1)原式=6××××=;(2)原式=﹣81××(﹣×+60×)=﹣27×(﹣+15)=45﹣405=﹣360.2.解:①原式=×(﹣12)+×(﹣12)﹣×(﹣12)﹣×(﹣12)=﹣6﹣8+9+10=5;②原式=﹣4×+4×﹣1﹣1=﹣1+9﹣1﹣1=6.3.解:(1)|﹣|÷(﹣)﹣×(﹣2)3=÷(﹣)﹣×(﹣8)=﹣2+1=﹣1.(2)(﹣+)÷(﹣)=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣16+18﹣4=﹣2.4.解:(1)原式=9﹣5+8﹣10=4+8﹣10=12﹣10=2;(2)原式=﹣2××=﹣;(3)原式=(﹣+)×(﹣18)=×(﹣18)﹣×(﹣18)+×(﹣18)=﹣4+3﹣1=﹣2;(4)原式=﹣1﹣8×(﹣)﹣6=﹣1+4﹣6=﹣3.5.解:(1)6.14+(﹣2)﹣(﹣5.86)﹣(+)=6.14+(﹣2)+5.86+(﹣)=9;(2)24÷(﹣)﹣6×22=24÷()﹣(6+)×22=24÷﹣132﹣21=24×6﹣132﹣21=144﹣132﹣21=﹣9;(3)(﹣1)2020+[18×(﹣)+24×(﹣)]﹣36×(﹣+1)﹣02019=1+[(18+24)×(﹣)]﹣(8﹣27+39)﹣0=1+42×(﹣)﹣20=1+(﹣24)﹣20=﹣43;(4)(﹣)2018×32021+(﹣2)3÷2.5×|﹣3﹣|=()2018×32021+(﹣8)÷×3=(×3)2018×33+(﹣8)××=1×27+(﹣12)=27+(﹣12)=15.6.解:(1)原式=3a2+3a+3;(2)原式=x+6y2﹣4x﹣8x+4y2=10y2﹣11x.7.解:(1)∵A=2x2+3xy﹣5x+1,B=﹣x2+xy+2,∴A+2B=(2x2+3xy﹣5x+1)+2(﹣x2+xy+2)=2x2+3xy﹣5x+1﹣2x2+2xy+4=5xy﹣5x+5;(2)∵A+2B的值与x的值无关,且A+2B=(5y﹣5)x+5,∴5y﹣5=0,解得:y=1,则y的值是1.8.解:(1)原式=5a2+2a﹣1﹣[12﹣8(4a+a2)]=5a2+2a﹣1﹣12+8(4a+a2)=5a2+2a﹣1﹣12+32a+8a2=13a2+34a ﹣13;(2)原式=3x2﹣7x+(4x﹣3)+2x2=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3.9.解:(2x2+ax﹣y﹣b)﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y﹣b﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y﹣b+1,则2﹣2b=0,a+3=0,解得:b=1,a=﹣3.10.解:(1)2x3﹣6x﹣6x3﹣2+9x+8=﹣4x3+3x+6;(2)2(2a﹣7b)﹣3(2b﹣5a)=4a﹣14b﹣6b+15a=19a﹣20b.11.解:(1)去括号,可得:5x﹣6+4x=﹣3,移项,合并同类项,可得:9x=3,系数化为1,可得:x=.(2)去分母,可得:5(x﹣1)=10+2(x+1),去括号,可得:5x﹣5=10+2x+2,移项,合并同类项,可得:3x=17,系数化为1,可得:x=.12.解:(1)去括号得:15﹣7+5x=2x+5﹣3x,移项合并得:6x=﹣3,解得:x=﹣;(2)去分母得:5x﹣15﹣4x+6=10,移项合并得:x=19.13.解:(1)去分母,得3(x﹣3)﹣2(2x+1)=6,去括号,得3x﹣9﹣4x﹣2=6,合并同类项,得﹣x=17,系数化为1,得x=﹣17;(2)去分母,得5(3x+1)﹣10=3x﹣2﹣2(2x+3),去括号,得15x+5﹣20=3x﹣2﹣4x﹣6,移项,得15x﹣3x+4x=﹣2﹣6﹣5+20,合并同类项,得16x=7,系数化为1,得x=.14.解:(1)去括号得:3x﹣9=x﹣2x+1,移项合并得:4x=10,解得:x=2.5;(2)去分母得:3(y+2)﹣2(2y﹣1)=12,去括号得:3y+6﹣4y+2=12,移项合并得:﹣y=4,解得:y=﹣4.15.解:(1)去分母得:2(2x﹣1)﹣(x+5)=12x+6,去括号得:4x﹣2﹣x﹣5=12x+6,移项合并得:﹣9x=13,解得:x=﹣;(2)去括号得:x﹣(x﹣1)=(x﹣2),去分母得:2x﹣(x﹣1)=4(x﹣2),去括号得:2x﹣x+1=4x﹣8,移项合并得:﹣3x=﹣9,解得:x=3.。
简单1、计算(-3)2的结果是()A.-6 B.6 C.-9 D.9 【分析】根据有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.【解答】(-3)2=(-3)×(-3)=9.故选D.2、关于-(-a)2的相反数,有下列说法:①等于a2;②等于(-a)2;③值可能为0;④值一定是正数.其中正确的有()A.1个B.2个C.3个D.4个【分析】依据相反数和平方的概念及性质进行判断.【解答】①∵-(-a)2=-a2,∴它的相反数是a2.显然是正确的.②∵(-a)2=a2,∴也是正确的.③当a=0时,a2=0,∴原式的值可能为0,也是正确的.④是错误的,没有考虑0.故有3个是正确的.故选C.3、与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【分析】32+32+32表示3个32相加.【解答】32+32+32=3×32=33.故选A.4、在-(-2)3,(-2)3,-23中,最大的数是____________.【分析】求出每个式子的值,再判断即可.【解答】∵-(-2)3=8,(-2)3=-8,-23=-8,∴最大的数是-(-2)3,故答案为:-(-2)3.5、下列各组数中:①-52与(-5)2;②-33与(-3)3;③0100与0200;④-(-1)2与(-1)3;⑤1与-12.相等的共有()组.A.2 B.3 C.4 D.5【分析】根据有理数的乘方运算依次化简各组的结果.【解答】①-25与25,不相等;②中-27与-27相等;③0与0,相等;④中-1与-1相等;⑤1与-1不相等故选B.6、某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.【解答】2×2×2×2=24=16.故选B.7、若a是负数,则下列各式不正确的是()A.a2=(-a)2B.a2=|a2| C.a3=(-a)3D.a3=-(-a3)【分析】若a是负数,则-a是正数,且a与-a是一对相反数.根据一对相反数的奇次幂互为相反数,一对相反数的偶次幂相等,负数的偶数次幂是正数,进行判断.【解答】∵一对相反数的偶次幂相等,∴a2=(-a)2,故A正确;∵a是负数,负数的偶数次幂是正数,∴|a2|=a2,故B正确;∵一对相反数的奇次幂互为相反数,∴(-a)3=-a3,故C不正确;∵一对相反数的奇次幂互为相反数-(-a)3=-(-a3)=a3,故D正确.故选C.8、已知a、b是实数,且满足(a+2)2+|b-3|=0,则a+b=__________.【分析】根据非负数的性质解答.当两个非负数相加和为0时,必须满足其中的每一项都等于0.【解答】∵(a+2)2+|b-3|=0,∴a=-2,b=3,∴a+b=-2+3=1.9、已知|x+1|=4,(y+2)2=4,且x与y异号.试求x+y的值.【分析】根据绝对值的性质与有理数的乘方求出x、y的值,再根据x、y异号确定出x、y的值,然后代入代数式进行计算即可得解.【解答】∵|x+1|=4,(y+2)2=4,∴x+1=4,或x+1=-4,y+2=2或y+2=-2,解得x=3或x=-5,y=0或y=-4,∵x与y异号,∴x=3,y=-4,∴x+y=3+(-4)=-1.简单题1、-23的意义是()A.3个-2相乘B.3个-2相加C.-2乘以3 D.23的相反数【分析】根据乘方的意义和相反数的定义判断.【解答】-23的意义是3个2相乘的相反数.故选D.2、一个数的7次幂是负数,那么这个数的2011次幂是_________(填“正数”“负数”或“0”).【分析】根据负数的奇数次幂是负数解答.【解答】∵一个数的7次幂是负数,∴这个是负数,∴这个数的2011次幂是负数.故答案为:负数.3、一个有理数的平方是正数,那么这个数的立方是()A.正数B.负数C.整数D.正数或负数【分析】正数的平方是正数,负数的平方也是正数,而正数的立方是正数,负数的立方是负数.【解答】∵一个有理数的平方是正数,∴这个有理数是正数或负数.又∵正数的立方是正数,负数的立方是负数,∴这个数的立方是正数或负数.故选D.4、一个数的偶次幂是正数,这个数是()A.正数B.负数C.正数或负数D.任何有理数【分析】根据负数的偶次幂是正数,正数的偶次幂是正数得出.【解答】一个数的偶次幂是正数,这个数是正数或负数.故选C.5、计算:-43×(−12)2=___________.【分析】先算乘方再算乘法,注意负数的偶次幂为正数.【解答】-43×(-12)2=-64×14=-16.故本题答案为:-16.6、计算:2×(-3)2−5÷12×2.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减.【解答】2×(-3)2−5÷12×2=2×9-5×2×2 =18-20=-2.7、计算:4−8×(−12)3=__________.【分析】先算乘方,再算乘法,最后算减法.【解答】原式=4-8×(-18)=4+1=5.故答案为:5.难题1、下列计算正确的是()A.-2+1=-1 B.-2-2=0 C.(-2)2=-4 D.-22=4 【分析】根据有理数的加减法、有理数的乘方,即可解答.