高中数学竞赛专题讲座---数列与和式不等式(1)
- 格式:doc
- 大小:580.50 KB
- 文档页数:7
高中数学竞赛辅导讲座-数列(一)高中数学竞赛辅导讲座---数列一、学习目标数列是高中数学的重要内容之一,也是高考及高中数学联赛考查的重点。
而且往往还以解答题的形式出现,所以我们在复习时应给予重视。
近几年的数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。
二、知识要点(一)、数列的基础知识1.数列{an}的通项an与前n项的和Sn的关系它包括两个方面的问题:一是已知Sn求an,二是已知an求Sn; 1.1 已知Sn求an(n?1)?S1对于这类问题,可以用公式an=?.S?S(n?2)n?1?n1.2 已知an求Sn这类问题实际上就是数列求和的问题。
数列求和一般有三种方法:颠倒相加法、错位相减法和通项分解法。
?a?a2.递推数列:?1,解决这类问题时一般都要与两类特殊数列相联a?f(a)n?n?1系,设法转化为等差数列与等比数列的有关问题,然后解决。
(二)、等差数列与等比数列1.定义:数列{an}为等差数列?an+1-an=d?an+1-an=an-an-1;数列{bn}为等比数列?bn?1?q?bn?1?bn。
anbnbn?12.通项公式与前n项和公式:数列{an}为等差数列,则通项公式1(共16页)an=a1+(n-1)d, 前n项和Sn=n(a1?an)n(n?1)d=na1?.22(q?1)?na1?数列{an}为等比数列,则通项公式an=a1qn-1, 前n项和Sn=?a1(1?qn).(q?1)?1?q?3.性质:每连续m项的和若m+n=p+q,则am+an=ap+aq 仍组成等差数列,即 Sm,S2m-Sm,S3m-S2m组成等差数列每连续m项的和若m+n=p+q,则aman=apaq 仍组成等比数列,即Sm,S2m-Sm,S3m-S2m组成等比数列(4)函数的思想:等差数列可以看作是一个一次函数型的函数;等比数列可以看作是一个指数函数型的函数。
高中数学奥赛讲义:竞赛中常用的重要不等式第一篇:高中数学奥赛讲义:竞赛中常用的重要不等式高中数学奥赛讲义:竞赛中常用的重要不等式【内容综述】本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用【要点讲解】目录§1 柯西不等式§2 排序不等式§3 切比雪夫不等式★ ★ ★§1。
柯西不等式定理1 对任意实数组恒有不等式“积和方不大于方和积”,即等式当且仅当本不等式称为柯西不等式。
时成立。
思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。
证明1∴右-左=当且仅当思路2 注意到证明2当当定值时,等式成立。
时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。
时等式成立;时,注意到=1故当且仅当且(两次放缩等式成立条件要一致)即同号且常数,亦即思路3 根据柯西不等式结构,也可利用构造二次函数来证明。
证明3 构造函数由于。
恒非负,故其判别式即有等式当且仅当若常数时成立。
柯西不等式显然成立。
例1 证明均值不等式链:调和平均数≤算术平均数≤均方平均数。
证设本题即是欲证:本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法(1)先证注意到此即由柯西不等式,易知②成立,从而①真欲证①,即需证②①(11)再证欲证③,只需证, ③而④即要证④⑤(注意由柯西不等式,知⑤成立.(Ⅰ)(Ⅱ)中等式成立的条件都是)即各正数彼此相等.说明:若再利用熟知的关系(★)(其中,结合代换,即当且仅当式链时,等式成立,说明★的证明参见下节排序不证式或数学归纳法,这样就得到一个更完美的均值不等其中等式成产条件都是§2.排序不等式定理2设有两组实数,.满足则(例序积和)(乱序积和)(须序积和)其中是实数组时成立。
一个排列,等式当且仅当或说明本不等式称排序不等式,俗称例序积和乱序积和须序积和。
证法一.逐步调整法首先注意到数组也是有限个数的集合,从而也只有有限个不同值,故其中必有最大值和最小值(极端性原理)。
高二数学竞赛班一试讲义第2讲 数列求和与数列不等式班级 姓名一、知识要点:1.公式法:适用于等差、等比数列求和或可转化为等差、等比数列求和的数列. 2.错位相减法:若{}n a 是等差数列,{}n b 是等比数列,则求数列{}n n a b 的前n 项和n S ,常用错位相减法。
3.分组求和法:把一个数列分成几个可以直接求和的数列;4.裂项相消法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项。
5.倒序相加法:类似于等差数列前n 项和公式的推导方法.6.并项求和法:把数列的连续若干项并在一起组成一项,再求这些大项的和7.数列求和不等式的证明方法:均值不等式法,利用有用结论,部分项放缩,添减项放缩,利用单调性放缩,换元放缩,递推放缩,转化为加强命题放缩,分奇偶项讨论,数学归纳法。
二、例题精析例1.(1)已知数列{}n a 的通项公式2293932n n n a n n -=--,求数列{}n a 的前n 项的和n S 。
(2)已知数列{}n a 的通项公式12(21)(21)nn n na +=--,求数列{}n a 的前n 项的和n S 。
例2.数列数列{}n a :1,2,2,3,3,3,4,4,4,4,,L 即正整数k 有k 个,自小到大排列而成, 求n a 及n S .例3.设10<<a ,定义a a a a a nn +=+=+1,111,求证:对一切正整数n 有.1>n a例4.(1)已知n a n =,1()2nn b =,求证:11222n n a b a b a b +++<L 。
(2)已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21, 求证:.2121)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题)例5.在数列{}n x 中,已知14,2)n x x n ==≥,求证: (1)12333n n x x --≤-; (2)11223()3()33n n n x ---≤≤+。
高中数学竞赛讲义(五)──数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。
其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。
定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。
若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等比数列,若对任意的正整数n,都有,则{a n}称为等比数列,q叫做公比。
定理3 等比数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。
定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。
第九章 不等式一、基础知识不等式的基本性质:(1)a>b Ûa-b>0; (2)a>b, b>c Þa>c ; (3)a>b Þa+c>b+c ; (4)a>b, c>0Þac>bc ; (5)a>b, c<0Þac<bc; (6)a>b>0, c>d>0Þac>bd; (7)a>b>0, n ∈N +Þa n >b n ; (8)a>b>0, n ∈N +Þn n b a >; (9)a>0, |x|<a Û-a<x<a, |x|>a Ûx>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b ∈R ,则(a-b)2≥0Ûa 2+b 2≥2ab; (12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz ³ 前五条是显然的,以下从第六条开始给出证明。
(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若n n b a £,由性质(7)得n n n n b a )()(£,即a ≤b ,与a>b 矛盾,所以假设不成立,所以n n b a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x 3+b 3+c 3-3abc=(a+b)3+c 3-3a 2b-3ab 2-3abc=(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。
