多级放大电路分析仿真实验H
- 格式:doc
- 大小:186.00 KB
- 文档页数:6
实验日期:班级:2015级应用物理学实验名称:功率放大电路的仿真测试姓名:实验成绩:学号:一、实验目的(1)了解OTL、OCL功率放大器的基本工作原理和参数测试。
(2)对比分析OTL功率放大器和OCL功率放大器的性能差异。
二、原理与说明功率放大器根据功放管平均导通时间的长短(或集电极电流流通时间的长短或导通角的大小),分为以下4种工作状态。
(1)甲类工作状态:甲类工作状态下,在整个周期内晶体管的发射结都处于正向运用,集电极电流始终是流通的,即导通角A等于180°。
(2)乙类工作状态:乙类工作状态下,晶体管的发射结在输入信号的半周期内正向运用,在另外半个周期内反向运用,晶体管半周期导电半周期截止。
集电极电流只在半周期内随信号变化,而在另半个周期截止,即导通角A等于90°。
(3)甲乙类工作状态:它是介于甲类和乙类之间的工作状态,即发射结处于正向运用的时间超过半个周期,但小于一个周期。
即导通角A大于90°小于180°。
(4)丙类工作状态:丙类工作状态:丙类工作状态下,晶体管发射结处于正向运用的时间小于半个周期,集电极电流的时间不到半个周期,即导通角A小于90°。
图 OCL功率放大器原理图为单电源供电互补推挽功率放大器。
三、实验内容1.OCL功率放大器测量1)按照图所示输入自己的OCL实验电路。
并测量晶体管的静态工作,判断器件工作状态。
表格2)调节信号源输出为3V(峰值),在开关J1闭合和断开条件下,用双踪示波器观察输入输出波形。
J1断开时:J1闭合时:J1断开时:3)测量输出信号为3V时放大器的输出功率和电源消耗功率,并计算此时的放大器效率;逐渐增大输入信号,在没有出现明显失真条件下,再测量此时的输出效率、电源功率和功效,记录测量值于表格和中。
表格计算:在输入信号为3V时P om= I0× U0= WP V=在最大输入信号且不失真:η=P om/P v×100%=%图象在输入信号为14V即UI=时失真:表格计算:输入信号为3V时:P om= I0× U0=P v=最大输入信号且不失真时:η=P om/P v×100%=%图像在输入信号为12V,UI=时失真:2.OTL功率放大器测量1)按照图所示输入自己的OTL实验电路,并测量晶体管静态工作点并记录数据。
第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。
2. 掌握多级运算电路的设计方法。
3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。
4. 培养实验操作能力和数据分析能力。
二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。
本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。
4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。
三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。
2. 示波器:用于观察实验过程中信号的变化。
3. 数字万用表:用于测量电路的电压、电流等参数。
4. 电阻、电容、二极管、运放等电子元器件。
5. 电路板、导线、焊接工具等。
四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。
2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。
3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。
4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。
5. 分析实验数据,验证实验结果是否符合理论计算。
五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
一、实验目的1. 理解多级放大器电路的工作原理与设计方法。
2. 掌握多级放大器电路的搭建与调试技术。
3. 学习分析多级放大器电路的性能指标,如电压放大倍数、输入输出电阻、频率响应等。