【解答】A、-2+1=-1,正确;B、-2-2=-4,故错误;C、(-2)2=4,故错误;D、-22=-4,故错误;故选A.2、计算-22+(-2)2-(-12)-1的正确结果是()A.2 B.-2 C.6 D.10 【分析】根据负整数指数幂和有理数的乘方计算即可.【解答】原式=-4+4+2=2.故选A.3、下列各组数中,数值相等的是()A.32和23B.-23和(-2)3C.-|23|和|-23| D.-32和(-3)2【分析】根据a n表示n个a相乘,而-a n表示a n的相反数,而(-a)2n=a2n,(-a)2n+1=-a2n+1(n是整数)即可求解.【解答】A、32=9,23=8,故本选项错误;B、-23=(-2)3=-8,正确;C、-|23|=-8,|-23|=|-8|=8,故本选项错误;D、-32=-9,(-3)2=9,故本选项错误.故选B.4、-42计算的结果是()A.-8 B.8 C.16 D.-16【分析】根据乘方的意义得到42=4×4=16,则有-42=-16.【解答】∵42=4×4=16,∴-42=-16.故选D.5、下列各式中.计算结果得0的是()A.-22+(-2)2B.-22-22C.-22-(-2)2D.(-2)2+22【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【解答】A、-22+(-2)2=-4+4=0,故本选项正确;B、-22-22=-4-4=-8,不是0,故本选项错误;C、-22-(-2)2=-4-4=-8,不是0,故本选项错误;D、(-2)2+22=4+4=8,不是0,故本选项错误.故选A.6、关于(-3)4的正确说法是( ) A .-3是底数,4是幂B .-3是底数,4是指数,-81是幂C .3是底数,4是指数,81是幂D .-3是底数,4是指数,81是幂【分析】根据有理数乘方的定义进行解答即可. 【解答】(-3)4中,-3是底数,4是指数,81是幂. 故选D .7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )米.A .31()2B .51()2C .61()2D .121()2【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为21()2米,那么依此类推得到第六次后剩下的绳子的长度为61()2米.【解答】∵11122-=, ∴第2次后剩下的绳子的长度为21()2米;依此类推第六次后剩下的绳子的长度为61()2米.故选C .8、如果n 是正整数,则(-1)2n +1+(-1)2n =_________. 【分析】根据-1的奇数次幂是-1,-1的偶数次幂是1进行计算. 【解答】(-1)2n +1+(-1)2n =-1+1=0.9、如图是一个数值转换机的示意图,当输入x =3时,则输出的结果为________.【分析】根据题意列出关系式,将x=3代入计算即可求出值.【解答】根据题意列得:3x2-1,将x=3代入得:3×9-1=26.故答案为:26难题1、若(a-3)2+|b+4|=0,则(a+b)2014的值是()A.2014 B.-2014 C.1 D.-1 【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】根据题意得:a-3=0,b+4=0,解得:a=3,b=-4,则原式=1.故选C.2、一个正方体木块粘合成如图所示的模型,它们的棱长分别为1米、2米、4米,要在模型表面涂油漆,如果除去粘合部分不涂外,求模型的涂漆面积(可列式计算).【分析】先分别计算棱长分别为1米、2米、4米的正方体的表面积,再去掉粘合部分的面积即可.【解答】6(1×1+2×2+4×4)-2(1×1+2×2), =6×(1+4+16)-2(1+4), =116m 2,答:模型的涂漆面积116m 2.3、一块面积为1㎡的长方形纸片,第一次裁去它的一半,第二次裁去剩下纸片的一半,如此裁下去,第八次裁完后剩下的纸片的面积是( ) A .132㎡ B .164㎡ C .1128㎡ D .1256㎡ 【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为12m 2,第二次剩下的面积为14m 2,第三次剩下的面积为18m 2,根据规律,总结出一般式,由此可以求出第八次剩下的纸片的面积.【解答】根据题意,第一次剩下的面积为12m 2,第二次剩下的面积为14m 2,第三次剩下的面积为18m 2,则第n 次剩下的面积为12n m 2.则第八次剩下的面积为812m 2,即1256m 2.故选D .4、算式999032+888052+777072之值的十位数字为何?( ) A .1B .2C .6D .8【分析】分别得出999032、888052、777072的后两位数,再相加即可得到答案. 【解答】999032的后两位数为09, 888052的后两位数为25, 777072的后两位数为49,09+25+49=83,所以十位数字为8, 故选D .5、观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32015的末位数字是()A.3 B.9 C.7 D.1 【分析】根据给出的规律,3n的个位数字4个循环一次,用2005去除以4,看余数是几,再确定个位数字.【解答】设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…,∴34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32015=3503+3的个位数字与与32的个位数字相同,应为7.故选C.6、日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33 【分析】由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.【解答】∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选C.7、若a=(-3)13-(-3)14,b=(-0.6)12-(-0.6)14,c=(-1.5)11-(-1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a 【分析】分别判断出a-b与c-b的符号,即可得出答案.【解答】∵121413141214131433 330.60.633055a b-=-----+-=---+()()()()<,∴a<b,∵11131214 111312141.5 1.50.60.61.5 1.50.60.60c b-=-----+-=-+-+()()()()()>,∴c>b,∴c>b>a.故选D.8、某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔__________支.【分析】三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.【解答】320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.。
人教新版初一上册数学有理数的加减法试题及答案(2)人教新版初一上册数学有理数的加减法试题参考答案一、选择题(共13小题)1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( )A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是( )A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是( )A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为( )A. B. C. D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣ =﹣ .故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣ )=( )A. B.﹣ C. D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣ )=1+ = .故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是( )A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7= ﹣7 .【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)= 4 .【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4= ﹣1 .【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015= ﹣15 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18. |﹣7﹣3|= 10 .【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键初一数学复习指导一、多看主要是指认真阅读数学课本。