竞赛中的数论问题的思考方法一. 条件的增设对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。
1. 大小顺序条件与实数范围不同,若整数x ,y 有大小顺序x <y ,则必有y ≥x +1,也可以写成y =x +t ,其中整数t ≥1。
例1. (IMO-22)设m ,n 是不大于1981的自然数,1)(222=--m nm n ,试求22n m +的最大值。
解:易知当m =n 时,222=+n m 不是最大值。
于是不访设n >m ,而令n =m +u 1,n >u 1≥1,得-2(m -1mu 1)22112=--u mu 。
同理,又可令m = u 1+ u 2,m >u 2≥1。
如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。
故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。
例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。
因为所求的都是整数,所以原不等式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12(3)2(222≤-+-+-c b ba ,从而只有a =1,b =2,c =1。
2. 整除性条件对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ∤y ,则可令y =tx +r ,0<r ≤|x |-1。
这里字母t ,r 都是整数。
进一步,若a q |,b q |且a b >,则q a b +≥。
专题一 数学竞赛中的数列问题东北育才学校 张雷数学竞赛中的数列问题可以分为以下三类(1) 递推数列问题:其中二阶递归数列是数学竞赛中非常重要的内容.既是高考中递归数列的延伸,又是数学竞赛的基础知识.其形式为n n n qa pa a +=++12(p 、q 为常数).且已知1a 和.2a 求}{n a 的通项公式.我们通常采用特征方程法.即设βα,为方程q px x +=2的二根.则βα≠时,.n n n B A a βα+=其中A 、B 为待定系数,由1a 和2a 确定;如果βα=,则.)(1-+=n n n B A a α其中A 、B 为待定系数,由1a 和2a 确定. 除此之外,还有不动点法等.(2) 数列不等式问题(3)数列综合应用问题:数列问题丰富多彩,常与不等式、数论、组合、函数方程等相结合,这需要我们灵活的解题能力和全面的数学知识.【范例选讲】一、 递推数列问题1. (2008年东南竞赛)设数列{}n a 满足:111,2(12),1,2,3,n n n a a a n n +==+⋅+=.试求通项n a 的表达式.解:将所给递推关系的两边同时除以12n +,得111,2222n n n n n a a n n+++=++ 即111,2222n n n n n a a n n+++-=+ 所以 1111112222nn ni ii ii i i i a a ii +++===⎛⎫-=+ ⎪⎝⎭∑∑∑, 111111(1)2242n n n i i a a n n i+++=+-=+∑, 即 111(1)112.4222n n n n i i n n i a ++=+⎡⎤=++⎢⎥⎣⎦∑令12n n i i i S ==∑,则1122nn i i i S -==∑, 11111112122222nn n n n n n i i i i i i i i i i i i S S S +---====-=-=-=-∑∑∑∑111111211112222n n i i i n i i -+---=+--⎛⎫=-+- ⎪⎝⎭∑1121112111()222212nn n i n i n n --=⎡⎤=-+=-+-⎢⎥⎣⎦-∑112112222n n nn n -+=-+-=-故 111(1)1123(1)222(1)4222242n n n n n n n n n n n a n +++⎡++⎤++⎛⎫⎡⎤=++-=+-≥ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,从而 222(6)1(2)n n a n n n n -=-+--≥.2.(2009年高中数学联赛)已知p ,q (0q ≠)是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,12n n n a pa qa --=-(n =3,4,…). (I )求数列{}n a 的通项公式(用α,β表示); (II )若1p =,14q =,求{}n a 的前n 项和. 【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列. 数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以21n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠,11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--. 于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-.……………………………………………………………………………15分 方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故()1n n a n α=+.……………………………………………………5分 ②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (2000年全国高中数学联赛)设数列}{n a 和{b n }满足10=a ,00=b ,且,2,1,0 47836711=⎩⎨⎧-+=-+=++n b a b b a a n n n n n n 证明:n a ),,2,1,0( =n 是完全平方数.分析 我们能否得到}{n a 的递推关系,先求出通项看一看. 证明 由于6371+-=+n n n a a b 则.637121+-=+++n n n a a b 代入下式整理得: 61412--=++n n n a a a 即).21()21(142112---=-++n n n a a a 又10=a ,.41=a 则由特征方程法可求得: n n a )347(41+=21)347(41+-+n . 由于 7±43=(2±2)3 ,所以 2])32(21)32(21[n n n a -++=设n n n c )32(21)32(21-++=,则10=c ,.21=c由特征方程法可知:}{n c 满足递推关系.412n n n c c c -=++故由0c ,1c 为整数可推得:n c 为整数,于是n a 为完全平方数. 二.数列不等式问题4、(2007年全国高中数学联赛)设∑=-+=nk n k n k a 1)1(1,求证:当正整数2≥n 时,n n a a <+1.证明 由于)111(11)1(1k n k n k n k -+++=-+,因此∑=+=n k n kn a 1112,于是,对任意的正整数2≥n ,有∑∑+==++-+=-1111121111)(21n k n k n n k n k n a a0)11()2)(1(1)2)(1(11)2111(11>-++=++-+-+=∑∑==nk n k kn n n n k n n ,即n n a a <+1 5.(2003年女子竞赛)数列{}n a 定义如下:2112,1,1,2,n n n a a a a n +==-+=,证明:20031220031111112003a a a -<+++< 证:由题设得11(1)n n n a a a +-=-111111n n na a a +∴=---122003122320032004120042004111111111()()()1111111111111a a a a a a a a a a a a ∴+++=-+-++-------=-=----易知数列{}n a 是严格递增的,20041a >,故1220031111a a a +++<为了证明不等式左边成立,只需证明2003200412003a -> 由已知用归纳法可得1111n n n a a a a +-=+,及11,(1)n n n a a a n n ->≥从而结论成立。