4. 熟悉常用放大器电路的耦合方式,如阻容耦合、直接耦合、变压器耦合等。
二、实验原理多级放大器电路是由多个单级放大电路级联而成,主要用于放大微弱信号。
通过级联多个放大电路,可以实现较高的电压放大倍数。
多级放大器电路的搭建与调试主要包括以下几个方面:1. 选择合适的放大器电路,如共射放大电路、共集放大电路、差分放大电路等。
2. 确定各级放大器的耦合方式,如阻容耦合、直接耦合、变压器耦合等。
3. 设计各级放大器的电路参数,如晶体管型号、电阻阻值、电容容值等。
4. 搭建实验电路,并进行调试。
三、实验内容1. 搭建共射放大电路,并进行调试。
(1)电路搭建:选择合适的晶体管(如2SC1815),设计电路参数,搭建共射放大电路。
(2)调试:调整偏置电阻,使晶体管工作在放大区。
通过测量输入输出电压,计算电压放大倍数。
2. 搭建阻容耦合多级放大器电路,并进行调试。
(1)电路搭建:选择合适的晶体管,设计电路参数,搭建阻容耦合多级放大器电路。
(2)调试:调整各级放大器的偏置电阻,使晶体管工作在放大区。
通过测量输入输出电压,计算电压放大倍数。
3. 搭建直接耦合多级放大器电路,并进行调试。
(1)电路搭建:选择合适的晶体管,设计电路参数,搭建直接耦合多级放大器电路。
(2)调试:调整各级放大器的偏置电阻,使晶体管工作在放大区。
通过测量输入输出电压,计算电压放大倍数。
4. 搭建变压器耦合多级放大器电路,并进行调试。
(1)电路搭建:选择合适的晶体管,设计电路参数,搭建变压器耦合多级放大器电路。
(2)调试:调整各级放大器的偏置电阻,使晶体管工作在放大区。
通过测量输入输出电压,计算电压放大倍数。
四、实验结果与分析1. 共射放大电路电压放大倍数:A_v = 40输入电阻:R_i = 1kΩ输出电阻:R_o = 1kΩ2. 阻容耦合多级放大器电压放大倍数:A_v = 200输入电阻:R_i = 10kΩ输出电阻:R_o = 1kΩ3. 直接耦合多级放大器电压放大倍数:A_v = 300输入电阻:R_i = 10kΩ输出电阻:R_o = 1kΩ4. 变压器耦合多级放大器电压放大倍数:A_v = 500输入电阻:R_i = 10kΩ输出电阻:R_o = 1kΩ五、实验总结通过本次实训,我们对多级放大器电路的工作原理、搭建与调试方法有了更深入的了解。
MOS放大电路设计仿真与实现实验报告实验报告:MOS放大电路设计、仿真与实现一、实验目的本实验的主要目的是通过设计、仿真和实现MOS放大电路来加深对MOSFET的理解,并熟悉模拟电路的设计过程。
二、实验原理MOSFET是一种主要由金属氧化物半导体场效应管构成的电流驱动元件。
与BJT相比,MOSFET具有输入阻抗高、功率损耗小、耐电压高、尺寸小等优点。
在MOS放大电路中,可以采用共源共源极放大电路、共栅共栅极放大电路等不同的电路结构。
三、实验步骤1.根据实验要求选择合适的电路结构,并计算所需材料参数(参考已知电流源和负载阻抗)。
2.选择合适的MOS管,并仿真验证其工作参数。
3.根据仿真结果确定电路的放大倍数、频率响应等。
4.根据电路需求,设计电流源电路和源极/栅极电路。
5.仿真整个电路的性能,并调整参数以优化电路性能。
6.根据仿真结果确定电路的工作参数,并进行电路的实现。
7.通过实验测量电路性能,验证仿真结果的正确性。
8.对实验结果进行分析,总结实验的过程和经验。
四、实验设备和材料1.计算机及电子仿真软件。
2.实验电路板。
3.集成电路元器件(MOSFET、电阻等)。
4.信号发生器。
5.示波器。
6.万用表等实验设备。
五、实验结果与分析通过仿真和实验,可以得到MOS放大电路的电压增益、输入输出阻抗、频率响应等参数。
根据实验结果,可以验证设计的合理性,并进行参数调整优化。
在实际应用中,MOS放大电路被广泛应用于音频放大器、功率放大器、运算放大器等场合。
因为MOSFET具有较大输入阻抗,所以MOS放大电路可以在输入端直接连接信号源,而不需要额外的输入电阻。
此外,MOS放大电路的功率损耗较小,适用于各种功率要求不同的应用场合。
六、实验心得通过设计、仿真和实现MOS放大电路的实验,我更加深入地理解了MOSFET的原理和应用。
在实验过程中,我通过不断调整电路参数和元器件选择,逐步提高了电路的性能。
通过与实验结果的对比,我发现仿真和实验结果基本吻合,验证了仿真的准确性。
多级放大器的课程设计一、课程目标知识目标:1. 学生能理解多级放大器的基本原理和组成部分,掌握各级放大器的作用和功能。
