第一篇 教材知识梳理篇 第3章 函数及其图象 第4节 反比例函数的图象和性质(精练)试题
- 格式:doc
- 大小:143.50 KB
- 文档页数:5
数学反比例函数的图象及性质知识点归纳
数学反比例函数的图象及性质知识点归纳
店铺您整理了数学反比例函数的图象及性质知识点归纳:反比例函数的图象及性质,希望帮助您提供多想法。
和店铺一起期待学期的学习吧,加油哦!
反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的'两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:
(1)画反比例函数图象的方法是描点法;
(2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。
k≠0
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y轴的变化趋势。
反比例函数的性质:
y=k/x(k≠0)的变形形式为xy=k(常数)所以:
(1)其图象的位置是:
当k﹥0时,x、y同号,图象在第一、三象限;
当k﹤0时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(—m,—n)也在此图象上,故反比例函数的图象关于原点对称。
(3)当k﹥0时,在每个象限内,y随x的增大而减小;
当k﹤0时,在每个象限内,y随x的增大而增大;。
反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。
通常我们把它写成y = k/x+b,其中 b 为常数。
2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。
当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。
例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。
当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。
反比例函数也不具有最大值或最小值。
4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。
例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。
5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。
这可以通过已知的点对、图像或其他信息来确定。
以上是反比例函数的知识点梳理,希望对您有所帮助。
反比例函数的图象和性质在数学的世界里,函数就像是一座神秘的城堡,每一种函数都有着独特的特征和规律。
今天,咱们就一起来探索反比例函数这座城堡,深入了解一下反比例函数的图象和性质。
首先,咱们得知道啥是反比例函数。
一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是x 的反比例函数。
接下来,咱们重点聊聊反比例函数的图象。
反比例函数的图象是双曲线,它有两条分支。
这两条分支要么在一、三象限,要么在二、四象限,具体在哪个象限,得看常数 k 的正负。
当 k>0 时,双曲线的两支分别位于第一、第三象限。
在第一象限内,y 随 x 的增大而减小;在第三象限内,y 也随 x 的增大而减小。
打个比方,就好像你跑步的速度越快,所用的时间就越短。
这里的速度和时间就是成反比例关系,当速度快(k 大)的时候,时间就短(y 小),而且速度越来越快(x 增大),时间就越来越短(y 减小)。
当 k<0 时,双曲线的两支分别位于第二、第四象限。
在第二象限内,y 随 x 的增大而增大;在第四象限内,y 也随 x 的增大而增大。
比如说,你背的东西越重,走得就越慢。
这里的重量和速度成反比例关系,重量越重(k 小),速度越慢(y 大),而且重量越来越重(x 增大),速度就越来越慢(y 增大)。
再来说说反比例函数图象的对称性。
这双曲线可神奇了,它既是轴对称图形,又是中心对称图形。
对称轴有两条,分别是直线 y = x 和直线 y = x 。
对称中心呢,就是坐标原点(0,0)。
咱们再看看反比例函数的性质。
从增减性来说,刚才已经提到了,就不再啰嗦。
还有一点很重要,就是反比例函数的图象永远不会与坐标轴相交。
为啥呢?因为当 x = 0 时,这个函数就没有意义啦,分母不能为 0 嘛。
那知道了反比例函数的图象和性质有啥用呢?用处可大啦!比如说在实际生活中,我们计算工程的进度、计算电阻和电流的关系等等,都可能用到反比例函数。
反比例函数的图像和性质反比例函数是一种常见的数学函数,它的图像和性质在数学学科中扮演着重要的角色。
本文将介绍反比例函数的图像和性质,以帮助读者更好地理解和应用这种函数。
一、反比例函数的定义和表示形式反比例函数是指一个变量的值与另一个变量的值之间存在反比关系的函数。
一般而言,反比例函数可以表示为y = k/x,其中k是一个常数。
这里的x、y分别表示两个变量,k表示比例常数。
二、反比例函数的图像特点反比例函数的图像具有一些明显的特点。