高中数学竞赛专题讲座之二:数列一、选择题部分1.(2006年江苏)已知数列{}n a 的通项公式2245n a n n =-+,则{}n a 的最大项是(B )A .1aB .2aC .3aD .4a2.(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a =( )A .98B .99C .100D .101 3.(2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 (A ) A .2007 B .2008 C .2006 D .10044.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。
则满足不等 式|S n -n-6|<1251的最小整数n 是 ( )A .5B .6C .7D .8解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为-31的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)=311])31(1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1>250,∴满足条件的最小整数n=7,故选C 。
5.(集训试题)给定数列{x n },x 1=1,且x n+1=nn x x -+313,则∑=20051n nx= ( )A .1B .-1C .2+3D .-2+3解:x n+1=n n x x 33133-+,令x n =tan αn ,∴x n+1=tan(αn +6π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1, x 5=-2+3,x 6=2-3, x 7=1,……,∴有∑===2005111n nx x。
重要不等式应用汇总1. 排序不等式:设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++- 2. 均值不等式:当+∈R a i (n i ,2,1=)时,有:na a a na a a a a a a a a nn nnn n22221212121111+++≤+++≤≤+++3. 柯西不等式:设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni in i i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ. 从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式 变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni iib a b a(2)设i i b a ,同号,且,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni ii b a a b a4. 琴生(Jensen )不等式:若)(x f 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.幂均值不等式:设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=6. 切比雪夫不等式:设两个实数组n a a a ≤≤≤...21,n b b b ≤≤≤...21则)....(1)...(12211111121n n ni in i i n n n b a b a b a nnbna b a b a b a n+++≤⋅≤+++∑∑==- (该不等式的证明只用排序不等式及∑∑==⋅n i ini ib a 11的表达式就可得证)7.一个基础不等式:y x y x )1(1αααα-+≤- 其中]1,0[,0,∈≥αy x ,若y x ,中有一个为零,则结论成立8.赫尔德(Holder )不等式:设 ).,...2,1(0,n k b a k k =≥ 1,≥q p 且111=+qp ,则 qnk q kpnk p kknk k b a ba 11111)()(∑∑∑===⋅≤(等号成立当且仅当q k p k tb a =)*9.与对数函数有关的一个不等式:x x xx<+<+)1ln(1, .0>x (该不等式的证明利用导数的符号得出函数的单调性)*10.三角函数有关的不等式:x x x tan sin << )2,0(π∈x*11.绝对值不等式: 设C a a a b a n ∈ ,,,,21,则有:│|a |-|b |│≤│a +b │≤│a │+│b │;│n a a a +++ 21│≤n a a a +++ 21*12.舒尔(Schur )不等式:设+∈R z y x ,,,则0))(())(())((≥--+--+--y z x z z z y x y y z x y x x *13. 闵可夫斯基(Minkowski )不等式:如果n x x x ,......,,21与n y y y ,......,,21都是非负实数1≥p , 那么pni p ipni pippi ni i y x y x 111111)()())((∑∑∑===+≤+14. 贝努利不等式(1)设2,,2,1,1≥=->n n i x i 且同号,则∑∏==+>+ni in i ixx 111)1((2)设1->x ,则(ⅰ)当10<<α 时,有x x αα+≤+1)1(;(ⅱ)当1>α或0<α 时,有x x αα+≥+1)1(,上两式当且仅当0=x 时等号成立。
高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。
希望对广大喜爱竞赛数学的师生有所帮助。
不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。
不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。
第九章 不等式一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0; (2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ; (4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc; (6)a>b>0, c>d>0⇒ac>bd;(7)a>b>0, n ∈N +⇒a n>b n; (8)a>b>0, n ∈N +⇒n n b a >; (9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a, b ∈R ,则(a-b)2≥0⇔a 2+b 2≥2ab;(12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz ≥前五条是显然的,以下从第六条开始给出证明。
(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若n n b a ≤,由性质(7)得n n n n b a )()(≤,即a ≤b ,与a>b 矛盾,所以假设不成立,所以n n b a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x 3+b 3+c 3-3abc=(a+b)3+c 3-3a 2b-3ab 2-3abc=(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca )=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。
