4线性多步方法
- 格式:ppt
- 大小:483.50 KB
- 文档页数:13
线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。
线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。
⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。
解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。
在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。
⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。
从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。
以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。
例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。
每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。
问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。
第六章 常微分方程的数值解法 §6.0 引言§6.1 算法构造的主要途径§6.2 Runge-Kutta Method 算法§6.3 线性多步法§6.4 线性多步法的一般形式§6.5 算法的稳定性、收敛性§6.0 引 言1. 主要考虑如下的一阶常微分方程初值问题的求解:()()00,dy f x y dx y x y ⎧=⎪⎪⎨=⎪⎪⎩ 微分方程的解就是求一个函数y=y(x),使得该函数满足微分方程并且符合初值条件。
2. 例如微分方程:xy '-2y=4x ;初始条件: y(1)=-3。
于是可得一阶常微分方程的初始问题24(1)3y y x y ⎧'=+⎪⎨⎪=-⎩。
显然函数y(x)=x 2-4x 满足以上条件,因而是该初始问题的微分方程的解。
3. 但是,只有一些特殊类型的微分方程问题能够得到用解析表达式表示的函数解,而大量的微分方程问题很难得到其解析解,有的甚至无法用解析表达式来表示。
因此,只能依赖于数值方法去获得微分方程的数值解。
4. 微分方程的数值解:设微分方程问题的解y(x)的存在区间是[a,b ],初始点x 0=a ,将[a,b ]进行划分得一系列节点x 0 , x 1 ,...,x n ,其中a= x 0< x 1<…< x n =b 。
y(x)的解析表达式不容易得到或根本无法得到,我们用数值方法求得y(x)在每个节点x k 的近似值y(x k ),即y≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。
如图所示:§6.1 算法构造的主要途径x 0 x 1 x 2 ...1 欧拉公式1.1 构造的思想:利用差商代替一阶导数,即010()()x x y x y x dy dx h =-≈,则 1000()()(,)y x y x f x y h -≈。
数值计算方法课后习题答案吕同富【篇一:《数值计算方法》(二)课程教学大纲】txt>课程编号: l124008课程类别:专业必修学分数: 3 学时数:48 适用专业:信息与计算科学应修(先修)课程:数学分析、高等代数一、本课程的地位和作用数值分析(二)为数值分析课程的第二部分,它是信息与计算科学专业的一门专业必修课。
主要内容包括函数最佳逼近、数值积分、数值微分、常微分方程数值解法。
通过本课程的学习,学生将初步具备用计算机去有效地解决实际问题的能力。
二、本课程的教学目标通过本课程的学习,使学生了解和掌握求解函数最佳逼近、数值积分、数值微分、常微分方程等问题所涉及的各种常用的数值计算方法、数值方法的构造原理及适用范围。
本课程坚持理论与实践教学并重的原则,理论上主要讲述求解函数最佳逼近、数值积分、数值微分、常微分方程等问题的基本理论和基本方法。
与此同时,通过上机实验加深学生对各种计算方法的理解,为今后用计算机去有效地解决实际问题打下基础。
三、课程内容和基本要求(“*”记号标记难点内容,“▽”记号标记重点内容,“▽*”记号标记既是重点又是难点的内容)第六章函数最佳逼近 1.教学基本要求(1)理解:几类常用的正交多项式。
(2)掌握:最佳一致逼近和最佳平方逼近。
(3)掌握:曲线拟合的最小二乘法。
2.教学内容(1)*正交多项式。
(2)▽*最佳一致逼近。
(3)▽最佳平方逼近。
(4)正交多项式的逼近性质。
(5)▽曲线拟合的最小二乘法。
第七章数值积分 1.教学基本要求(1)理解:机械求积公式的基本思想、插值型求积公式的特点。
(2)掌握:newton-cotes求积公式、复合求积公式。
(3)掌握:romberg求积公式、gauss求积公式。
2.教学内容(1)*机械求积公式。
(2)▽newton-cotes求积公式。
(3)▽复合求积公式。
(4)变步长求积公式。
(5)▽romberg求积公式。
(6)▽*gauss求积公式第八章数值微分 1.教学基本要求(1)了解:数值微分的中点法。
时间积分以三维非定常可压缩无粘流的Euler 方程组为例。
在直角坐标系下,流动控制方程的形式为0U F G Ht x y z∂∂∂∂+++=∂∂∂∂ (1)1. 半离散化方法将计算区域进行空间离散化,则在每一个网格点上有()ijk ijk dU t F G H dtx yz ⎛⎫∂∂∂=-++ ⎪∂∂∂⎝⎭ (2)将上式右端用适当的差分格式近似代替,即ijk ijk F G H R x yz ⎛⎫∂∂∂=-++ ⎪∂∂∂⎝⎭ 就得到半离散化格式()ijk ijk dU t R dt=(3)设整个计算区域内共有M 个空间网格点,对所有的网格点列出(2)式并将它们联立在一起。
为此,将所有的M 个未知向量 ()ijk U t 组合在一起,形成总体的未知向量 ()Q Q t = ,再将所有的M 个右端向量 ijk R 组合在一起,形成总体的右端项(向量)()R R Q = ,就得到常微分方程组()()dQ t R Q dt=(4)根据与控制方程组(1)相应的初始条件,可为方程组(4)给定初值,使其成为常微分方程组初值问题。
2. 显式Runge-Kutta 方法显式Runge-Kutta 方法的一般形式为()()()()1112211122,11 2,3,,+--⎧=+∆+++⎪⎪=⎪⎪⎨⎪⎡⎤=+∆+++⎣⎦⎪⎪=⎪⎩n n s s n n r r r r r r Q Q t b K b K b K K R Q K R Q t a K a K a K r s (5)这里 ()n n Q Q t = 是 n t t = 时刻的流场解(已知), ()()11n n n Q Q t Q t t ++==+∆ 则是 1n t t += 时刻的流场解(待求),t ∆ 为时间步长。
(5)式中,s 称为方法的步数。
若(5)式的(时间)精度为p 阶,则称(5)式为s 步p 阶显式Runge-Kutta 方法。
理论上已经证明了s 步显式Runge-Kutta 方法的最高所能达到的精度,如下表所示。