人教版七年级数学上册《有理数的概念》专题训练-附带答案知识点一:有理数1.(2021秋•江阴市校级月考)把下列各数填在相应的大括号里:π2﹣2 −123.020020002 0227﹣(﹣3) 0.333整数集合:{ …}; 分数集合:{ …}; 有理数集合:{ …}; 无理数集合:{ …}.思路引领:根据实数的分类 即可解答. 解:整数集合:{﹣2 0 ﹣(﹣3)…}; 分数集合:{−122270.333…};有理数集合:{﹣2 −12227﹣(﹣3) 0.333…};无理数集合:{π23.020020002……}; 故答案为:﹣2 0 ﹣(﹣3); −122270.333;﹣2 −12227﹣(﹣3) 0.333;π23.020020002….解题秘籍:本题考查了实数 熟练掌握实数的分类是解题的关键. 2.(2019秋•天山区校级期中)下列说法中不正确的是( ) A .最小的自然数是1 B .最大的负整数是﹣1 C .没有最大的正整数D .没有最小的负整数思路引领:根据自然数、负整数、正整数的相关意义判断即可. 解:A 、最小的自然数是0 说法错误 故本选项符合题意; B 、最大的负整数是﹣1 说法正确 故本选项不符合题意; C 、没有最大的正整数 说法正确 故本选项不符合题意; D 、没有最小的负整数 说法正确 故本选项不符合题意. 故选:A .解题秘籍:本题主要考查自然数、负整数、正整数的定义 学生要做好这类题必须对其定义理解透彻.3.(2021秋•靖江市期中)下列说法中 正确的是( )A .正有理数和负有理数统称有理数B .正分数、零、负分数统称分数C .零不是自然数 但它是有理数D .一个有理数不是整数就是分数 思路引领:根据有理数分类判断即可.解:A .正有理数 零和负有理数统称有理数 故本选项不合题意; B .正分数和负分数统称分数 故本选项不合题意; C .零是自然数 也是有理数 故本选项不合题意;D .一个有理数不是整数就是分数 说法正确 故本选项符合题意. 故选:D .解题秘籍:本题考查了有理数 整数和分数统称有理数;有理数也可以分为正有理数、0和负有理数. 4.数0.3⋅21⋅−π3124﹣|﹣5| ﹣0.5中 分数有 个.思路引领:按照有理数的分类填写: 有理数{整数{正整数0负整数分数{正分数负分数 注意化简后加以判断.解:分数包括小数和无限循环小数 所以0.3⋅21⋅、﹣0.5是分数.答案:2.解题秘籍:注意先化简 再判断是整数还是分数.考查分数的定义和对分数的认识 注意分数与整数的区别.知识点二:数轴1.(2022•玉林模拟)如图所示的图形为四位同学画的数轴 其中正确的是( ) A .B .C .D .思路引领:根据数轴的概念判断所给出的四个数轴哪个正确. 解:A ﹣1、﹣2位置错误 故此选项错误 不符合题意; B 、单位长度不统一 没有正方向 故此选项错误 不符合题意; C 、没有正方向 数字顺序也有问题 故此选项错误; D 、符合数轴三要素 故此选项正确.故选:D.解题秘籍:本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.2.(1)在数轴上到原点距离等于2的点所表示的数是;(2)在数轴上将点A向右移动5个单位长度再向左移动1个单位长度终点恰好是原点则点A表示的数是;(3)点A在数轴上距原点5个单位长度将A点先向左移动2个单位长度再向右移动6个单位长度此时A点所表示的数是.思路引领:(1)在数轴上到原点距离等于2的点有两个这两个点所表示的数互为相反数;(2)(3)根据数轴上的平移规律:左减右加进行计算即可.解:(1)在数轴上到原点距离等于2的点所表示的数是±2;故答案为:±2;(2)在数轴上将点A向右移动5个单位长度再向左移动1个单位长度终点恰好是原点则点A表示的数是0+1﹣5=﹣4;故答案为:﹣4;(3)当点A表示5时5﹣2+6=9当点A表示﹣5时﹣5﹣2+6=﹣1∴点A在数轴上距原点5个单位长度将A点先向左移动2个单位长度再向右移动6个单位长度此时A点所表示的数是﹣1或9.故答案为:﹣1或9.解题秘籍:本题考查了有理数的加减混合运算、数轴的定义掌握其运算法则是解决此题的关键.3.某数的绝对值小于2 在数轴上这个数表示的点到﹣0.6所表示的点的距离是1.5 则这个数是.思路引领:先求出到表示﹣0.6的点的距离是1.5的点表示的数再由绝对值小于2即可得到答案.解:在数轴上到表示﹣0.6的点的距离是1.5的点表示的数是:﹣0.6+1.5=0.9或﹣0.6﹣1.5=﹣2.1∵绝对值小于2∴符合条件的点表示的数是0.9故答案为:0.9.解题秘籍:本题考查数轴上的点表示的数掌握数轴上到表示﹣0.6的点的距离是1.5的点有两个是解题得关键.4.(2019秋•赵县期中)在数轴上表示下列各数并按从大到小的顺序用“>”号把这些数连接起来4 ﹣4 2.5 0 ﹣2 ﹣1.6 13−230.5.思路引领:有理数大小比较可以在数轴上找到各数从左到右依次增大进而得出答案.解:如图所示:故4>2.5>0.5>13>0>−23>−1.6>﹣2>﹣4.解题秘籍:此题主要考查了有理数大小比较的方法正确画出数轴是解题关键.5.(2021秋•泗水县校级月考)如图.A、B、C三点在数轴上A表示的数为﹣10 B表示的数为14 点C在点A与点B之间且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动甲的速度是1个单位长度/s乙的速度是2个单位长度/s求相遇点D对应的数.思路引领:(1)用点B表示的数减去点A表示的数计算即可得解;(2)设点C对应的数是x然后列出方程求解即可;(3)设相遇的时间是t秒根据相遇问题列出方程求解得到x的值然后根据点A表示的数列式计算即可得解.解:(1)14﹣(﹣10)=14+10=24;(2)设点C对应的数是x则x﹣(﹣10)=14﹣x解得x=2;(3)设相遇的时间是t秒则t+2t=24解得t=8所以点D表示的数是﹣10+8=﹣2.解题秘籍:本题考查了数轴主要利用了数轴上两点间的距离的求法相遇问题的等量关系.知识点三:相反数1.(2021•元阳县模拟)若一个数的相反数是﹣7 则这个数为.思路引领:根据相反数的定义即可得出答案.解:﹣7的相反数是7故答案为:7.解题秘籍:本题考查了相反数的定义掌握只有符号不同的两个数互为相反数是解题的关键.2.(2021秋•邹城市校级月考)如果多项式2x﹣3与x+7互为相反数那么x的值是()A.−43B.43C.34D.0思路引领:根据相反数的性质列出方程求出方程的解即可得到x的值.解:根据题意得:2x﹣3+x+7=0移项合并得:3x=﹣4解得:x=−4 3.故选:A.解题秘籍:此题考查了解一元一次方程以及相反数熟练掌握相反数的性质及方程的解法是解本题的关键.3.在数轴上若点A和点B分别表示互为相反数的两个数并且这两点间的距离是12.8 则这两点所表示的数分别是.思路引领:直接利用相反数的定义进而得出答案.解:∵点A和点B分别表示互为相反数的两个数并且这两点间的距离是12.8∴这两点所表示的数分别是:﹣6.4 6.4.故答案为:﹣6.4 6.4.解题秘籍:此题主要考查了相反数的定义正确把握定义是解题关键.知识点四:绝对值1.(2022秋•射阳县月考)若|a﹣2020|+(﹣3)=10 则a=.思路引领:根据有理数的运算先求出|a﹣2020|的值再利用绝对值的意义求出a的值.解:∵|a﹣2020|+(﹣3)=10∴|a﹣2020|=13.∴a﹣2020=13或a﹣2020=﹣13.解得a=2033或2007.故答案为:2033或2007.解题秘籍:本题考查了绝对值的意义与有理数的运算正确理解绝对值的意义是解题的关键.2.(2022春•通川区期末)已知|a﹣1|+|b+2|=0 则(a+2b)(a﹣2b)=.思路引领:先根据非负数的性质求出a b的值再代入代数式进行计算即可.解:∵|a﹣1|+|b+2|=0∴a﹣1=0且b+2=0解得:a=1 b=﹣2∴(a+2b)(a﹣2b)=(1﹣4)(1+4)=﹣15.故答案为:﹣15.解题秘籍:本题考查的是非负数的性质熟知几个非负数的和为0时每一项必为0是解答此题的关键.3.(2022春•东台市期中)|x﹣2|+9有最小值为.思路引领:根据绝对值的非负性即可得出答案.解:∵|x﹣2|≥0∴|x﹣2|+9≥9∴|x﹣2|+9有最小值为9.故答案为:9.解题秘籍:本题考查了绝对值的非负性掌握|a|≥0是解题的关键.4.(2021秋•吉州区期末)|a﹣3|=5 且a在原点左侧则a=.思路引领:根据数轴上到3的距离等于5的数有两个并且在原点的左侧即可求得a.解:∵|a﹣3|=5∴a﹣3=5或﹣5∴a=8或﹣2∵a在原点左侧∴a<0∴a=﹣2.解题秘籍:本题考查了绝对值的几何意义掌握绝对值的性质是解题的关键难度不是很大.5.(2021秋•龙泉市期末)若实数a b满足|a|=2 |4﹣b|=1﹣a则a+b=.思路引领:根据绝对值的定义求出a、b的值再代入计算即可.解:∵|a|=2∴a=±2当a=2时|4﹣b|=1﹣2=﹣1 此时b不存在;当a=﹣2时|4﹣b|=3所以4﹣b=3或4﹣b=﹣3即b=1或b=7当a=﹣2 b=1时a+b=﹣1;当a=﹣2 b=7时a+b=5故答案为:﹣1或5.解题秘籍:本题考查绝对值理解绝对值的定义是正确解答的前提求出a、b的值是正确解答的关键.6.(2021秋•乳山市期末)若|a|=2 |b|=1 且a<b则a﹣3b=.思路引领:根据绝对值的意义求出a、b的值再代入计算即可.解:∵|a|=2∴a=±2∵|b|=1∴b=±1又∵a<b∴a=﹣2 b=1或a=﹣2 b=﹣1当a=﹣2 b=1时a﹣3b=﹣5;当a=﹣2 b=﹣1时a﹣3b=1故答案为:﹣5或1.解题秘籍:本题考查绝对值掌握“一个正数的绝对值等于它本身一个负数的绝对值等于它的相反数0的绝对值等于0”是正确计算的前提求出a、b的值是正确解答的关键.【课堂练习】1.(2022•睢阳区二模)若m与−(−13)互为相反数则m的值为()A.﹣3B.−13C.13D.3思路引领:先求出﹣(−13)的值再求它的相反数即可.解:﹣(−13)=13∵m与−(−13)互为相反数∴m=−1 3.故选:B.解题秘籍:本题考查了相反数掌握只有符号不同的两个数互为相反数是解题的关键.2.