高中数学数列与不等式综合题放缩法技巧
- 格式:pdf
- 大小:753.50 KB
- 文档页数:4
微专题57 放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 ) (2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数 注:这两条性质均要注意条件与结论的不等号方向均相同 2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数) ② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项 (2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
1【备战2018年高考高三数学一轮热点、难点一网打尽】第36讲到底你要放缩到什么程度:放缩法证明数列不等式考纲要求:1、掌握放缩法证明数列不等式的理论依据——不等式的性质:2、掌握放缩的技巧与方法.基础知识回顾:放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数) ② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。
从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。
(3)放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足2()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
数列放缩法的应用技巧总结数列放缩法是一种在解决数学问题中常用的技巧和方法。
它的核心思想是对给定的数列进行适当的放缩,以便更好地理解和分析数列的性质和规律。
数列放缩法在各个数学领域都有广泛的应用,包括数论、代数、几何、概率论等。
下面将总结数列放缩法的应用技巧。
1. 数列变形:在使用数列放缩法解决问题时,常常需要对原始数列进行变形。
通过将数列中的项重新排列或重新组合,可以使问题变得相对简单。
数列变形的关键是发现数列中的规律和性质,在此基础上进行合理的变形,从而达到更好地解决问题的目的。
2. 数列放缩:数列放缩是数列放缩法的核心步骤。
通过对数列进行加减乘除等运算,可以使数列的项之间的关系更加明确和简单。
数列放缩的关键在于找到合适的变换方法和变换因子,保持等价性的同时使问题变得更容易解决。
3. 利用不等式:数列放缩法常常利用不等式来进行数列的放缩。
通过添加合适的不等式或利用已知的不等式性质,可以对数列的项进行限制和界定。
不等式的选择和使用需要根据具体的问题和数列的性质进行判断,常用的不等式有柯西-施瓦兹不等式、均值不等式、特殊不等式等。
4. 利用递推关系:对于递推数列,数列放缩法常常利用递推关系进行变形和放缩。
通过寻找递推数列的通项公式,可以将原始问题转化为求解通项公式的问题。
在这个过程中,数列的放缩往往是不可缺少的一步,它可以将复杂的递推关系简化为更简单的形式。
5. 利用数列的性质:数列放缩法还常常利用数列的性质来解决问题。
例如,对于等差数列,可以利用其性质求解等差数列的和、推导等差数列的通项公式等。
对于等比数列,也可以利用等比数列的性质来解决等比数列的问题。
6. 利用极限思想:数列放缩法常常利用极限思想来求解数列的极限或证明数列的性质。
通过适当的放缩和变形,可以从数列中找到趋于极限的子数列,从而进一步研究数列的性质和规律。
7. 利用对称性:数列放缩法还常常利用数列的对称性进行变形和放缩。
通过对称性的利用,可以简化数列的形式,从而更好地理解和分析数列的性质和规律。
36 到底你要放缩到什么程度:放缩法证明数列不等式考纲要求:1、掌握放缩法证明数列不等式的理论依据——不等式的性质:2、掌握放缩的技巧与方法.基础知识回顾:放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手 ② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。
从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。
(3)放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。
高考数学备考之一 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk技巧积累:(1)⎪⎭⎫⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21≥---=--=--<--=--n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n kn k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ , 所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k-+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m k km 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n nn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nnT⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---n例 例11.例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知11111,(1).2n n a a a n n +==+++证明2n a e <.解析:n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+nn an n a ln )2111ln(ln 1nn n n a 211ln 2+++≤。
放缩法证明“数列+不等式”问题的两条途径数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。
1、 先放缩再求和例1 (05年湖北理)已知不等式],[log 21131212n n >+++ 其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。
设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2( =n ,证明:][log 222n b ba n +<, 5,4,3=n 分析:由条件11--+≤n n n a n na a 得:na a n n 1111+≥- n a a n n 1111≥-∴- )2(≥n111121-≥---n a a n n ……211112≥-a a 以上各式两边分别相加得:21111111++-+≥- n n a a n 2111111++-++≥∴n n b a n ][log 2112n b +>)3(≥n =bn b 2][log 22+∴ ][log 222n b ba n +<)3(≥n本题由题设条件直接进行放缩,然后求和,命题即得以证明。
例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:nn n a S )1(2-+=, 1≥n(1)写出数列}{n a 的前三项1a ,2a ,3a ; (2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
放缩法证明数列型不等式的注意问题以及解题策略纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。
处理数列型不等式最重要要的方法为放缩法。
放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。
对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的娃带来一盏明灯。
1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。
3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:<<(2)在分式中放大或缩小分子或分母:2111(2)(1)(1)k k k k k k <<≥+-;真分数分子分母同时减一个正数,则变大;,11n n n n -<+; 假分数分子分母同时减一个正数,则变小,如212221n nn n +>-; (3)应用基本不等式放缩:222n n n n ++>+; (4)二项式定理放缩:如2121(3)nn n -≥+≥;(5)舍掉(或加进)一些项,如:121321||||||||(2)n n n a a a a a a a a n --≤-+-++-≥。
4、把握放缩的尺度:如何确定放缩的尺度,不能过当,是应用放缩法证明中最关键、最难把握的问题。
这需要勤于观察和思考,抓住欲证命题的特点,只有这样,才能使问题迎刃而解。
一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
高中常用不等式放缩公式在高中数学的学习中,不等式放缩是一种非常重要的解题技巧。
它能够帮助我们在解决一些复杂的不等式问题时,简化运算,找到解题的突破口。