全国高中数学竞赛专题-不等式证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性质分类罗列如下: 不等式的性质:.0,0<-⇔<>-⇔≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: 1a b b a <⇔>对称性2c b c a b a +>+⇔>加法保序性3.0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>>4*).(,0N n b a b a b a nn nn ∈>>⇒>>对两个以上不等式进行运算的性质.1c a c b b a >⇒>>,传递性.这是放缩法的依据. 2.,d b c a d c b a +>+⇒>> 3.,d b c a d c b a ->-⇒<> 4.,,0,0bc ad dbc a cd b a >>⇒>>>> 含绝对值不等式的性质:1.)0(||22a x a a x a a x ≤≤-⇔≤⇔>≤ 2.)0(||22a x a x a x a a x -≤≥⇔≥⇔>≥或 3||||||||||||b a b a b a +≤±≤-三角不等式.4.||||||||2121n n a a a a a a +++≤+++证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.因此,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始;1.比较法比较法可分为差值比较法和商值比较法; 1差值比较法原理:A - B >0A >B .例1 设a, b, c ∈R +, 试证:对任意实数x, y, z, 有x 2+y 2+z 2.))()((2⎪⎪⎭⎫ ⎝⎛++++++++≥xz b a c yz a c b xy c b a a c c b b a abc 证明:左边-右边= x 2+y 2+z 2222()()()()()()ab bc caxy yz xz b c c a a b c a a b b c ---++++++所以左边≥右边,不等式成立;2商值比较法原理:若>1,且B>0,则A>B;例2 若a<x<1,比较大小:|log a 1-x|与|log a 1+x|.解:因为1-x ≠1,所以log a 1-x ≠0,|)1(log ||)1(log |x x a a -+=|log 1-x 1+x|=-log 1-x 1+x=log 1-x x +11>log 1-x 1-x=1因为0<1-x 2<1,所以x+11>1-x>0, 0<1-x<1.所以|log a 1+x|>|log a 1-x|.2.分析法即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……;例3 已知a, b, c ∈R +,求证:a+b+c-33abc ≥a+b .2ab -证明:要证a+b+c 33b a c ⋅⋅-≥a+b .2ab -只需证332abc ab c ≥+, 因为33332abc b a c ab ab c ab c =⋅⋅≥++=+,所以原不等式成立;例4 已知实数a, b, c 满足0<a ≤b ≤c ≤21,求证:.)1(1)1(1)1(2a b b a c c -+-≤- 证明:因为0<a ≤b ≤c ≤21,由二次函数性质可证a1-a ≤b1-b ≤c1-c, 所以)1(1)1(1)1(1c c b b a a -≥-≥-,所以)1(2)1(2)1(1)1(1c c b b b b a a -≥-≥-+-,所以只需证明)1(1)1(1)1(1)1(1a b b a b b a a -+-≤-+-,也就是证)1)(1()1)(1(b a b ba b a a b a ---≤---,只需证ba-b ≤aa-b,即a-b 2≥0,显然成立;所以命题成立;3.综合法例5 若a,b,c>0,求证:abc≥a+b -cb+c-ac+a-b; 证明:∵a+b -c+b+c-a=2b >0, b+c-a+c+a-b=2c >0,c+a-b+a+b-c=2a >0,∴a+b -c,b+c-a,c+a-b 中至多有一个数非正.1当a+b-c,b+c-a,c+a-b 中有且仅有一个数为非正时,原不等式显然成立. 2a+b-c,b+c-a,c+a-b 均为正时,则()()()()2a b c b c a a b c b c a b +-++-+-+-≤=同理()()()(),,a b c a c b a b c a a c b c +-+-≤+-+-≤三式相乘得abc ≥a+b -cb+c-ac+a-b例6 已知△ABC 的外接圆半径R=1,S △ABC =,a,b,c 是△ABC 的三边长,令S=,t=;求证:t>S;解:由三角形面积公式:1sin 2bc A .正弦定理:a/sinA=2R.可得abc=1.所以bc ac ab aabc b abc c abc a b c 所以t>s;4.反证法例7 设实数a 0, a 1,…,a n 满足a 0=a n =0,且a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0,…, a n-2-2a n-1+a n ≥0,求证a k ≤0k=1, 2,…, n-1.证明:假设a k k=1, 2,…,n-1 中至少有一个正数,不妨设a r 是a 1, a 2,…, a n-1中第一个出现的正数,则a 1≤0, a 2≤0,…, a r-1≤0, a r >0. 于是a r -a r-1>0,依题设a k+1-a k ≥a k -a k-1k=1, 2, …, n-1;所以从k=r 起有a n -a k-1≥a n-1-a n-2 ≥…≥a r -a r-1>0.因为a n ≥a k-1≥…≥a r+1≥a r >0与a n =0矛盾;故命题获证;5.数学归纳法例8 对任意正整数n ≥3,求证:n n+1>n+1n.证明:1当n=3时,因为34=81>64=43,所以命题成立;2设n=k 时有k k+1>k+1k,当n=k+1时,只需证k+1k+2>k+2k+1,即12)2()1(++++k k k k >1.因为1)1(1>++k k k k ,所以只需证12)2()1(++++k k k k kk k k )1(1+>+, 即证k+12k+2>kk+2k+1,只需证k+12>kk+2,即证k 2+2k+1>k 2+2k. 显然成立; 所以由数学归纳法,命题成立;6.分类讨论法例9 已知x, y, z ∈R +,求证:.0222222≥+-++-++-yx x z x z z y z y y x 证明:不妨设x ≥y, x ≥z.ⅰx ≥y ≥z,则zy z x y x +≤+≤+111,x 2≥y 2≥z 2,由排序原理可得 yx x x z z z y y y x z x z y z y x +++++≥+++++222222,原不等式成立; ⅱx ≥z ≥y,则zy y x z x +≤+≤+111,x 2≥z 2≥y 2,由排序原理可得 yx x x z z z y y y x z x z y z y x +++++≥+++++222222,原不等式成立; 7.放缩法即要证A>B,可证A>C 1, C 1≥C 2,…,C n-1≥C n , C n >Bn ∈N +.例10 已知a, b, c 是△ABC 的三条边长,m>0,求证:.mc cm b b m a a +>+++ 证明:m b a m m b a b a m b a b m b a a m b b m a a ++-=+++=+++++>+++1mc cm c m +=+->1 因为a+b>c,得证; 8.引入参变量法例11 已知x, y ∈R +, l, a, b 为待定正数,求fx, y=2323yb x a +的最小值;解: 设k x y =,则k kly k l x +=+=1,1,fx,y==⎪⎪⎭⎫⎝⎛++23322)1(k b a l k 22333233333211111l k a k b k b k b k a k a b a l ≥⎪⎪⎪⎪⎭⎫ ⎝⎛+⋅+⋅+⋅++++ a 3+b 3+3a 2b+3ab 2=23)(l b a +,等号当且仅当y bx a =时成立;所以fx, y min =.)(23lb a + 例12 设x 1≥x 2≥x 3≥x 4≥2, x 2+x 3+x 4≥x 1,求证:x 1+x 2+x 3+x 42≤4x 1x 2x 3x 4. 证明:设x 1=kx 2+x 3+x 4,依题设有31≤k ≤1, x 3x 4≥4, 原不等式等价于1+k 2x 2+x 3+x 42≤4kx 2x 3x 4x 2+x 3+x 4,即kk 4)1(2+x 2+x 3+x 4 ≤x 2x 3x 4,因为fk=k+k 1在⎥⎦⎤⎢⎣⎡1,31上递减, 所以k k 4)1(2+x 2+x 3+x 4=)21(41++kk x 2+x 3+x 4≤42313++·3x 2=4x 2≤x 2x 3x 4. 所以原不等式成立;9.局部不等式例13 已知x, y, z ∈R +,且x 2+y 2+z 2=1,求证:222111zz y y x x -+-+-.233≥ 证明:先证.233122x xx ≥- 因为x1-x 2=3323221)1(2213222=⎪⎭⎫ ⎝⎛⋅≤-⋅x x , 所以.233332)1(122222x x x x x x x =≥-=- 同理222331y yy ≥-,222331z z z ≥-, 所以.233)(233111222222=++≥-+-+-z y x z z y y x x 例14 已知0≤a, b, c ≤1,求证:111+++++ab cca b bc a ≤2; 证明:先证.21cb a abc a ++≤+ ①即a+b+c ≤2bc+2. 即证b-1c-1+1+bc ≥a.因为0≤a, b, c ≤1,所以①式成立; 同理.21,21cb a cab c c b a b ca b ++≤+++≤+ 三个不等式相加即得原不等式成立;10.