如果一个数的相反数是非负数那么这个数是()A.正数B.负数C.非正数D.非负数思路引领:根据只有符号不同的两个数叫做互为相反数解答. 解:∵一个数的相反数是非负数 ∴这个数是非正数. 故选:C .解题秘籍:本题考查了相反数的定义 熟记概念是解题的关键. 3.(2015秋•无锡校级月考)下列说法中正确的是( ) A .负有理数是负分数 B .﹣1是最大的负数C .正有理数和负有理数组成全体有理数D .零是整数思路引领:根据有理数和无理数的定义 以及有理数的分类进行判断. 解:A 、负有理数包括负分数和负整数 故本选项说法错误; B 、﹣1是最大的负整数 故本选项说法错误;C 、正有理数、负有理数和0组成全体有理数 故本选项说法错误;D 、正整数、负整数和零组成整数 所以零是整数 故本选项说法正确; 故选:D .解题秘籍:本题考查了有理数的分类:有理数{整数{正整数0负整数分数{正分数负分数. 4.(2014秋•资中县期中)如图 点O 、A 、B 在数轴上 分别表示数0、1.5、4.5 数轴上另有一点C 到点A 的距离为1 到点B 的距离小于3 则点C 位于( )A .点O 的左边B .点O 与点A 之间C .点B 的右边D .点A 与点B 之间思路引领:由数轴上点的位置 找出离A 距离为1的点 再由到B 的距离小于3判断即可确定出C 的位置.解:∵点O 、A 、B 在数轴上 分别表示数0、1.5、4.5 数轴上另有一点C 到点A 的距离为1 到点B 的距离小于3∴点C 表示的数为2.5 位于点A 与点B 之间 故选:D .解题秘籍:此题考查了数轴熟练掌握数轴上的点与实数之间的一一对应关系是解本题的关键.5.(2020秋•平山区校级期中)①﹣a 一定是负数;②若|a |=|b | 则a =b ;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.上述说法错误的有( ) A .1个B .2个C .3个D .4个思路引领:根据有理数的分类和有理数的有关定义解答即可. 解:①﹣a 不一定是负数 原说法错误; ②若|a |=|b | 则a =b 或a =﹣b 原说法错误; ③一个有理数不是整数就是分数 原说法正确;④一个有理数不是正数就是负数 也可能是0 原说法错误. 上述说法错误的有3个 故选:C .解题秘籍:此题考查有理数 解题的关键是根据有理数的分类和绝对值判断. 6.(2015秋•海陵区校级月考)|a |=a 则有理数a 为( ) A .正数B .负数C .正数和0D .负数和0思路引领:根据绝对值的性质可得. 解:∵|a |=a ∴a 为正数或0 故选:C .解题秘籍:本题主要考查绝对值的性质 熟练掌握绝对值性质是解题的关键. 7.(2021秋•启东市校级月考)已知a b c 为三个不等于0的数 且满足abc >0 a +b +c <0 则|a|a+|b|b+|c|c的值为 .思路引领:根据绝对值的定义解决此题. 解:∵abc >0 a +b +c <0∴a 、b 与c 中有两个负数 一个正数. 假设a <0 b <0 c >0 则|a|a+|b|b+|c|c=−a a+−b b+c c=−1+(−1)+1=−1.故答案为:﹣1.解题秘籍:本题主要考查绝对值 熟练掌握绝对值的定义是解决本题的关键.《有理数概念复习》配套作业1.下列几种说法中 正确的是( ) A .最小的自然数是1B .在一个数前面加上“﹣”号所得的数是负数C .任意有理数a 的倒数是1aD.任意有理数a的相反数是﹣a思路引领:根据自然数的定义求相反数的方法倒数的定义可得答案.解:A、最小的自然数是0 故A错误;B、在一个数前面加上“﹣”号所得的数是负数故B错误;C、0没有倒数故C错误;D、任意有理数a的相反数是﹣a故D正确;故选:D.解题秘籍:本题考查了有理数注意带符号的数不一定是负数小于零的数是负数.2.下列几种说法中不正确的()A.任意有理数a的相反数是﹣aB.在一个数前面加上“﹣”号所得的数是负数C.一个非0有理数a的倒数是1aD.最小的自然数是0思路引领:根据选项将不正确的选项举出反例即可解答本题.解:∵﹣(﹣1)=1∴在一个数前面加上“﹣”号所得的数是负数的说法是错误的;故选:B.解题秘籍:本题考查有理数解题的关键是明确负数的定义和有理数的相关知识.3.(2019秋•定襄县校级月考)一个数的绝对值等于它本身这个数是比其相反数小的数是一个数的倒数等于它本身这个数是.思路引领:根据绝对值的性质:当a是正有理数时a的绝对值是它本身a;当a是零时a的绝对值是零可得绝对值是它本身的数是非负数;根据相反数的概念可得比其相反数小的数是负数;根据倒数的概念可得一个数的倒数等于它本身这个数是±1.解:一个数的绝对值等于它本身这个数是非负数比其相反数小的数是负数一个数的倒数等于它本身这个数是±1.故答案为:非负数负数±1.解题秘籍:此题主要考查了倒数、相反数、绝对值关键是熟练掌握倒数、相反数、绝对值的概念和性质.4.在数轴上在原点左侧且离开原点5个单位长度的点表示的数是;离开原点4个单位长度的点表示的数是.思路引领:根据离开原点5个单位的点有两个再根据在原点左侧可得答案;根据离开原点4个单位长度的点有两个可得答案.解:在原点左侧且离开原点5个单位长度的点表示的数是﹣5;离开原点4个单位长度的点表示的数是±4故答案为:﹣5 ±4.解题秘籍:本题考查了数轴到原点距离相等的点有两个注意第一个点在原点的左侧只有一个数第二个点没限定位置有两个数.5.(2021•成都模拟)实数a、b、c、d在数轴上对应点的位置如图所示则这四个数中绝对值最大的数是()A.a B.b C.c D.d思路引领:根据绝对值的定义结合实数a、b、c、d在数轴上对应点的位置即可求出结果.解:由实数a、b、c、d在数轴上对应点的位置可知:4<|a|<5 1<|b|<2 0<|c|<1 |d|=4故选:A.解题秘籍:本题考查了实数大小的比较、绝对值、实数与数轴解题的关键是理解绝对值的定义利用数形结合的思想解答问题.6.(2020春•魏县期末)如果|x+1|=2 那么x=.思路引领:利用绝对值的定义求解即可.解:∵|x+1|=2∴x+1=2或x+1=﹣2 解得x=﹣3或1.故答案为:﹣3或1.解题秘籍:本题主要考查了绝对值解题的关键是熟记绝对值的定义.7.小明写作业时不慎将墨水滴在数轴上根据图中数值请你确定墨迹盖住部分的整数共有个.思路引领:根据数轴上已知整数求出墨迹盖住部分的整数个数.解:根据数轴得:墨迹盖住的整数共有0 1 2共3个.故答案为:3.解题秘籍:本题主要考查了数轴理解整数的概念能够首先结合数轴得到被覆盖的范围进一步根据整数这一条件是解题的关键.8.用长为4.5个单位长度的木条放在数轴上最多能覆盖()个整数点.A.3B.4C.5D.6思路引领:利用数轴即可作出判断.解:用长为4.5个单位长度的木条放在数轴上最多能覆盖5个整数点.故选:C.解题秘籍:本题考查了数轴数轴有直观、简捷举重若轻的优势.9.代数式|x﹣3|+|x﹣4|+|x﹣5|的最小值是.思路引领:可以用数形结合来解题:x为数轴上的一点|x﹣3|+|x﹣4|+|x﹣5|表示:点x 到数轴上的3个点(3、4、5)的距离之和进而分析得出最小值.解:当x=4时代数式|x﹣3|+|x﹣4|+|x﹣5|有最小值最小值=1+0+1=2.故代数式|x﹣3|+|x﹣4|+|x﹣5|的最小值是2.故答案为:2.解题秘籍:此题主要考查了绝对值的性质以及利用数形结合求最值问题利用已知得出当x=4时|x﹣3|+|x﹣4|+|x﹣5|能够取到最小值是解题关键.10.(2014秋•雨城区校级月考)当代数式|x﹣3|+|x+1|取最小值时相应的x的取值范围是.思路引领:|x+1|+|x﹣3|的最小值意思是x到﹣1的距离与到3的距离之和最小那么x 应在﹣1和3之间的线段上.解:由数形结合得若|x+1|+|x﹣3|取最小值那么表示x的点在﹣1和3之间的线段上所以﹣1≤x≤3.故答案为:﹣1≤x≤3.解题秘籍:本题主要考查了数轴和绝对值掌握数轴上两点间的距离=两个数之差的绝对值.11.(2012秋•滨湖区校级期中)如果把115分记作+15分那么96分的成绩记作分如此记分法甲生的成绩记作﹣9分那么他的实际成绩是分乙生的成绩记作6分那么他的实际成绩为分.思路引领:由题意可得100分为基准点从而可得出96的成绩应记为﹣4 也可得出甲生和乙生的实际成绩.解:∵把115分的成绩记为+15分∴100分为基准点故96的成绩记为﹣4分甲生的实际成绩为91分乙生的实际成绩为106分.故答案为:﹣4、91、106.解题秘籍:本题考查了正数与负数的知识解答本题的关键是找到基准点.12.(2021秋•滨州月考)绝对值不大于3.14的所有有理数之和等于;不小于﹣4而不大于3的所有整数之和等于.思路引领:根据绝对值不大于3.14的有理数互为相反数 根据互为相反数的和为零 可得答案;根据不小于﹣4而不大于3的所有整数 可得加数 根据有理数的加法 可得答案.解:绝对值不大于3.14的所有有理数之和等于0;不小于﹣4而不大于3的所有整数之和(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3=﹣4故答案为:0 ﹣4.解题秘籍:本题考查了有理数大小比较 利用不小于﹣5而不大于4的所有整数得出加数是解题关键 注意互为相反数的和为零.13.(2020秋•饶平县校级期末)已知:数轴上A 点表示+8 B 、C 两点表示的数为互为相反数 且C 到A 的距离为3 求点B 和点C 各对应什么数?思路引领:求出到A 点的距离是3的数 即求出C 点表示的数 即可得出答案. 解:∵当点C 在A 的左边时 +8﹣3=5当点C 在A 点的右边时 +8+3=11∴C 点表示的数是5或11∴当C 表示的数是5 B 点表示的数是﹣5 或 当C 表示的数是11 B 点表示的数是﹣11. 