首先,图像始终通过第一象限的原点(0,0),这是因为当x等于0时,无论k的值为何,y都等于0。
其次,当x趋近于正无穷大时,函数的图像趋近于x轴,当x趋近于负无穷大时,函数的图像也趋近于x轴。
这是因为当x趋近于无穷大或负无穷大时,1/x的值趋近于0。
三、反比例函数的图像形状反比例函数的图像呈现出特殊的形状,即一条通过原点的拋物线。
随着x的增大,y的值逐渐减小,而且曲线逐渐接近x轴。
同样地,随着x的减小,y的值逐渐增大。
这种特殊的图像形状可以帮助我们更好地理解反比例函数的性质。
四、反比例函数的性质反比例函数具有一些重要的性质,这些性质对于进行数学分析和解决实际问题非常有用。
以下是一些常见的反比例函数性质:1. 零点:反比例函数的图像通过原点(0,0),也就是说,当x等于0时,y等于0。
2. 定义域和值域:反比例函数的定义域为除了零以外的所有实数,值域也是除了零以外的所有实数。
3. 单调性:反比例函数在其定义域上是单调递减或单调递增的。
随着x的增大,y的值逐渐减小,反之亦然。
4. 渐近线:反比例函数的图像有两条渐近线,分别是x轴和y轴。
当x趋近于正无穷大或负无穷大时,函数的图像将趋近于x轴。
当y趋近于正无穷大或负无穷大时,函数的图像将趋近于y轴。
5. 对称性:反比例函数具有以下对称性:当x1和x2满足x1*x2 = k 时,有f(x1)*f(x2) = k。
6. 变化率:反比例函数的变化率是一个负数。
第四节反比例函数的图象及性质,青海五年中考命题规律)年份题型题号考查点考查内容分值总分2017选择19 反比例函数由一次函数与反比例函数的交点,求一次函数大于反比例函数的取值范围3 32016填空7 反比例函数利用正比例函数与反比例函数图象的交点,求字母的值2 22015选择19 反比例函数判别同一坐标系中反比例函数与一次函数图象的位置3 32014选择15 反比例函数利用反比例函数的几何意义比较面积大小3 32013选择16 反比例函数判别同一坐标系中反比例函数与正比例函数图象的位置3解答23 反比例函数一次函数与反比例函数结合,求一次函数解析式及三角形面积8 11命题规律纵观青海省五年中考,“反比例函数的图象与性质”这一考点一般以选择题、填空题的形式呈现,且与一次函数结合在一起考查,难度偏低.预计2018年青海省中考的考查仍会以反比例函数图象及性质与一次函数的结合考查,题型多以选择题的形式呈现,但也应注意反比例函数与其他函数或几何图形综合考查,不可忽视.,青海五年中考真题)反比例函数的图象及性质1.(2014青海中考)如图,点P 1,P 2,P 3分别是双曲线同一支图象上的三点,过这三点分别作y 轴的垂线,垂足分别是A 1,A 2,A 3,得到三个三角形△P 1A 1O ,△P 2A 2O ,△P 3A 3O.设它们的面积分别为S 1,S 2,S 3,则它们的大小关系是( C )A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 1=S 2=S 3D .S 2>S 3>S 1反比例函数与一次函数的结合2.(2017青海中考)如图,已知A ⎝ ⎛⎭⎪⎫-4,12,B(-1,2)是一次函数y 1=kx +b(k≠0)与反比例函数y 2=m x (m≠0,x <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,若y 1>y 2,则x 的取值范围是( B )A .x <-4B .-4<x <-1C .x <-4或x >-1D .x <-1(第2题图)(第3题图)3.(2014西宁中考)反比例函数y 1=kx 和正比例函数y 2=mx 的图象如图所示,根据图象可以得到满足y 1<y 2的x 的取值范围是( C )A .x >1B .0<x <1或x <-1C .-1<x <0或x >1D .x >2或x <14.(2015青海中考)已知一次函数y =2x -3与反比例函数y =-2x ,那么它们在同一坐标系中的图象可能是( D ),A ) ,B ) ,C ) ,D )5.(2013青海中考)在同一直角坐标系中,函数y =2x 与y =-1x的图象大致是( D ),A ) ,B ) ,C ) ,D )6.(2016青海中考)如图,直线y =12x 与双曲线y =kx在第一象限的交点为A(2,m),则k =__2__.7.(2013青海中考)如图,在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点C(0,2),且与反比例函数y =8x在第一象限内的图象交于点B ,且BD⊥x 轴于点D ,OD =2.(1)求直线AB 的函数解析式;(2)设点P 是y 轴上的点,若△PBC 的面积等于6,直接写出点P 的坐标.解:(1)∵BD⊥x 轴,OD =2, ∴点B 的横坐标为2,将x =2代入y =8x ,得y =4,∴B(2,4).设直线AB 的函数解析式为y =kx +b(k≠0), 将点C(0,2),B(2,4)代入y =kx +b ,得⎩⎪⎨⎪⎧b =2,2k +b =4,∴⎩⎪⎨⎪⎧k =1,b =2,∴直线AB 的函数解析式为y =x +2; (2)P(0,8)或P(0,-4).8.