2. 学生能掌握多级放大器的电路图识别和绘制方法,了解不同类型多级放大器的特点和应用。
3. 学生能运用数学表达式描述多级放大器的电压增益、功率增益等性能参数,并进行简单计算。
技能目标:1. 学生能够运用所学知识,设计简单的多级放大器电路,并进行仿真实验。
2. 学生能够运用测量工具和仪器,对多级放大器电路进行性能测试,分析实验数据,解决简单问题。
3. 学生能够通过团队合作,进行多级放大器的设计、搭建和调试,提高实践操作能力。
情感态度价值观目标:1. 学生通过学习多级放大器,培养对电子技术的兴趣和热情,提高探究问题的主动性和积极性。
2. 学生在学习过程中,养成严谨、细致、踏实的科学态度,培养创新精神和团队合作意识。
3. 学生能够认识到多级放大器在现实生活中的广泛应用,增强理论联系实际的能力,提高社会责任感。
课程性质:本课程属于电子技术基础课程,以理论教学和实践操作相结合的方式进行。
学生特点:学生处于高中阶段,具有一定的物理和数学基础,对电子技术有一定的好奇心和求知欲。
教学要求:注重理论与实践相结合,通过讲解、演示、实验等多种教学手段,提高学生的理解和实践能力。
同时,关注学生的个体差异,因材施教,使学生在掌握基本知识的基础上,提高综合运用能力。
通过分解课程目标为具体的学习成果,为后续的教学设计和评估提供依据。
二、教学内容本章节教学内容主要包括以下几部分:1. 多级放大器原理- 放大器的基本概念- 多级放大器的级联原理- 各级放大器的作用和功能2. 多级放大器电路- 电路图的识别和绘制- 常见多级放大器电路类型- 多级放大器电路的连接方式3. 多级放大器性能参数- 电压增益、功率增益的定义- 数学表达式的推导和应用- 性能参数的计算方法4. 多级放大器设计与应用- 设计原则和方法- 仿真实验操作- 实际应用案例分析5. 实践操作- 多级放大器电路搭建- 性能测试与数据分析- 故障排查与调试技巧教学内容依据课程目标制定,注重科学性和系统性。
双极型放大电路Multisim仿真结果及分析1. 引言双极型放大电路是一种常见的电子电路,在电子设备中广泛应用。
本文将通过Multisim软件对双极型放大电路进行仿真,并对仿真结果进行分析。
2. 简介双极型放大电路由NPN或PNP型晶体管构成,常用于放大电压、电流和功率。
它由输入端、输出端和供电端构成。
输入信号通过输入端进入电路,经过放大后,输出到输出端,实现信号放大的功能。
3. 仿真设置在Multisim软件中,我们使用电感耦合输入的双极型放大电路进行仿真。
具体的仿真设置如下:- NPN型晶体管- 输入信号为正弦波,幅值为1V,频率为1kHz- 电源电压为12V4. 仿真结果经过仿真,我们得到了双极型放大电路的输出波形。
图1展示了输出波形及输入波形的对比。
从图中可以看出,输入信号经过放大后,输出信号的幅值明显增大。
图1:双极型放大电路输出波形5. 结果分析通过对仿真结果的观察和分析,我们可以得出以下结论:5.1 增益在双极型放大电路中,放大器的增益是一个重要指标。
从图1可以看出,输出信号的幅值相对于输入信号的幅值有明显的增大,表明双极型放大电路具有较高的增益。
5.2 非线性失真在实际电路中,双极型放大电路可能会产生非线性失真。
通过观察输出波形,我们可以看到输出波形的顶部和底部存在一定的畸变,即波形变成了非完全正弦波。
这是由于双极型晶体管的非线性特性导致的。
5.3 偏置电压在双极型放大电路中,偏置电压的设置对电路的工作状态和放大效果有重要影响。
通过模拟实验,我们可以调整偏置电压,观察输出波形的变化,进一步优化电路的工作效果。
6. 结论通过Multisim仿真,我们成功分析了双极型放大电路的输出结果。
我们观察到了信号放大效果、非线性失真和偏置电压的影响。
这些结果对于设计和优化双极型放大电路具有指导意义,有助于提高电路的性能。
放大电路实验报告一、实验要求利用简单的三级放大电路实现对小信号放大1000倍,输入电阻大于等于100千欧,输出电阻限于等于500欧的目的。
二、实验环境Pspice仿真软件。
三、实验过程与分析初步设计:1、初步设计为第一级为共集放大电路,第二、三级为共射放大电路,分两次对信号进行放大。
2、由于输出电阻为500欧,设计第三级R C为500Ω,放大倍数为25倍,射级电阻的目的是保证一定的输入电阻,防止二、三级间损耗过大。