解题秘籍:本题考查了数轴 相反数的应用 关键是求出C 点表示的数.14. 如果a 、b 互为相反数 那么2016a +2016b ﹣100= .思路引领:根据互为相反数的和为0 得a +b =0 把所求的式子进行变形 再代入求得结论.解:因数a 、b 互为相反数所以a +b =0则2016a +2016b ﹣100=2016(a +b )﹣100=﹣100.故答案为:﹣100.解题秘籍:本题考查了相反数的概念 明确互为相反数的两个数相加为0 因此对所求式子进行变形是本题的关键.15.(2017秋•和平区校级月考)在下列各等式中 a 表示正数的有( )个式子. ①|a |=a ;②|a |=﹣a ;③|a |>﹣a ;④|a |≥﹣a ;⑤|a|a =1;⑥a <1a . A .4 B .3 C .2D .1 思路引领:根据绝对值的定义即可求解.解:①|a |=a 时 a 为非负数 即a 可以为0 不符合题意;②|a |=﹣a 时 a 为非正数 即a 可以为0 不符合题意;③|a |>﹣a 时 a 一定为正数 符合题意;④|a |≥﹣a 时 a 为非负数 即a 可以为0 不符合题意;⑤|a|a =1时 a 一定为正数 符合题意;⑥a <1a 时 0<a <1或a <﹣1 即a 可以为小于﹣1的负数 不符合题意.故选:C .解题秘籍:此题主要考查了绝对值 关键是熟悉如果用字母a 表示有理数 则数a 的绝对值要由字母a 本身的取值来确定:①当a 是正有理数时 a 的绝对值是它本身a ;②当a 是负有理数时 a 的绝对值是它的相反数﹣a ;③当a 是零时 a 的绝对值是零.16.(2021秋•姜堰区期中)在数轴上画出表示下列各数的点 并将这些数按照从小到大的顺序用“<”号连接起来:﹣(﹣2)、|﹣3|、0、+(﹣1)、﹣212思路引领:先根据相反数和绝对值进行计算 再在数轴上表示出各个数 再比较大小即可.解:+(﹣1)=﹣1 ﹣(﹣2)=2 |﹣3|=3−212<+(﹣1)<0<﹣(﹣2)<|﹣3|.解题秘籍:本题考查了数轴 有理数的大小比较 绝对值和相反数等知识点 能正确在数轴上表示出各个数|是解此题的关键 注意:在数轴上表示的数 右边的数总比左边的数大.17.已知a >0 b <0 且|a |<|b | 借助数轴 试把a ﹣a b ﹣b 四个数用“<”连接起来. 思路引领:根据|a |<|b | 可得b 距离原点比a 远 画出数轴后即可得出答案.解:如图所示:所以b <﹣a <a <﹣b .解题秘籍:本题考查了有理数的大小比较:在数轴上 右边的点所表示的数比左边的点表示的数要大;离原点越远 它表示的数的绝对值就越大.18.(2021秋•江都区校级月考)已知在纸面上有一数轴(如图) 折叠纸面:(1)若1表示的点与﹣1表示的点重合 则﹣2表示的点与数 表示的点重合;(2)若﹣1表示的点与5表示的点重合 回答以下问题:①6表示的点与数 表示的点重合;②若数轴上A、B两点之间的距离为11(A在B的左侧)且A、B两点经折叠后重合求A、B两点表示的数是多少?思路引领:(1)依题意可知两数关于原点对称所以可求出与﹣2重合的点;(2)①依题意若﹣1表示的点与5表示的点重合可知两数关于与2表示的点对称即可求出6表示的点的对称点;②由①条件可知A、B关于2表示的点对称即可求出答案.解:(1)∵1表示的点与﹣1表示的点重合∴﹣2表示的点与2表示的点重合.故答案为:2;(2)①∵﹣1表示的点与5表示的点重合∴6表示的点与﹣2表示的点重合.故答案为:﹣2;②∵A、B两点之间的距离为11经折叠后重合∴A、B距离对称点的距离为11÷2=5.5又∵且关于点2表示的点对称∴点A表示的数为2+5.5=7.5 点B表示的数为2﹣5.5=﹣3.5∴A应该为﹣3.5 B应该为7.5.解题秘籍:本题主要考查数轴上点的应用根据题意求出两个点的对称点是解决本题的关键.19.(2019秋•鼓楼区期中)已知数轴上两点A、B对应的数分别是6 ﹣8 M、N、P为数轴上三个动点点M从A点出发速度为每秒2个单位点N从点B出发速度为M 点的3倍点P从原点出发速度为每秒1个单位.(1)若点M向右运动同时点N向左运动求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动求多长时间点P到点M N的距离相等?(3)当时间t满足t1<t≤t2时M、N两点之间N、P两点之间M、P两点之间分别有55个、44个、11个整数点请直接写出t1t2的值.思路引领:(1)由题意列出方程可求解;(2)分两种情况讨论列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小M、N两点距离最大M、P两点距离最小可得出M、P两点向右运动N点向左运动结合数轴分类讨论分析即可.解:(1)设运动时间为t秒由题意可得:6+8+2t+6t=54∴t=5∴运动5秒点M 与点N 相距54个单位;(2)设运动时间为t 秒由题意可知:M 点运动到6+2t N 点运动到﹣8+6t P 点运动到t当t <1.6时 点N 在点P 左侧MP =NP∴t ﹣(﹣8+6t )=6+2t ﹣t∴6+t =8﹣5t∴t =13s ;当t >1.6时 点N 在点P 右侧MP =NP∴﹣8+6t ﹣t =6+2t ﹣t∴6+t =﹣8+5t∴t =72s∴运动13s 或72s 时点P 到点M N 的距离相等; (3)由题意可得:M 、N 、P 三点之间整数点的多少可看作它们之间距离的大小M 、N 两点距离最大 M 、P 两点距离最小 可得出M 、P 两点向右运动 N 点向左运动①如上图 当t 1=5s 时 P 在5 M 在16 N 在﹣38再往前一点 MP 之间的距离即包含11个整数点 NP 之间有44个整数点;②当N 继续以6个单位每秒的速度向左移动 P 点向右运动若N 点移动到﹣39时 此时N 、P 之间仍为44个整数点若N 点过了﹣39时 此时N 、P 之间为45 个整数点故t 2=16+5=316s ∴t 1=5s t 2=316s . 解题秘籍:本题考查了一元一次方程在数轴上的动点问题中的应用 理清题中的数量关系、数形结合 是解题的关键.。
简单1、在−8,2006,13 3,0,−5,+13,−14,−7.2中,正整数和负分数共有()A.3个B.4个C.5个D.6个【分析】根据正整数和负分数的定义找出即可.【解答】正整数有2006,+13,负分数有-14,-7.2,所以正整数和负分数共有4个.故选B.2、下列说法:①0是整数;②4.2不是正数;③自然数一定是正数;④-2.5是负分数;⑤负分数一定是负有理数.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据整数的意义,可判断①;根据大于零的数是正数,可判断②;根据自然数的定义,可判断③;根据小于零的分数是负分数,可判断④;根据有理数的定义,可判断⑤.【解答】①0是整数,故①正确;②4.2是正数,故②错误;③零也是自然数,故③错误;④-2.5是负分数,故④正确;⑤负分数一定是负有理数,故⑤正确;故选C.3、下列说法中正确的是()A.有最小的正数B.有最大的负数C.有最小的整数D.有最小的正整数【分析】利用正数、负数的定义与性质,以及整数的概念与分类(正整数,0,负整数)即可解答.【解答】①没有最小的正数,也没有最大的正数,因此选项错误;②没有最小的负数,也没有最大的负数,因此选项错误;③整数包括正整数和负整数,没有最小的整数,因此选项错误;④最小的正整数是1,因此选项正确.故选D.4、下列说法中不正确的是()A.-3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2015既是负数,也是整数,但不是有理数D.0是非正数【分析】本题需先根据有理数的定义,找出不符合题意得数即可求出结果.【解答】根据题意得:-2015既是负数,也是整数,但它也是有理数故选C.5、下列说法中不正确的是()A.15是有理数B.有理数是正数和负数的统称C.-0.3是负分数D.0既不是正数,也不是负数【分析】利用有理数的定义及分类判定即可.【解答】A、15是有理数,此选项正确,B、有理数是正数、负数和零的统称,故此项错误,C、-0.3是负分数,此选项正确,D、0既不是正数,也不是负数,此选项正确,故选B.6、学校对初一男生进行立定跳远的测试,以能跳 1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.第一组10名男生成绩如下(单位cm):+2 -4 0 +5 +8 -7 0 +2 +10 -3问:第一组有百分之几的学生达标?【分析】因为以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示,所以成绩是0或正数为达标,一共有7个,再除以总人数即为所求.【解答】达标的有7人,因而达标率是710×100%=70%.答:第一组有70%的学生达标.简单题1.-6,8不是()A.自然数B.分数C.有理数D.负有理数解答:-6,8这俩个数中有自然数,有理数和负有理数。
七年级上学期计算题专题训练人教版七年级上学期总共四章的内容,其中三章都涉及到计算。
分别是第一章有理数的运算,第二章整式的加减,第三章一元一次方程。
第一章有理数的运算时,我们需要注意:有理数的运算顺序:①先乘方,在乘除,最后加减②同级运算,从左往右依次进行③有括号的,先从小括号去起,再去中括号,最后去大括号特别要注意的是:1:(−2)2与−22的区别:前者表示的是2个-2相乘,(−2)2=(−2)×(−2)×=4后者表示2个2相乘的积的相反数,−22=−2×2=−4,做题时一定要注意区别两者之间的相同点和不同点。