(2016西宁中考)如图,一次函数y =x +m 的图象与反比例函数y =kx 的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1).(1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<x +m≤kx的解集.解:(1)由题意可得:点A(2,1)在函数y =x +m 的图象上, ∴2+m =1,即m =-1.∵A(2,1)在反比例函数y =kx 的图象上,∴k2=1,∴k =2; (2)∵一次函数解析式为y =x -1,令y =0,得x =1,∴点C 的坐标是(1,0),由图象可知不等式组0<x +m≤kx的解集为1<x≤2.反比例函数与几何图形的结合9.(2014西宁中考)如图,已知▱ABCD 水平放置在平面直角坐标系xOy 中,若点A ,D 的坐标分别为(-2,5),(0,1),点B(3,5)在反比例函数y =kx(x >0)图象上.(1)求反比例函数y =kx的解析式;(2)将▱ABCD 沿x 轴正方向平移10个单位长度后,能否使点C 落在反比例函数y =kx的图象上?并说明理由.解:(1)∵点B(3,5)在反比例函数y =k x 图象上,∴k =15,∴反比例函数的解析式为y =15x (x >0);(2)平移后的点C 能落在反比例函数y =15x 的图象上.理由:∵四边形ABCD 是平行四边形.∴AB∥CD,AB =CD.∵点A ,B ,D 的坐标分别为(-2,5),(3,5),(0,1),∴AB =5,AB ∥x 轴,∴CD ∥x 轴.∴点C 的坐标为(5,1),∴▱ABCD 沿x 轴正方向平移10个单位长度后点C 的坐标为(15,1),在y =15x 中,令x =15,则y =1,∴平移后的点C 能落在反比例函数y =15x的图象上.,中考考点清单)反比例函数的概念1.一般地,如果变量y 与变量x 之间的函数关系可以表示成__y =kx __(k 是常数,且k≠0)的形式,则称y 是x 的反比例函数,k 称为比例函数.反比例函数的图象及性质2.函数图象解析式 y =kx(k≠0,k 为常数) k k >0k <0图象3.函数的图象性质函数 系数 所在象限增减性质对称性 y =k x (k≠0)k >0第一、三象限在每个象限内y关于__y =-x__(x ,y 同号) 随x 的__增大而减小__ 对称 k <0第二、四象限(x ,y 异号)在每个象限内y 随x 的__增大而增大__关于__y =x__对称4.k 的几何意义k 的几 何意义设P(x ,y)是反比例函数y =kx图象上任一点,过点P 作PM⊥x轴于M ,PN ⊥y 轴于N ,则S 矩形PNOM =PM·PN=|y|·|x|=|xy|.【方法技巧】反比例函数与一次函数、几何图形结合 (1)反比例函数与一次函数图象的综合应用的四个方面: ①探求同一坐标系下两函数的图象常用排除法. ②探求两函数解析式常利用两函数的图象的交点坐标.③探求两图象交点的坐标常利用解方程(组)来解决,这也是求两函数图象交点坐标的常用方法.④两个函数值比较大小的方法是以交点为界限,观察交点左、右两边区域的两个函数图象上、下位置关系,从而写出函数值的大小.(2)在平面直角坐标系中求三角形的面积时,通常以坐标轴上的边为底,相对顶点的横坐标(或纵坐标)的绝对值为高;如果没有坐标轴上的边,则用坐标轴将其分割后求解.反比例函数解析式的确定5.步骤(1)设所求的反比例函数为y =kx (k≠0);(2)根据已知条件列出含k 的方程; (3)由代入法解待定系数k 的值; (4)把k 代入函数解析式y =kx 中.6.求解析式的两种途径求反比例函数的解析式,主要有两条途径:(1)根据问题中两个变量间的数量关系直接写出;(2)在已知两个变量x ,y 具有反比例关系y =kx (x≠0)的前提下,根据一对x ,y 的值,列出一个关于k 的方程,求得k 的值,确定出函数的解析式.反比例函数的应用7.利用反比例函数解决实际问题,首先是建立函数模型.一般地,建立函数模型有两种思路:一是通过问题提供的信息,知道变量之间的函数关系,在这种情况下,可先设出函数的解析式y =kx (k ≠0),再由已知条件确定解析式中k 的取值即可;二是问题本身的条件中不确定变量间是什么关系,此时要通过分析找出变量的关系并确定函数解析式.,中考重难点突破)反比例函数的图象及性质【例1】(天水中考)已知函数y =mx 的图象如图以下结论:①m <0;②在每个分支上y 随x 的增大而增大;③若点A(-1,a),点B(2,b)在图象上,则a <b ; ④若点P(x ,y)在图象上,则点P 1(-x ,-y)也在图象上. 其中正确的个数是( )A .4B .3C .2D .1【解析】①根据反比例函数的图象的两个分支分别位于第二、四象限,可得m <0,正确;②在每个分支上y 随x 的增大而增大,正确;③若点A(-1,a),点B(2,b)在图象上,观察图象可知a >0,b <0,则a >b ,错误;④若点P(x ,y)在图象上,则y =mx ,即m =xy ,又∵m=(-x)·(-y)=xy ,则点P 1(-x ,-y)也在图象上,正确.【答案】B1.