利用函数的思想例15 已知非负实数a, b, c 满足ab+bc+ca=1,求fa, b, c=a c cb b a +++++111的最小值; 解:当a, b, c 中有一个为0,另两个为1时,fa, b, c=25,以下证明fa, b, c ≥25.不妨设a ≥b ≥c,则0≤c ≤33, fa, b, c=.111222ba cb ac c ++++++ 因为1=a+bc+ab ≤4)(2b a ++a+bc,解关于a+b 的不等式得a+b ≥212+c -c. 考虑函数gt=tc t 112++, gt 在+∞+,12c 上单调递增;又因为0≤c ≤33,所以3c 2≤1. 所以c 2+a ≥4c 2. 所以2)1(2c c -+≥.12+c 所以fa, b, c=b a c b a c c ++++++111222≥)1(211)1(2122222c c c c c c c -+++-+++ =1112222+++++c cc c c =21321112222+-+⎪⎪⎭⎫ ⎝⎛+++c c c c ≥231422c c ++-下证≥++-c c )11(320 ① ⇔+≥+⇔1332c c c 2+6c+9≥9c 2+9⎪⎭⎫⎝⎛-⇔c c 43≥0 .43≤⇔c因为4333<≤c ,所以①式成立;所以fa, b, c ≥25,所以fa, b, c min =.25 11.构造法例16 证明:≤;提示:构造出x,0到两定点的距离之差,并利用数形结合的方法得知两边差小于第三边且三点共线时取最大值,从而结论得证;12.运用着名不等式1平均值不等式:设a 1, a 2,…,a n ∈R +,记H n =na a a n11121+++ , G n =n n a a a 21, A n =12,na a a n+++22212nn a a a Q n+++=则H n ≤G n ≤A n ≤Q n . 即调和平均≤几何平均≤算术平均≤平方平均;其中等号成立的条件均为a 1=a 2=…=a n .当n=2时,平均值不等式就是已学过的基本不等式及其变式,所以基本不等式实际上是均值不等式的特例证明:由柯西不等式得A n ≤Q n ,再由G n ≤A n 可得H n ≤G n ,以下仅证G n ≤A n .1当n=2时,显然成立;2设n=k 时有G k ≤A k ,当n=k+1时,记k k k a a a a ++1121 =G k+1.因为a 1+a 2+…+a k +a k+1+k-1G k+1≥k k k k k k G a k a a a k 11121-++⋅+≥==+-++k kk k k k k G k G a a a k 22121112122 2kG k+1,所以a 1+a 2+…+a k+1≥k+1G k+1,即A k+1≥G k+1. 所以由数学归纳法,结论成立;例17 利用基本不等式证明.222ca bc ab c b a ++≥++ 思路分析左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换..的方法. 略解ca a c bc c b ab b a 2,2,2223222≥+≥+≥+同理;三式相加再除以2即得证. 评述1利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.如n n x x x x x x x x x +++≥+++ 2112322221,可在不等式两边同时加上.132x x x x n ++++再如证)0,,(256)())(1)(1(32233>≥++++c b a c b a c b c a b a 时,可连续使用基本不等式.2基本不等式有各种变式 如2)2(222b a b a +≤+等.但其本质特征不等式两边的次数及系数是相等的.如上式左右两边次数均为2,系数和为1.例18 已知,0,,1≥=+b a b a 求证:.8144≥+b a 思路分析不等式左边是a 、b 的4次式,右边为常数81,如何也转化为a 、b 的4次式呢.略解要证,8144≥+b a 即证.)(81444b a b a +≥+ 2柯西Cavchy 不等式:设1a 、2a 、3a ,…,n a 是任意实数,则等号当且仅当k ka b i i (=为常数,),,2,1n i =时成立.证明:不妨设),,2,1(n i a i =不全为0,i b 也不全为0因为i a 或i b 全为0时,不等式显然成立.记A=22221n a a a +++ ,B=22221n b b b +++ .且令),,,2,1(,n i Bby A a x i i i i ===则.1,12222122221=+++=+++n n y y y x x x 原不等式化为.12211≤+++n n y x y x y x即≤+++)(22211n n y x y x y x 2222122221n n y y y x x x +++++++ .它等价于.0)()()(2222211≥-++-+-n n y x y x y x其中等号成立的充要条件是).,,2,1(n i y x i i == 从而原不等式成立,且等号成立的充要条件是).(BA k ka b i i == 变式1:若a i ∈R , b i ∈R , i=1, 2, …, n,则.)()()(212112∑∑∑===≥ni i ni i ni iib a b a 等号成立条件为a i =λb i ,i=1, 2, …, n;变式2:设a i , b i 同号且不为0i=1, 2, …, n,则.)(1211∑∑∑===≥ni ii ni i ni iiba ab a 等号成立当且仅当b 1=b 2=…=b n .例19 设+∈R x x x n ,,,21 ,求证:.211221322221n n n n x x x x x x x x x x x +++≥++++-思路分析 注意到式子中的倒数关系,考虑应用柯西不等式来证之. 评述注意到式子中的倒数关系,考虑应用柯西不等式来证之.详解 ∵0,,,21>n x x x ,故由柯西不等式,得2111323212)(x x x x x x x x x x x x n nn n ⋅+⋅++⋅+⋅≥- 2121)(n n x x x x ++++=- ,∴.211221322221n n n n x x x x x x x x x x x +++≥++++-评述这是高中数学联赛题,还可用均值不等式、数学归纳法、比较法及分离系数法和构造函数法等来证之.3排序不等式:又称排序原理设有两个有序数组n a a a ≤≤≤ 21及.21n b b b ≤≤≤ 则n n b a b a b a +++ 2211同序和jn n j j b a b a b a +++≥ 2211乱序和1121b a b a b a n n n +++≥- 逆序和其中n j j j ,,,21 是1,2,…,n 的任一排列.当且仅当n a a a === 21或n b b b === 21时等号对任一排列n j j j ,,,21 成立.证明:不妨设在乱序和S 中n j n ≠时若n j n =,则考虑1-n j ,且在和S 中含有项),(n k b a n k ≠则.n n jn n j n n k b a b a b a b a n +≤+ ① 事实上,左-右=,0))((≥--n j n k n b b a a由此可知,当n j n ≠时,调换n k j n j k j b a b a b a S ++++= 11n j n ≠中n b 与n j 位置其余不动,所得新和.1S S ≥调整好n a 及n b 后,接着再仿上调整1-n a 与1-n b ,又得.12S S ≥如此至多经1-n 次调整得顺序和n n b a b a b a +++ 2211jn n j j b a b a b a +++≥ 2211 ②这就证得“顺序和不小于乱序和”.显然,当n a a a === 21或n b b b === 21时②中等号成立.反之,若它们不全相等,则必存在n j 及k ,使n b .,k n j a a b n >>这时①中不等号成立.因而对这个排列②中不等号成立. 类似地可证“乱序和不小于逆序和”.例20 .222,,,333222222abc ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤++∈+求证 思路分析中间式子中每项均为两个式子的和,将它们拆开,再用排序不等式证明.略解不妨设ab c c b a c b a 111,,222≥≥≥≥≥≥则, 则b c a b c a 111222⋅+⋅+⋅乱序和c c b b a a 111222⋅+⋅+⋅≥逆序和, 同理b c a b c a 111222⋅+⋅+⋅乱序和cc b b a a 111222⋅+⋅+⋅≥逆序和 两式相加再除以2,即得原式中第一个不等式.