2:1的任何次幂都是1-1的奇次幂为-1,-1的偶次幂为1例如:12019=1,,12020=1(−1)2019=−1,(−1)2020=1第二章整式的加减运算时,我们需要注意:1、按照去括号法则,先去括号,再合并同类项。
2、去括号法则:括号前面是正号时,去掉括号后,括号里的每一项都不变;括号前面是负号时,去掉括号后,括号里的每一项都要变。
3、合并同类项:合并同类项时,字母连同它的指数都不变,只把系数相加减。
第三章:解一元一次方程,我们需要注意:①去分母:1:找到最小公倍数2:每一项都要乘以最小公倍数3:分子是多项式的话,去掉分母后,要加括号。
②去括号:牢记去括号法则③移项:从等式的一边移到等式的另一边要变号(进攻变号,防守不变)④合并同类项⑤系数化为1:注意符号的问题,两数相除,同号为正,异号为负第一章:有理数的运算1、(−1)100×5+(−2)4÷42、(−3)3−3×(−13)43、76×(16−13)×314÷354、(−10)3+[(−4)2−(1−32)×2]5、−23÷49×(−23)26、4+(−2)3×5−(−0.28)÷47、(−2)2×5−(−2)3÷4 8、−(3−5)+32×(1−3)9、32×(−12)3−0.52×(−2)310、36-27×(73−119+227)11、−1101−[−3×(2÷3)2−43÷22] 12、−(14)2×(−4)2÷(−18)13、−23+[(−4)2−(1−32)×3] 14、17−23÷(−2)×3第二章:整式的加减1、8a+2b+(5a-b)2、(5a-3b)-(a2−2b)3、-5a+(3a-2)-(3a-7)4、(2x-3y)+(5x+4y)5、(8a-7b)-(4a-5b)6、3x-x+5x-2x7、m-4n+3m-2n 8、(-x+2x2+5)+(4x2−3−6x)9、(3a2−ab+7)−(−4a2+2ab+7)10、(5a+4c+7b)−(5c-3b-6a)11、(8xy-x2+y2)-(x2−y2+8xy)12、3x2−[7x−(4x−3)−2x2] 13、(4a3b−10b3)+(−3a2b2+10b3))14、(4x2y−5xy2−(3x2y−4xy2))15、5a2−[a2+(5a2−2a)−2(a2−3a)]16、15+3(1-a)-(1-a-a2)+(1-a+a2−a3)17、(4a2b−3ab)+(−5a2b+2ab) 18、(6m2−4m−3)+(2m2−4m+1)x−3)+2x2] 19、(5a2+2a−1)−4(3−8a+2a3)20、3x2−[5x−(1221、3(x2−2x−1)−4(3x−2)+2(x−1),其中x=-322、3x2y2−[5xy−(4xy2−3)+2x2y2],其中x=-3,y=2第三章:解一元一次方程1、x+3x=-162、2(x+3)=5x3、4x+3(2x-3)=12-(x+4)4、2-3(x+1)=1-2(1+0.5x)5、2(x+8)=3(x-1)6、6(12x−4)+2x=7−(13x−1)7、8x=-2(x+4) 8、2(10-0.5y)=-(1.5y+2) 9、2x+3x+4x=18 10、13x+3=15-x11、3x+5=4x+1 12、3x+22−1=2x−14−2x+1513、x+12−1=2+2−x414、3x+x−12=3−2x−1315、19100x=21100(x−2) 16、x+12−2=x4。
简单1、如果两个有理数的积小于零,和大于零,那么这两个有理数()A.符号相反B.符号相反且绝对值相等C.符号相反且负数的绝对值大D.符号相反且正数的绝对值大【分析】根据积小于0,可得两有理数异号,根据和大于零,可得正数的绝对值大,结合选项可得出答案.【解答】两个有理数的积小于零,和大于零,那么这两个有理数符号相反且正数的绝对值大.故选D.2、下列说法正确的是()A.5个有理数相乘,当负因数为3个时,积为负;B.-1乘以任何有理数等于这个数的相反数;C.3个有理数的积为负数,则这3个有理数都为负数;D.绝对值大于1的两个数相乘,积比这两个数都大.【分析】根据有理数的乘法法则逐一判断即可.【解答】A、若五个有理数中只要出现一个0,不管有几个负因数,结果都为0.故本选项错误;B、-1乘以任何有理数等于这个数的相反数,故本选项正确;C、3个有理数的积为负数,则这3个有理,都为负数,也可能有一个负数,故本选项错误;D、绝对值大于1的两个数相乘,积不一定比这两个数都大,如-3和2,它们的积比这两个数小,故本选项错误;故选B.3、四个各不相等的整数a、b、c、d,它们的积abcd=49,那么a+b+c+d =________.【分析】由于abcd=49,且a,b,c,d是整数,所以把49分解成四个不相等的整数的积,从而可确定a,b,c,d的值,进而求其和.【解答】∵49=1×(-1)×7×(-7),∴a+b+c+d=1+(-1)+7+(-7)=0.故答案为:0.4、在有理数2,3,-4,-5,6中,任取两个数相乘,所得积的最大值是()A.24 B.20 C.18 D.30 【分析】由于有两个负数和两个正数,故任取其中两个数相乘,最大的数为正数,且这两个数同号.故任取其中两个数相乘,最大的数=-4×(-5)=20.【解答】2,3,-4,-5,6,这5个数中任取其中两个数相乘,所得积的最大值=-4×(-5)=20.故选:B.5、下列判断正确的是()A.若ab>0,则一定有a>0,b>0B.若ab<0,则一定有a<0,b<0C.若ab=0,则a,b中至少有一个为0D.若a+b<0且ab<0,则a<0,b<0【分析】若ab>0,则a,b同号;若ab<0,则a,b异号;若ab=0,则a,b中至少一个为0;若a+b<0且ab<0,则a,b异号且负数的绝对值大.【解答】A、若ab>0,则a,b同号,即a>0,b>0或a<0,b<0,故本选项错误;B、若ab<0,则a,b异号,即a>0,b<0或a<0,b>0,故本选项错误;C、若ab=0,则a,b中至少一个为0,即a=0或b=0或a=b=0,故本选项正确;D、若a+b<0且ab<0,则a,b异号且负数的绝对值大,故本选项错误;故选C.6、一个数的相反数与这个数的倒数的和为0,则该数为()A.1 B.12C.±1 D.-2【分析】根据相反数的定义及倒数的定义进行判断.【解答】A、1的相反数与这个数的倒数的和为0,但-1的相反数与这个数的倒数的和也为0,故A错误;B、12的相反数与这个数的倒数的和为1.5,故B错误;C、±1的相反数与这个数的倒数的和为0,故C正确;D、-2的相反数与这个数的倒数的和为1.5,故D错误.故选C.7、高度每增加1000米,气温大约下降6℃,今测得高空气球的温度是-2℃,地面温度是5℃,则气球的大约高度是()A.56千米B.76千米C.1千米D.43千米【分析】根据题意,气球的大约高度=5(2)10006--⨯米,利用有理数的乘法运算法则计算,求出的值,即为高度.【解答】5(2)700071000666--⨯==(千米).故选B.8、小红家春天粉刷房间,雇用了5个工人,干了10天完成;用了某种涂料150升,费用为4800元,粉刷的面积是150m2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工30元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择_________付钱最合算(最省).【分析】根据有理数的乘法的意义列式计算.【解答】第一种方案的工资=30×10×5=1500(元);第二种方案的工资=4800×30%=1440(元);第三种方案的工资=150×12=1800(元).答:选择方案二付钱最合算(最省).简单题1.如果a+b<0,ab>0,那么()A.a>0,b>0 B.a>0,b<0 B.a<0,b<0 D.a<0,b >0解答:因为ab>0,所以a,b同号,因为a+b<0,所以a,b同为负,a<0,b<0.故选C.2.如果a+b<0,ab<0,那么( )A.a>0,b>0 B.a>0,b<0 C.a>0,b<0,|a|>|b| D.a<0,b>0, |a|>|b|或a>0,b<0,|a|<|b|解答:因为ab<0,可知a,b异号,又因为a+b<0,所以绝对值大的数为负数故选D.3.一个数与它的相反数的乘积()A.符号一定为正号B.符号一定为负号C.一定不小于0 D.一定不大于0【分析】设这个数为a,根据题意表示出乘积,即可做出判断.【解答】设这个数为a,根据题意得-a2≤0,则一个数与它的相反数的乘积一定不大于0.故选D.4. 下列说法中错误的是()A.一个数同0相乘,仍得0B.一个数同1相乘,仍是原数C.一个数同-1相乘得原数的相反数D.互为相反数的积是1【分析】根据有理数乘法法则和相反数的定义逐一判断.【解答】A、正确;B、正确;C、正确;D、如0的相反数是0,0×0=0.故选D.5. 若干个不等于0的有理数相乘,积的符号()A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定【分析】可根据有理数乘法运算的符号法则进行判断.【解答】几个不等于零的数相乘,积的符号由负因数的个数决定.当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正.故选C.6. 下列乘积的结果,符号为正的是()A.0×(-3)×(-4)×(-5) B.(-6)×(-15)×(−12)×13C.-2×(-12)×(+2)D.-1×(-5)×(-3)【分析】根据同号得正,异号得负对各选项分析判断后利用排除法求解.【解答】A、0×(-3)×(-4)×(-5)结果为0,故本选项错误;B、(-6)×(-15)×(−12)×13结果是负数,故本选项错误;C、-2×(-12)×(+2)结果是正数,故本选项正确;D、-1×(-5)×(-3)结果是负数,故本选项错误.故选C.7.