3、第二级放大倍数较大所以设计不带射级电阻,以尽量扩大放大倍数。
但需要考虑到第二级输出电阻不能过大,所以R C不应该过大。
4、第一级应保证足够大的输入电阻,由于共集电路的限制所以暂时没有考虑输出电阻。
5、电源利用正负6V电源。
6、为了使计算方便,三级间的连接方式使用阻容耦合的方式,使其静态工作点不互相影响。
7、利用以上的初步设计计算了电阻,在电阻的选取中主要考虑了各级放大电路的静态工作点,使U CE尽量保持在6V左右,以保证较大的放大幅度。
进行仿真:1、仿真过程中放大倍数没有准确的稳定在1000倍,通过调整了一些电阻的值使其在一定的频率范围内保持了1000(电容的值选取较大)。
2、在输出电阻的测量中没有问题,输出电阻在允许范围内。
3、在测量输入电阻时遇到了较大的问题,比计算中的共集输入电阻小了很多,被这个问题困惑了很久,最终通过仔细分析交流微变等效电路,发现第二级的输入电阻也对第一级的输入电阻产生了很大的影响(相当于负载),由于第二级的Rπ较小,所以极大的影响了第一级的输入电阻。
所以通过进一步的调整第二级的I CQ,来改变第二级的Rπ,使输入电阻达到100KΩ。
仿真结果:下面是我设计电路一些主要仿真结果的截图:上图为实验电路图及最终的各项参数上图为各三极管的静态工作点上图为取分贝后的放大倍数在一定的范围内分贝值为60,即放大倍数为1000倍上图为输入电阻大小上图为输出电阻四、设计的分析与评价优点:1、该设计静态工作点比较适中,即处于负载线的中点附近,能够放放大较大幅度的电压。
多级放大电路的设计与测试一、实验目的1.理解多级直接耦合放大电路的工作原理与设计方法2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法3.掌握多级放大器性能指标的测试方法4.掌握在放大电路中引入负反馈的方法二、实验预习与思考1.多级放大电路的耦合方式有哪些分别有什么特点2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题3.设计任务和要求(1)基本要求用给定的三极管2SC1815(NPN), 2SA1015(PNP)设计多级放大器,已知V C C=+12V, -V EE=-12V,要求设计差分放大器恒流源的射极电流I EQ=1~,第二级放大射极电流I EQ=2~3mA差分放大器的单端输入单端输出不是真电压增益至少大于10 倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10k Q,输出电阻小于10Q,并保证输入级和输出级的直流点位为零。
设计并仿真实现。
三、实验原理直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。
1. 输入级电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。
差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。
典型的差动放大电路采用的工作组态是双端输入,双端输出。
放大电路两边对称,两 晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,禾厅抗干扰。
该电路作为多级放大电路的输入级时,采用 V 1单端输入,U oi 的单端输出的工作组^态。
计算静态工作点:差动放大电路的双端是对称的,此处令T 1, T 2的相关射级、集电极电流参数为 I EQ =I EQ =I EQ I CQ =I CQ =I CQo 设 U Bl = L B2~ OV ,则“心-U>n ,算出 丁3 的 I CQ3,即为 2 倍的 I EQ 也等于2倍的 I CQ 。
实验四放大电路电路频率响应分析和仿真实验1 实验要求与目的(1). 熟悉Hspice 编程语言和文件格式;(2). 通过实验掌握Hspice软件的基本用法;(3). 通过实验了解共源放大器、源极跟随器和共源共栅增益级放大电路频率响应分析和仿真。
2 实验原理(1). 共源放大器电路分析为了进行高频分析,图1中共源放大器的小信号等效电路如图2 所示。
这里,Cgs1 是M1 的栅极-源极电容。
注意,我们已经假设输入源极的输出电容可以忽略。
电容C2 由M1和M2 的漏极- 衬底电容与负载电容CL 的并联组成。
CL 一般占主导地位。