再考虑数组abac bc c b a 111333≥≥≥≥及, 仿上可证第二个不等式.例21 设*21,,,N a a a n ∈ ,且各不相同,求证:.32131211223221na a a a n n ++++≤++++思路分析不等式右边各项221ia i a i i ⋅=;可理解为两数之积,尝试用排序不等式. 略解设n n a a ab b b ,,,,,,2121 是的重新排列,满足n b b b <<< 21,又.131211222n>>>>所以223221232213232n b b b b n a a a a n n ++++≥++++.由于n b b b ,,21是互不相同的正整数,故.,,2,121n b b b n ≥≥≥ 从而n nb b b b n 121132223221+++≥++++,原式得证. 评述排序不等式应用广泛,例如可证我们熟悉的基本不等式,,22a b b a b a ⋅+⋅≥+ 例22 在△ABC 中,试证:.23ππ<++++≤c b a cC bB aA思路分析 可构造△ABC 的边和角的序列,应用排序不等式来证明之.详解 不妨设c b a ≤≤,于是.C B A ≤≤由排序不等式,得相加,得)())(()(3c b a C B A c b a cC bB aA ++=++++≥++π,得3π≥++++c b a cC bB aA ①又由,0,0,0b c a c b a a c b -+<-+<-+<有).(2)()3()2()2()()()()()()(0cC bB aA c b a C c B b A a C B A c B C A b A C B a b c a B c b a C a c b A ++-++=-+-+-=-++-++-+=-++-++-+<ππππ得.2π<++++c b a cC bB aA ②由①、②得原不等式成立.例23 设n b b b ,,,21 是正数n a a a ,,,21 的一个排列,求证.2211n b a b a b a nn ≥+++ 思路分析 应注意到),,2,1(11n i a a ii ==⋅略证 不妨设n a a a ≥≥≥ 21,因为n a a a ,,,21 都大于0. 所以有na a a 11121≤≤≤ ,又nn a a a b b b 1,,1,11,,1,12121 是的任意一个排列,于是得到 例24 设正数c b a ,,的乘积1=abc ,试证:.1)11)(11)(11(≤+-+-+-ac c b b a 略解 设xzc z y b y x a ===,,,这里z y x ,,都是正数, 则原需证明的不等式化为y x z x z y z y x xyz y x z x z y z y x -+-+-+≤-+-+-+,,,))()((显然 中最多只有一个非负数.若y x z x z y z y x -+-+-+,,中恰有一个非正数,则此时结论显然成立.若y x z x z y z y x -+-+-+,,均为正数,则z y x ,,是某三角形的三边长.容易验证)].()()([(31))()((222z y x z y x z y x z y x y x z x z y z y x -++-++-+≤-+-+-+故得.))()((xyz y x z x z y z y x ≤-+-+-+ 评述 利用上述换元的方法可解决同类的问题.见下题:设正数a 、b 、c 的乘积,1=abc 证明.23)(1)(1)(1222≥+++++b a c a c b c b a 证明:设1,1,1,1====xyz zc y b x a 则,且所需证明的不等式可化为23222≥+++++y x z x z y z y x , 现不妨设z y x ≥≥,则yx z x z y z y x +≥+≥+, 据排序不等式 得y x z x z y z y x +++++222yx z y x z y x z y x z +⋅++⋅++⋅≥ 及y x z x z y z y x +++++222yx z x x z y z z y x y +⋅++⋅++⋅≥ 两式相加并化简可得)(2222y x z x z y z y x +++++.333=≥++≥xyz z y x 4切比雪夫不等式:若n a a a ≤≤≤ 21,n b b b ≤≤≤ 21 ,则.21212211nb b b n a a a n b a b a b a n n n n +++⋅+++≥+++证明:由题设和排序不等式,有n n b a b a b a +++ 2211=n n b a b a b a +++ 2211,132212211b a b a b a b a b a b a n n n +++≥+++ ,…… 将上述n 个不等式叠加后,两边同除以n 2,即得欲证的不等式.。
高三年级数学综合选修精英班讲义(数列,导数与不等式)1.在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k nka a a a ++≤对任意n *∈N 均成立.2. 已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320k k x k x k -++= 的两个根,且212(123)k k a a k -= ≤,,,.(I )求1a ,3a , 5a ,7a ; (II )求数列{}n a 的前2n 项和2n S ;(Ⅲ)记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…,求证:15()624n T n ∈*N ≤≤.3. 设函数1()1(,1,)xf x n N n x N n ⎛⎫=+∈>∈ ⎪⎝⎭且.(Ⅰ)当x =6时,求11xn ⎛⎫+ ⎪⎝⎭的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <111knk k =⎛⎫+ ⎪⎝⎭∑<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.4.已知m n ,为正整数.(I )用数学归纳法证明:当1x >-时,(1)1mx m x ++≥;(II )对于6n ≥,已知11132n n ⎛⎫-< ⎪+⎝⎭,求证1132n mm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n = ,,,; (III )求出满足等式34(2)(3)n n n nn n ++++=+ 的所有正整数n .5.已知()n n n A a b ,(n ∈N *)是曲线x y e =上的点,1a a =,n S 是数列{}n a 的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,…. (I )证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≥)是常数数列;(II )确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (III )证明:当a M ∈时,弦1n n A A +(n ∈N *)的斜率随n 单调递增.6.设3()3xf x =,对任意实数t ,记232()3t g x t x t =-.(I )求函数8()()y f x g x =-的单调区间;(II )求证:(ⅰ)当0x >时,()()t f x g x ≥对任意正实数t 成立; (ⅱ)有且仅有一个正实数0x ,使得800()()t g x g x ≥对任意正实数t 成立.7. 设函数2()ln(1)f x x b x =++,其中0b ≠. (Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n nn ⎛⎫+>- ⎪⎝⎭都成立.8.已知函数()e xf x kx x =-∈R ,。