计算(-3)×(-2)×(+13).解答:(-3)×(-2)×(+13)=3×2×1 3=2.8.计算(-10)×(-0.1)×(-8.25)解答:(-10)×(-0.1)×(-8.25)=-10×0.1×8.25=-8.25.9.-3×(2-3)×(5-4)×(-135).解答:-3×(2-3)×(5-4)×(-135)=-3×(-1)×1×(-135)=-245.难题1.下列计算:①-2×3=-6;②-6×-7=42;③0×(-20)=-20;④(-8)×(-1.25)=-10.其中正确的个数为()A.1个B.2个C.3个D.4个解答:③0×(-20)=0,③错误,④(-8)×(-1.25)=10,④错误;①②正确.故选B.2.下列运算结果为负数的是()A.(-7)×(-6)B.0×(-2)×(-3)C.(-17)×(-67)D.1×(-9999)解答:A.(-7)×(-6)=42;B.0×(-2)×(-3)=0;C.(-17)×(-67)=1027;D.1×(-9999)=-9999为负数故选D.3.如果a≠b,且ab=0,那么一定有()A.a=0 B.b=0 C.a=0或b=0 D.a=0且b=0解答:因为ab=0,所以两因数中至少有一个因数为0,因为a≠b,所以a=0或b=0故选C.4.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积()A.一定为正B.一定为负C.为零D.可能为正,也可能为负【分析】先根据数轴上原点右侧的数为正数,原点左侧的数为负数,可知在原点同侧的数符号相同;再根据有理数的乘法法则:两数相乘,同号得正,从而得出结果.【解答】由于原点右侧的数为正数,两正数相乘积为正数;原点左侧数为负数,两负数相乘积为正数;那么这两个有理数的积一定为正.故选A.5. 如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大【分析】此题根据有理数的加法和乘法法则解答.【解答】两个有理数的积是正数,说明两数同号,和也是正数,说明均为正数,A正确.故选A.6. 有6个有理数相乘,如果积是0,那么这6个数中()A.一定全是0 B.一定有互为相反数的数C.只能有一个数是0 D.至少有一个数是0【分析】根据0乘以任何数都等于0解答.【解答】∵6个有理数相乘,积是0,∴这6个数中至少有一个数是0.故选D.7. 应用题某种商品,每件降5元,售出60件以后,与按原价销售同样数量的商品相比,销售额减少了多少元【分析】根据一件减少的销售额×件数=售出60件后销售额减少量,列式计算.【解答】依题意,每售出一件,销售额减少了5元,则售出60件以后销售额减少了5×60=300元8.计算(-114)×(-45).解答:(-114)×(-45)=54×45=19.计算(-213)×(-6).解答:(-213)×(-6)=73×6=1410.如果五个有理数的积为负数,那么其中负因数的个数为()A.1个B.3个C.5个D.1个或3个或5个【分析】根据有理数的乘法法则作答.【解答】五个有理数的积为负数,那么其中负因数的个数一定为奇数.只可能是1、3、5个.故选D.难题1、计算(-6)×(-1)的结果等于()A.6 B.-6 C.1 D.-1 【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】(-6)×(-1),=6×1,=6.故选:A.2、(-2)×3的结果是()A.1 B.-1 C.-5 D.-6【分析】根据异号两数相乘的乘法运算法则解答.【解答】(-2)×3=-6,故选:D.3、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a、b、c的值分别为()A.20、29、30 B.18、30、26 C.18、20、26 D.18、30、28 【分析】从表一中可以看出,第一行和第一列为1、2、3、4…,第二行、第二列的数是4=2×2,第三行、第四列的数是12…第n行、第m列的数是n×m,由此来判断即可得解.【解答】表二:12、15、a,因为3×4=12,3×5=15,可以判断出a为第三列、第六行,即a=3×6=18;表三:4×5=20,4×6=24,5×5=25,可以判断出b在第五行、第六列,即b=5×6=30;表四:3×6=18,4×8=32,可以判断出c在第四列、第七行,即c=4×7=28;故答案为:D.4、已知N=2012×2013×2014+2014×2015×2016+2016×2017×2018 .问N的末位数字是多少?说说你的思考方法.【分析】分别求出2012×2013×2014,2014×2015×2016,2016×2017×2018的末位数字,再相加即可求解.【解答】2012×2013×2014,2014×2015×2016,2016×2017×2018的末位数字分别是4,0,6,4+0+6-10=0.答:2012×2013×2014+2014×2015×2016+2016×2017×2018的末位数字是0.故答案为:0.5、已知:9×1+0=9,9×2+1=19,9×3+2=29,9×4+3=39,….根据前面式子构成的规律写出第6个式子是___________.【分析】通过观察题意可得:第n个式子是9n+(n-1),由此可解出本题.【解答】依题意得第n个式子是9n+(n-1),当n=6时,9×6+(6-1)=59.故答案为:9×6+(6-1)=59.6、定义两种运算“⊕”、“⊗ ”,对于任意两个整数a,b,a⊕b=a+b-1,a⊗b=a×b-1.计算4⊗[(6⊕8)⊕(3⊕5)]的值.【分析】根据a⊕b=a+b-1,a⊗b=ab-2,得出新的运算方法,再运用新的运算方法计算4⊗[(6⊕8)⊕(3⊗5)]的值.【解答】4⊗[(6⊕8)⊕(3⊗5)],=4⊗[(6+8-1)⊕(3×5-2)],=4⊗[13⊕13],=4⊗[13+13-1],=4⊗25,=4×25-2,=98,故答案为:98.7、是否存在这样的两个数,它们的积与它们的和相等?你大概马上就会想到2+2=2×2,其实这样的两个数还有很多,如11(1)(1)22+-=⨯-,请你再写一些这样的两个数.【分析】首先正确理解题意,然后找出类似的数即可.【解答】由题意知:只要满足它们的积与它们的和相等就可,可写出一个这样的数:0×0=0+0.【还有1111()()3232+-=⨯-,1111()()4343+-=⨯-等】.。
人教版七年级数学上册《1.2.1有理数》练习题-有答案一.选择题 1.0是( )A .正有理数B .负有理数C .整数D .负整数 2.下列说法正确的是( ) A .整数就是正整数和负整数 B .分数包括正分数、负分数C .正有理数和负有理数组成全体有理数D .一个数不是正数就是负数3.在 14 −2 0 −3.4这四个数中 属于负分数的是( )A B .−2 C .0 D .−3.4A .4个B .3个C .2个D .1个5.下列各数中 整数的个数是−11 0 0.5 23 −7( )A .2个B .3个C .4个D .5个6.既是分数又是正有理数的是( )A .+2B .C .0D .2.015二.填空题8.在有理数−23、−5、3.14中 属于分数的个数共有个.9.在“1 −0.3 +13 0 −3.3”这五个数中 非负有理数是 .(写出所有符合题意的数)10.从正有理数集合中去掉正分数集合 得到集合.三.解答题11.把下列各数填在相应的大括号里:1 −45 8.9 −7 56 −3.2 +1 008 −0.06 28 −9.正整数集合:{ …}; 负整数集合:{ …};正分数集合:{ …}; 负分数集合:{…}.12.把下列各数填入它所属的集合内:5.2 0 π2 227 +(−4) −234 −(−3 ) 0.25555… −0.030030003…(1)分数集合:{…} (2)非负整数集合:{…} (3)有理数集合:{…}.答案: 1.C 2.B 3.D4.A 5.B 6.D .7.08.29.1 +1310.正整数11.解:正整数集合:{1 +1008 28 …}; 负整数集合:{−7 −9 …};12.解:(1)分数集合:{5.2227 −2340.25555…} (2)非负整数集合:{0 −(−3 )} (3)有理数集合:{5.2 0 227 +(−4) −234−(−3 ) 0.25555…}.。