下面,我们就来一起学习一下高中常用的不等式放缩公式。
一、基本不等式基本不等式是高中数学中最基础也是最重要的不等式之一,其形式为:对于任意的正实数 a、b,有$\sqrt{ab} \leq \frac{a + b}{2}$,当且仅当 a = b 时,等号成立。
这个不等式在放缩中有着广泛的应用。
例如,当我们要证明一个不等式中涉及到两个正数的乘积时,可以考虑使用基本不等式进行放缩。
二、绝对值不等式绝对值不等式也是高中数学中的重要内容,常见的有:$\vert a \vert \vert b \vert \leq \vert a + b \vert \leq \vert a \vert +\vert b \vert$在处理一些含有绝对值的不等式问题时,利用绝对值不等式进行放缩,可以使问题变得更加清晰。
三、柯西不等式柯西不等式的形式为:对于任意的实数$a_1, a_2, \cdots, a_n$ 和$b_1, b_2, \cdots, b_n$ ,有$(a_1^2 + a_2^2 +\cdots + a_n^2)(b_1^2 + b_2^2 +\cdots + b_n^2) \geq (a_1b_1 + a_2b_2 +\cdots + a_nb_n)^2$ ,当且仅当$\frac{a_1}{b_1} =\frac{a_2}{b_2} =\cdots =\frac{a_n}{b_n}$(当$b_i \neq 0$ )时,等号成立。
柯西不等式在放缩时,可以将一些复杂的乘积形式进行简化和处理。
四、糖水不等式若有正实数$a, b, m$ ,且$a < b$ ,则$\frac{a + m}{b +m} >\frac{a}{b}$。
这个不等式在一些分式的放缩中非常有用。
放缩法技巧证明数列不等式总结!精辟!是解决高考数学难点的精华
高中数学中有一类难点就是:证明数列不等式!!证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,所以,通常都是高考数学的压轴难题!
要巧解这类数列不等式的高考数学难点!就要用到放缩法!
高考数学考纲明确要求学生要:
1、掌握放缩法证明数列不等式的理论依据——不等式的性质
2、掌握放缩的技巧与方法.
所以在针对高中数学热点难点大全中,针对放缩法技巧进行了独立的升华总结。
非常精辟!整个高中数学各个考点热点难点都有在大全中进行一一梳理,是各位高中生提升数学解题、解决热点难点的好资料。
缩法技巧的基础知识要点
类型一:与前n项和相关的不等式经典题型
类型二、与通项运算相关的不等式的经典题型。
用放缩法处理数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n Λ 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n nS a +=-⨯+,1,2,3,n =g g g (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn n T S =,1,2,3,n =g g g ,证明:132ni i T =<∑.解: (Ⅰ)由 S n =43a n -13×2n+1+23, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23所以a 1=2再由①有 S n -1=43a n -1-13×2n +23, n=2,3,4,…将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13×(2n+1-2n),n=2,3, …整理得: a n +2n=4(a n -1+2n -1),n=2,3, … , 因而数列{ a n +2n}是首项为a1+2=4,公比为4的等比数列,即 : a n +2n=4×4n -1=4n , n=1,2,3, …, 因而a n =4n -2n, n=1,2,3, …,(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2)= 23×(2n+1-1)(2n-1)T n = 2nS n = 32×2n(2n+1-1)(2n-1) = 32×(12n -1 - 12n+1-1) 所以, 1ni i T =∑=321(ni =∑12i -1 - 12i+1-1) = 32×(121-1 - 1121n +-) < 32二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a=-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-. ∴n na )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. (利用等比数列前n 项和的模拟公式nn S Aq A =-猜想)∴n n b b b B Λ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n Λ. 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )若数列{}n b 滿足12111*444(1)()n n b b b b n a n N ---=+∈L ,证明:数列{}n b 是等差数列;(Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈. (I )解:*121(),n n a a n N +=+∈Q112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即 2*21().n a n N =-∈(II )证法一:1211144...4(1).n n k k k k n a ---=+Q12(...)42.n n k k k n nk +++-∴=122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++= ③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III )证明:Q1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=--12231 (2)n n a a a na a a +∴+++<111211111111.,1,2,...,,2122(21)2 3.222232k k k k k kk k a k n a +++-==-=-≥-=--+-Q1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1Λ=+=+n a n a n n n .求证:11213-++-≥>n nn n a a 证明:因为n n n a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a Λ. 令12212221--+++=n nn S Λ,所以n n n S 2122212132-+++=Λ,两式相减得: n n n n S 212121212121132--++++=-Λ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<+⋅⋅⋅+< 解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a Θ ,又由条件n n nS a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a Θ ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2nn n S +=所以42)1(212)1(21222++=++•<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2)1(23222121+++⨯+⨯=++n n S S S n ΛΛ212322++++<n Λ 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++ΛΛ练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;1,1n n N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之. 解:(Ⅰ) 12b =(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵21111(22)22123n c n n n ⎛⎫=<- ⎪+++⎝⎭,∴1231111+23236n n T c c c c n ⎛⎫=+++⋅⋅⋅<-< ⎪+⎝⎭…2.(04全国)已知数列}{n a 的前n 项和n S 满足:nn n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8711154<+++m a a a Λ 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)nn n n n n n a S S a a ---=-=+----(n>1)化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3n n na -=--∴数列{n a }的通项公式为:22[2(1)]3n n na -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。