2021年高考数学精英备考专题讲座 第三讲数列与不等式 第一节数列及其应用 文数列是高中数学重要内容,是高考命题的热点.纵观近几年的高考试题,对等差和等比数列的概念、通项公式、性质、前项和公式,对增长率、分期付款等数列实际应用题多以客观题和中低档解答题为主,对数列与函数、方程、不等式、三角函数、解析几何等相结合的综合题的考查多属于中高档题,甚至是压轴题,难度值一般控制在之间.考试要求(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列① 理解等差数列、等比数列的概念.② 掌握等差数列、等比数列的通项公式与前n 项和公式. ③ 能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. ④ 了解等差数列与一次函数、等比数列与指数函数的关系. 题型一 等差、等比数列的概念与性质例1.已知等比数列中,各项都是正数,且、、2成等差数列,求 ;【点拨】依据等差中项的概念先求等比数列的公比,再利用等比数列的性质求值. 【解】依题意可得:,即,则有可得,解得或(舍) 所以892329101167781131a a a q a q q q q a a a q a q q+++====++++ 【易错点】(1)等差数列与等比数列只有一字之差,部分同学经常出现审题不仔细的现象;(2)等差中项与等比中项的性质混淆,概念模糊不清;(3)对等差数列与等比数列的性质及公式的变式不熟悉,往往要先计算等量,一旦计算量大一点,解题受阻.变式与引申1:等差数列的前n 项和为,公差 . (1)求的值;(2)当为最小时,求的值. 题型二:数列的通项与求和例2.(xx 年全国卷理科第17题)等比数列的各项均为正数,且 (Ⅰ)求数列的通项公式.(Ⅱ )设 31323log log ......log ,n n b a a a =+++求数列的前项和.【点拨】(1)等比数列中,已知两条件可以算出两个基本量,再进一步求通项.(2)分组求和、倒序相加、错位相减、裂项相消等是常用的求和方法,这里利用(1)的结论以及的关系求的通项公式,根据裂项相消求数列前 项和 . 【解】(Ⅰ)设数列{a n }的公比为q ,由得所以。
数列与和式不等式数列与和式不等式的解题方法需要同学们深入了解,在解题过程中,往往要利用一些恒等式、变换法等方法对数列和式进行变形,并结合数列求和等相关知识,灵活运用各种技巧.尤其当涉及到整数命题的证明,有时候也可以考虑用归纳法进行证明,当然在证明过程中,解题方法并非千篇一律,而是灵活多变,根据具体题意可以寻找恰当的解法,二者之间的紧密结合,也在竞赛中作为考察学生的重要题型之一,下面通过例题简要介绍几种解题方法与技巧:例1 已知i x R ∈(1,2,,,2)i n n =≥,满足11||1,0n ni i i i x x ====∑∑.求证:11122ni i x i n =≤-∑ 证:设11,nnii i i x x A B a b i===+=+∑∑,其中,A a 为正项之和,,B b 为负项之和,由题意知, 0,1A B A B +=-=,得12A B =-=,因为,A B a A B b n n ≤≤≤≤,所以A B B a b A n n+≤+≤+, 即11111()2222n i i x n i n =--≤≤-∑,也就是11122ni i x in =≤-∑ 说明:本题通过设元,将数列拆分成正负两部分,然后运用不等式相关知识,很自然过渡到绝对值不等式.例2 设1112n a n =+++,*n N ∈,求证:对2n ≥,有2322()23nn a a a a n>+++. 证:2222122211111111(1)(1)2(1)221211211()2.n n n n a a n n n n n a a n n n n n--=+++-+++=+⋅+++--=+-=⋅-故223212221112()()2323n n a a a a a n n -=+++-+++.所以 2332222233221111112()(1)2()(1)2323231223(1)12()2().2323n n n n n a a a a a a a n n n n na a a a a a n n n=++++---->++++----⨯⨯-=++++>+++ 说明:本题若通过n a 表达式来证明将非常复杂,可以考虑通过建立递推关系,使问题很容易得到解决.例3 无穷正实数列{}n x 有以下性质:011,(0)i i x x x i +=≤≥(1) 试证:对具有上述性质的任一数列,总能找到一个1n ≥,使下式成立22201112 3.999nnx x x x x x -+++≥ (2) 寻找这样一个数列,使得下列不等式222011124nnx x x x x x -+++<对任一n 成立. 证:(1)32222222222222010210301111112121122121111122112422222313121222.n n n n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x xx x x x ----------++++++----+++≥++++≥++++≥+++++≥≥+≥=2122lim 24n n --→∞=,因此必存在足够大的n 使得222011123.999nn x x x x x x -+++≥. (2)取无穷递缩等比数列12nn x ⎛⎫= ⎪⎝⎭,2222011121121422n n n x x x x x x --⎛⎫+++=++++< ⎪⎝⎭.( 0,1,2,n =)说明:该题用到了数列极限的思想,运用放缩法,通过步步缩小,得到新数列之和恒比一极限为4的数列大,从而得证.例4 设12,,a a 是正实数列,且对所有,1,2,i j =,满足i j i j a a a +≤+.求证:对于正整数n ,有32123nn a a a a a n++++≥ 证:记12,1,2,,i n s a a a i n =+++=,约定00s =,则112()()i i i s a a a a =++++1i ia +≥11111111111111111111()()122111111.2212nn n n i i i i i n ni i i i n ni i n n i i a s s ia s s s s i n i i n i i n a a s s s i n i n --+====-+==-∴==-+≥+-+++=+⋅+=⋅++∑∑∑∑∑∑1122211()()2ni n n n n n n n i a n n s s a a a a a i n n n n-=-+∴≥=+≥+=>∑,原不等式成立. 方法二:对n 用数学归纳法.当1n =时,11a a ≥,不等式显然成立.假设当1,2,,1n k =-时不等式成立,即有11221211221k k a a a a a a a a a k --≥⎧⎪⎪+≥⎪⎨⎪⎪+++≥⎪-⎩ 相加得121121(1)(2)((1))21k k a a k a k k k a a a k ---+-++--≥+++-,即121121112211()2()()()()21k k k k k k k a a k a a a a a a a a a a ka a k -----+++≥+++=++++++≥--整理得212k k a aa a k +++≥,得原不等式成立.说明:本题在证法1中采用了Abel 变换法,将和式进行转化,得到需要的形式,然后加以证明.另外,在证明数列求和不等式的时候,因是涉及到自然数的命题,我们也可以多考虑应用数学归纳法. 例5 设12,,,(2)n a a a n ≥是n 个互不相同的实数,22212n S a a a =+++,21min ()i j i j nM a a ≤<≤=-,求证:2(1)12S n n M -≥ 证:不妨设12n a a a <<<,则1(11)i i a a i n +-≥≤≤-,令i a 中的第一个非负数为k a (若所有0i a <,则取k n =),令min{k k b a =,((1)i k b b i k i n =+-≤≤,则对i k <有0i i a b ≤≤,对i k >有0i i a b >≥,所以对一切i 均有||||i i b a ≤,再令11(122ni ki b b b n k n===++-∑,则22222211111221122211[()][()]()1[((1212[(12)]21(1)(1)(1).412n n n nn i i i i i i i i i i n nk k i i nni i a b b b b b b nb b b SM M M M M M b i k b n k i k n k M n n i n i n =========-+-+-=≥==≥+--+-==--+--=-+++=∑∑∑∑∑∑∑∑∑说明:将数列进行排序,化无序为有序,构造新的数列帮助解题. 例6 设*n N ∈,00,0(1,2,,)i x x i n =>=,且11ni i x ==∑,求证:11112nii i i i nx x x x x π=-+≤<+++++证:01101111(1)()[(1)()] 1.2ni i i n i i i n i x x x x x x x x x x -+-+=++++++≤+++++++=∑∴11(1)ii i i i i nx s x i n x x x x -+=≥≤≤+++++,故111nni i i i s s x ===≥=∑∑,不等式右边得证.