七年级(上)数学 有理数的运算专题训练一.选择题(共10小题) 1.比3-大1的数是( ) A .1B .2-C .4-D .12.一堆煤,用了40%,还剩这堆煤的( ) A .40%B .60%C .60吨D .无法确定3.20(20)+-的结果是( ) A .40-B .0C .20D .404.下列运算中正确的是( ) A .11|()|55-+=-B .(5)5--=-C .(5)50--=D .3(2)5--=5.计算|1|3--,结果正确的是( ) A .4-B .3-C .2-D .1-6.计算21()36---的结果为( )A .12-B .12 C .56-D .567.计算:1(3)()(3-⨯-= )A .3-B .3C .1D .1-8.计算3个29的和是( ) A .239B .23C .227 D .139.计算1(6)()3-÷-的结果是( )A .18-B .2C .18D .2-10.有76个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是1,第二个数是1-,那么这76个数的积是( ) A .23(2)-B .24(2)-C .25(2)-D .26(2)-二.填空题(共8小题) 11.计算:2435()57⨯-= .12.计算:2(3)|2|---= .13.8(11)(20)(19)-+--+-写成省略加号的和的形式是 . 14.计算:22()(9)|4|3π-⨯-+-= .15.计算:21522()(1)3493-⨯-+÷-= .16.已知a ,b 互为相反数,m ,n 互为倒数,则3()2019a b mn +-的值为 . 17.李芳的月工资是6500元,扣除5000元免税项目后的部分需要按3%的税率缴纳个人所得税,她应缴纳个人所得税是 元.18.a 、b 表示两个有理数,规定新运算“※”为:a ※2b ma b =+(其中m 为有理数),如果2※31=-,那么3※4的值为 . 三.解答题(共7小题) 19.计算:58126-+-+ 20.计算:5740.125128-+ 21.计算:534126918÷⨯22.计算:12(2)( 1.2)(1)75-÷-⨯-.23.学校运动会上,某班参加比赛的8名女生占全班人数的16. (1)这个班有学生多少人?(2)这个班参加比赛的男生占全班人数的14,参加比赛的男生比参加比赛的女生多几人? 24.夜来南风起,小麦覆陇黄.今年夏天,小鹏家的麦田喜获丰收,某天收割的10袋小麦,称后纪录如下(单位:千克):91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1在没带计算器的情况下,小鹏想帮父亲快速算出这10袋小麦一共多少千克.(1)小鹏通过观察发现,如果以90千克为标准,把超出的千克数记为正,不足的千克数记为负,则可写出这10袋小麦的千克数与90的差值,请你依次写出小鹏得到的这10个差值. (2)请利用(1)中的差值,求这10袋小麦一共多少千克.25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①2411264⨯=.计算过程:24两数拉开,中间相加,即246+=,最后结果264;②6811748⨯=.计算过程:68两数分开,中间相加,即6814+=,满十进一,最后结果748.(1)计算:①3211⨯=;⨯=,②7811(2)若某个两位数十位数字是a,个位数字是(10)+<,将这个两位数乘11,得到一个b a b三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.参考答案一.选择题(共10小题)1.比3-大1的数是()A.1B.2-C.4-D.1解:312-+=-,∴比3-大1的数是2-.故选:B.2.一堆煤,用了40%,还剩这堆煤的()A.40%B.60%C.60吨D.无法确定解:140%60%-=.即剩这堆煤的60%.故选:B.3.20(20)+-的结果是()A.40-B.0C.20D.40解:20(20)0+-=.故选:B.4.下列运算中正确的是()A.11|()|55-+=-B.(5)5--=-C.(5)50--=D.3(2)5--=解:A.11|().55-+=,故错误;B,(5)5--=,故错误;C.(5)510--=-,故错误;.3(2)325D--=+=,故正确.故选:D.5.计算|1|3--,结果正确的是()A.4-B.3-C.2-D.1-解:原式132=-=-.故选:C.6.计算21()36---的结果为( )A .12-B .12 C .56-D .56解:21211()36362---=-+=-.故选:A .7.计算:1(3)()(3-⨯-= )A .3-B .3C .1D .1-解:原式1313=⨯=,故选:C . 8.计算3个29的和是( ) A .239B .23C .227 D .13解:22393⨯=, 即3个29的和是23. 故选:B .9.计算1(6)()3-÷-的结果是( )A .18-B .2C .18D .2-解:1(6)()(6)(3)183-÷-=-⨯-=.故选:C .10.有76个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是1,第二个数是1-,那么这76个数的积是( ) A .23(2)-B .24(2)-C .25(2)-D .26(2)-解:先据题意写出前面一些数:1,1-,2-,1-,1,2,1,1-, 经观察发现从左向右数每排列六个数后,从第七个数开始重复出现,即这76个数是由1,1-,2-,1-,1,2这6个数组成的数组重复排列而成, 而1(1)(2)(1)124⨯-⨯-⨯-⨯⨯=-,又761264=⨯+,这说明,这76个数的和等于最后四个数:1,1-,2-,1-的积.故这76个数的积是:1225(4)(2)(2)-⨯-=-. 故选:C .二.填空题(共8小题)11.计算:2435()57⨯-= 6- .解:原式24353557=⨯-⨯, 1420=-, 6=-.故答案为:6-.12.计算:2(3)|2|---= 7 . 解:2(3)|2|--- 92=-7=,故答案为:7.13.8(11)(20)(19)-+--+-写成省略加号的和的形式是 8112019-+- . 解:8(11)(20)(19)-+--+-写成省略加号的和的形式是:8112019-+-. 故答案为:8112019-+-.14.计算:22()(9)|4|3π-⨯-+-= π- .解:22()(9)|4|3π-⨯-+-4(9)49π=⨯-+- 44π=-+- π=-,故答案为:π-.15.计算:21522()(1)3493-⨯-+÷- 3 .解:原式8153211()()3495333=-⨯-+⨯-=-=,故答案为13.16.已知a ,b 互为相反数,m ,n 互为倒数,则3()2019a b mn +-的值为 2019- .解:a,b互为相反数,m,n互为倒数,a b∴+=,1mn=,3()2019a b mn∴+-3020191=⨯-⨯02019=-2019=-,故答案为:2019-.17.李芳的月工资是6500元,扣除5000元免税项目后的部分需要按3%的税率缴纳个人所得税,她应缴纳个人所得税是45元.解:(65005000)3%-⨯15003%=⨯45=(元),即她应缴纳个人所得税是45元,故答案为:45.18.a、b表示两个有理数,规定新运算“※”为:a※2b ma b=+(其中m为有理数),如果2※31=-,那么3※4的值为 2.5-.解:a※2b ma b=+,2※31=-,2231m∴+⨯=-,解得, 3.5m=-,3∴※4 3.5324 2.5=-⨯+⨯=-,故答案为: 2.5-.三.解答题(共7小题)19.计算:58126-+-+解:原式3126=-+96=-+3=-.20.计算:5740.125 128-+解:原式57141288 =-+,534124=-,5941212=-,233=.21.计算:5341 26918÷⨯解:5341 26918÷⨯1791 63418 =⨯⨯124=.22.计算:12 (2)( 1.2)(1)75-÷-⨯-.解:12 (2)( 1.2)(1)75 -÷-⨯-1557765 =-⨯⨯52=-.23.学校运动会上,某班参加比赛的8名女生占全班人数的16.(1)这个班有学生多少人?(2)这个班参加比赛的男生占全班人数的14,参加比赛的男生比参加比赛的女生多几人?解:(1)1886486÷=⨯=(人),答:这个班有学生48人;(2)148124⨯=(人),1284-=(人),答:参加比赛的男生比参加比赛的女生多4人.24.夜来南风起,小麦覆陇黄.今年夏天,小鹏家的麦田喜获丰收,某天收割的10袋小麦,称后纪录如下(单位:千克):91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1在没带计算器的情况下,小鹏想帮父亲快速算出这10袋小麦一共多少千克.(1)小鹏通过观察发现,如果以90千克为标准,把超出的千克数记为正,不足的千克数记为负,则可写出这10袋小麦的千克数与90的差值,请你依次写出小鹏得到的这10个差值.(2)请利用(1)中的差值,求这10袋小麦一共多少千克.解:(1)1+,1+, 1.5+,1-, 1.2+, 1.3+, 1.3-, 1.2-, 1.8+, 1.1+;(2)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1+++-++--++, 5.4=,9010 5.4905.4⨯+=(千克), 答:这10袋小麦一共905.4千克.25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①2411264⨯=.计算过程:24两数拉开,中间相加,即246+=,最后结果264;②6811748⨯=.计算过程:68两数分开,中间相加,即6814+=,满十进一,最后结果748.(1)计算:①3211⨯= 352 ,②7811⨯= ;(2)若某个两位数十位数字是a ,个位数字是(10)b a b +<,将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是 ,十位数字是 ,个位数字是 ;(用含a 、b 的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理. 解:(1)①325+= 3211352∴⨯=②7815+= 7811858∴⨯=故答案为352,858.(2)两位数十位数字是a ,个位数字是b ,这个两位数乘11, ∴三位数百位数字是a ,十位数字是a b +,个位数字是b .故答案为:a ,a b +,b .(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数, 若两位数十位数为a ,个位数为b , 则11(10)a b +10(10)(10)a b a b =+++ 1001010a b a b =+++10010()a a b b =+++根据上述代数式,可以总结出规律口诀为: “头尾一拉,中间相加,满十进一”.。