图1 电流源负载共源放大器图2 共源放大器高频分析的小信号模型(2). 源极跟随器放大器电路分析图4 源极跟随器频率响应的结构图5源极跟随器的一个等效小信号模型加补偿后源极跟随器(3) 共源共栅增益级3,实验步骤(1) 共源放大器a) Hspice仿真SP文件如下:.title Common-Source Amp Frequency Test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Ibias 2 0 dc 100uM3 2 2 1 1 pmos w=100u l=1.6uM2 3 2 1 1 pmos w=100u l=1.6uM1 3 4 0 0 nmos w=100u l=1.6uRin 5 4 180kVin 5 0 dc 0.849 ac 1Cl 3 0 0.3p.op.ac dec 20 1k 100Meg.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程增益随频率变化(2) 源极跟随器放大器a) 源极跟随器HSPICE 频率分析.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCl 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 pulse(0 -5u 10n 0 0).op.tran 0.5n 300n.print v(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的阶跃响应没有补偿.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCL 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 dc 0 ac 1.op.ac dec 20 1k 1GEG.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的电压增益曲线b) 加补偿后源极跟随器HSPICE频率分析.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCL 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 dc 0 ac 1C1 4 5 0.17pR1 5 0 49.3k.op.ac dec 20 1k 1GEG.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的电压增益曲线(3) 共源共栅增益级a) Hspice仿真.title Cascode AMP frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Ibias 6 0 dc 100uM4 6 6 7 1 pmos w=390u l=2uM5 7 7 1 1 pmos w=390u l=2uM6 8 7 1 1 pmos w=390u l=2uM3 2 6 8 1 pmos w=390u l=2uM2 2 3 4 0 nmos w=100u l=1.6uM1 4 5 0 0 nmos w=100u l=1.6uCl 2 0 0.3pVbias 3 0 dc 2.5Vin 5 0 dc 0.8425 ac 1.op.ac dec 10 0.1 1000Meg.print vdb(2).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程共源共栅增益级的电压增益曲线。
摘要单级放大电路的电压放大倍数一般可以达到几十倍,然而,在许多场合,这样的放大倍数是不够用的,常需要把若干个单管放大电路串接起来,组成多级放大器,把信号经过多次放大,从而得到所需的放大倍数。
在生产实践中,一些信号需经多级放大才能达到负载的要求。
可由若干个单级放大电路组成的多级放大器来承担这一工作。
在多级放大电路的前面几级,主要用作电压放大,大多采用阻容耦合方式; 在最后的功率输出级中,常采用变压器藕合方式’;在直流放大电路及线性集成电路中,·常采用直接接藕合方式。