又因为0101,0,1,2,,,i x x x i n ≤+++≤=令01arcsin()[0,],0,1,2,,,2i i x x x i n πθ=+++∈=01202n πθθθθ=<<<<=,而且011011sin ,sin i i i i x x x x x x θθ--=+++=+++,∴111sin sin 2cos sin,1,2,,.22i i i i i i i x i n θθθθθθ---+-=-== ∵1112coscoscos 22i i i i θθθθ---+<=, 且在[0,]2πθ∈时,tan sin θθθ>>,∴11112cos ()cos (),1,2,,2i i i i i i i x i n θθθθθθ-----<⋅=-=∴11cos ii i i x θθθ--<-,故10111()cos 2n ni i i n i i i x πθθθθθ-==-<-=-=∑∑,而21cos )i i x θ-==++11i i i n x x x x -+++⋅+++,∴2s π<.说明:本题采用的是三角代换法,将其中的一个算式用反三角函数代替,利用三角函数之间的转化关系,达到证明的目的.例7 设12,,,n a a a 为正实数列,且满足1212111n na a a a a a +++=+++. 求证:121111111n n a n a n a +++≥-+-+-+证:令1,1,2,,,1i ib i n n a ==-+则11i b n <-,且1(1),1,2,,.i i i n b a i n b --==故条件转化为111(1)1(1)nni ii i i in b b b n b ==--=--∑∑,下面用反证法,假设121n b b b +++<. (1)由柯西不等式,得21(1(1))(1)1(1)jj ij ijn b n n b≠≠--⋅≥---∑∑,由(1),(1(1))(1)jjj in b n b ≠--<-∑,∴111(1)j i j i n n b b ≠-<--∑,故1(1)1(1)(1)1(1)i i j i ji n b n b n n b b ≠---->-⋅--∑,上式对1,2,,i n =求和,有111(1)1(1)(1)1(1)nni ii j i i j i n b n b n n b b =≠=---->---∑∑∑, (2) 由(1)得,(1(1))(1)i j i j n b b n ≠--<-∑,由(2)可得, 111(1)(1)(1)1(1)nnjii i ji b n b n n n b b ==--->---∑∑,矛盾!∴121111111nn a n a n a +++≥-+-+-+.说明:当问题从正面入手难以解决时,可考虑用反证法,反正假设就相当于又多了一个条件,更如意入手解决.例8 设{}(1)k a k ≥是一个正实数数列,存在一个常数k ,使得2222121n n a a a ka ++++<,(对所有1n ≥).证明:存在一个常数c ,使得:121n n a a a ca ++++<(对所有1n ≥).证:考查不等式链22222212121()()n n n a a a t a a a c a ++++<+++<,其中,1222212()nn t a a a tk a ++++<⋅,故只需取2tk c =即可(t 为一参数). 设命题i P 为:22221212()()i i a a a t a a a +++<+++,设命题i Q 为:121i i a a a ca ++++<.当1i =时,欲使1P 成立,可取1t >.现在设命题k P 成立,即 22221212()()k k a a a t a a a +++<+++于是,由不等式链,得11222212()k k k a a a tka c a +++++<=,即 121k k a a a ca ++++<因此k P 成立⇒k Q 成立.我们希望证明:若k Q 成立⇒1k P +成立,即由121k k a a a ca ++++<⇒2222121121()()k k a a a t a a a +++++<+++,上述不等式成立,仅需22111212()k k k k a a a a a ta +++++++<,即12112k k t a a a a +-+++<,故取12t c -=即可满足要求. ∴21122c t k c --==,化简得220c kc k --=,取c k =21c t k =>符合条件,进而由归纳法原理知结论成立.说明:本题运用了数学归纳法的另一种形式,即螺旋归纳法:设(),()p n Q n 是两列关于正整数n 的命题,如果:(1)命题(1)P 成立;(2)对任何正整数k ,若命题()P k 成立,则命题()Q k 成立;若命题()Q k 成立,则命题(1)P k +成立.那么对于所有正整数n ,命题(),()p n Q n 都成立. 强化练习: 1.设1111,223n S n n=++++>,证明:(1)(1)a b n n n n S n n n +-<<--,其中a 和b 满足1an =和(1)1b n -=-.证:1111341341(11)(1)(1)2(2)22323(1).nn nn n n S n n n n n n +++=++++++=++++>⨯⨯⨯⨯=+111111121121(11)(1)(1)(1)()(1).22323n n n n n n S n n n n n n-----∴-=-+-++-=+++>-⨯⨯⨯=-得证.2.设0(1,2,,)i a i n ≥=,12min{,,,}n a a a a =,试证:2211111()1(1)nni ii i i a n a a a a ==++≤+-++∑∑,其中11n a a +=证:11111111111111122121111111(1)1111111()()()()(1)(1)(1)(1)(1)nn n n n n ni i i i i i i i i i i i i i i i i i i i i i nn n i i i i i i i i i i i i a a a a a a a a a a a an a a a a a a a a a a a a a a a a a a a a ++=======+++++++===++++------=-==-=-+++++++----=≤≤+++++∑∑∑∑∑∑∑∑∑.∑3.设{}n a 为有下列性质的实数列:0121n a a a a =≤≤≤≤≤, (1) 又{}n b 是由下式定义的数列:11(1)1,2,3,nk n k k a b n a -==-=∑ (2) 求证:(1)对所有的1,2,3,n =,总有02n b ≤<;(2)对02c ≤<的任一c 总存在一个具有性质(1)的数列{}n a ,使得由(2)导出的数列{}n b 中有无限多个下标n 满足n b c >.证:(1)11111(1())k k k k k k a a a a a a ----=-==<111(12 2.nnk n k k ka b a -==∴=-<⋅<=∑∑(2)kd =,则当01d <<时条件(1)满足.又和式n b 中第k 项是2(1)22(1)(1)k k k kd d d d d ----=-, 122211(1)(1)(1)(1)(1),1n nnkkn n k k d d b d d d d d d d d d +==-=-=-=-=+--∑∑现在要求对无穷多个n ,(1)(1)n d d d c +->,所以1(1)n cd d d <-+ (*)为此,只需选择d1d <<. 事实上,此时有22(1)2d d d d d c +=+>>,故(*)右端为一正数.因为01d <<时,0nd →,所以存在一个确切的自然数N ,使得当n N >时,(*)成立,故(b )得证. 4.设123,,,a a a 是正实数数列,对所有的1n ≥满足条件1nii a=≥∑,证明:对所有的1n ≥,21111(1)42ni i a n=>+++∑ 证:先证一个更一般的命题:设12,,,n a a a 和12,,,n b b b 是正数,且12n b b b >>>(1)若对所有的1,2,,k n =,11nni i i i b a ==≤∑∑, (2) 则有2211nni i i i b a ==≤∑∑, (3) 事实上,设10n b +=,由(1)(2)可得111111()()nnnnkk i k k i k i k i bb b b b a ++====-≤-∑∑∑∑,改变求和次序得111111()()nnn n ikk i k k i k i k b bb a b b ++====-≤-∑∑∑∑,由此可得 211n ni i i i i b a b ==≤∑∑两边平方利用柯西不等式可得2211n ni ii i b a==≤∑∑,为证明本题不等式,令(1,2,,)ib i n===,则2111111(1).42n n nii i ian ===≥>=+++∑。