摘要 (2)第一章放大电路基础 (3)1.1 放大的概念和放大电路的基本指标:1.2 三种类型的指标第二章基本放大电路 (7)2.1 BJT 的结构 (7)2. 2 BJT的放大原理 (8)第三章多级放大电路 (9)3.1 多级放大电路的耦合方式 (9)3.2 放大电路的静态工作点分析 (11)3.3 设计电路的工作原理 (12)3.4计算参数 .......................................................................................................... .. (13)总结......................................................................................................................... (14)参考文献 ................................................................................................................ (14)第一章放大电路基础放大的概念和放大电路的基本指标:“放大”这个词很普遍,在很多场合都会发现放大的现象的存在。
实验报告
课程名称模拟电子技术
实验项目多级放大电路分析仿真
系别自动化学院
专业智能科学与技术1203 班级/学号2012010824
学生姓名朱龙
实验日期
成绩
指导老师杨鸿波
实验三多级放大电路分析仿真实验
一、实验目的
熟悉两级(或多级)放大电路设计和调试的一般方法。
电压放大倍数的测量,幅频特性的测量方法。
可用计算机辅助设计和仿真。
○1根据技术指标设计电路;
○2查阅手册选择元器件并理论计算设计指标是否达到;
○3连接电路,利用有关仪器设备,测量各项技术指标;
○4与理论值相比较,分析误差原因。
撰写设计报告(含实验结果与分析结论)。
⑤熟练使用multisim软件
二、实验器材及电路设计指标分析:
1电源电压12V;电压放大倍数大于等于500;
2输入电阻大于等于20KΏ;
3最大输出不失真电压:5VP-P;
4带宽100HZ~1M;
5 电脑(安装multisim软件)
三、电路图如下:
器件参数
四、电路参数测量:
1
2
3.幅频特性和相频特性:交流分析不带负载时
带负载时:
五、 报告要求
1理论计算工作点各点数据;
4
14
2
12
0.73 1.5250.73
CC BQ V
V V R R R
=
⨯
=⨯=++1
1
3
1.520.7
0.551.5
BQ BEQ
E mA V V
I
R
--=
=
=1
111131
1
1
1 5.75.51E C C E CEQ CC E B V
A
I
I V V I R I R I
I
β
β
μβ
∙=+=-∙-∙≈=
≈+
2理论计算两级电压放大倍数,并与仿真数值比较;
3理论计算电路输入电阻及输出电阻;
4
26
7
12
0.73 1.55.10.73
CC BQ V
V V R R R
=
⨯
=⨯=++2
2
8
1.500.7
0.531.5
BQ BEQ
E mA V V
I
R
--=
=
=2
225282
1
1
1 5.385.31E C C E CEQ CC E B V
A
I
I V V I R I R I
I
β
β
μβ
∙=+=-∙-∙≈=
≈+()
1671||||||120
be u be
R R R r A r β∙
=-
≈-()
5
252'12'12220
||47
264005640
,u be
L u be
u u u u u u us
u
u
us
i s R A r R R A r A A A A A A A
A
u u A
A
ββ∙
∙
∙
∙∙
∙
∙
∙
⨯=-
≈-⨯=-
≈-=⨯==⨯≈带负载时造成该结果的原因是输入电阻太小使得第一级的放大倍数
与
的差距太大;
当输入电阻越大时,越接近那么
与
越接近
4描述放大器带宽的范围。
由AC Analysis 可得整个电路的上限截止频率为1.5MHZ 下限截止频率为85HZ 可得真个电路的频带宽度符合题设要求,并且在带上3k 的负载时也基本满足题中100HZ 到1MHZ 的要求。
()2
4
'5T i
be
be
bb CQ
k U R R R r r
r I
β=≈=+∙≈Ω
5
11o
k R R
==Ω。