(2017日照中考)反比例函数y =kbx的图象如图所示,则一次函数y =kx +b(k≠0)的图象大致是( D ),A ) ,B ),C ) ,D )反比例函数k 的几何意义【例2】(宁波中考)如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.【解析】分别过点A ,B 作AD⊥x 轴,BE ⊥x 轴,垂足分别为D ,E ,根据反比例函数的几何意义可得,S △BOE =12,S △AOD =92,S △AOC =2S △AOD =9.∵AD⊥OC,BE ⊥OC ,∴BE ∥AD.∴△BOE ∽△AOD ,∴OBOA =S △BOES △AOD=19=13,∴AB AO=S △ABC S △AOC =23,∴S △ABC =23S △AOC =23×9=6. 【答案】62.(2017衢州中考)如图,在直角坐标系中,点A 在函数y =4x (x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =4x (x >0)的图象交于点D.连接AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( C )A .2B .2 3C .4D .4 33.(2017宁波中考)如图,正比例函数y 1=-3x 的图象与反比例函数y 2=kx 的图象交于A ,B 两点.点C 在x轴负半轴上,AC =AO ,△ACO 的面积为12.(1)求k 的值;(2)根据图象,当y 1>y 2时,写出x 的取值范围.解:(1)过点A 作AD⊥OC 于点D.∵AC=AO ,∴CD =DO ,∴S △ADO =12S △ACO =6,∴k =-12;(2)由(1)得:y =-12x ,联立,得⎩⎪⎨⎪⎧y =-12x ,y =-3x ,解得⎩⎪⎨⎪⎧x 1=-2,y 1=6,⎩⎪⎨⎪⎧x 2=2,y 2=-6,故当y 1>y 2时,x 的取值范围是x <-2或0<x <2.反比例函数解析式的确定及综合应用【例3】(2017内江中考)已知两点A(-4,2),B(n ,-4)是一次函数y =kx +b 和反比例函数y =mx 图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b -mx>0的解集.【解析】(1)利用点A 坐标求反比例函数解析式,然后利用此解析式求B 点坐标,从而求一次函数解析式;(2)求AB 直线解析式求C 点坐标;(3)利用函数与不等式关系确定不等式解集.【答案】解:(1)反比例函数解析式为y =-8x ;一次函数解析式为y =-x -2;(2)求出C(-2,0),S △AOB =S △ACO +S △OCB =12×2×2+12×2×4=6;(3)取值范围:x <-4或者0<x <2.4.(2017自贡中考)一次函数y 1=k 1x +b 和反比例函数y 2=k 2x (k 1·k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( D )A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <15.(2017襄阳中考)如图,直线y 1=ax +b 与双曲线y 2=kx 交于A ,B 两点,与x 轴交于点C ,点A 的纵坐标为6,点B 的坐标为(-3,-2).(1)求直线和双曲线的解析式;(2)求点C 的坐标,并结合图象直接写出y 1<0时x 的取值范围.解:(1)∵点B(-3,-2)在双曲线y 2=k x 上,∴k -3=-2,∴k =6,∴双曲线的解析式为y 2=6x.把y =6代入y 2=6x ,得x =1,∴点A 的坐标为(1,6).∵直线y 1=ax +b 经过A ,B 两点,∴⎩⎪⎨⎪⎧a +b =6,-3a +b =-2,解得⎩⎪⎨⎪⎧a =2,b =4,∴直线的解析式为y 1=2x +4;(2)由直线y 1=0得,x =-2,∴点C 的坐标为(-2,0),当y 1<0时x 的取值范围是x <-2.。
第四节 反比例函数的图象和性质
1.(2017遵义六中一模)如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=k 2
x 的图象相交于A ,B 两点,其
中点A 的横坐标为2.当y 1>y 2时,
x 的取值范围是( D )
A .x <-2或x >2
B .x <-2或0<x <2
C .-2<x <0或0<x <2
D .-2<x <0或x >2
2.(2017天水中考)下列给出的函数中,其图象是中心对称图形的是( C ) ①函数y =x ;②函数y =x 2
;③函数y =1x
.
A .①②
B .②③
C .①③
D .都不是
3.(2017凉山中考)已知抛物线y =x 2
+2x -m -2与x 轴没有交点,则函数y =m x
的大致图象是( C )
,A ) ,B ) ,C ) ,D )
4.(2017潍坊中考)一次函数y =ax +b 与反比例函数y =a -b
x ,其中ab <0,a ,b 为常数,它们在同一坐标
系中的图象可以是( B )
,A ) ,B ) ,C ) ,D )
5.(2017菏泽中考)一次函数y =ax +b 和反比例函数y =c
x 在同一平面直角坐标系中的图象如图所示,则二次
函数y =ax 2
+bx +c 的图象可能是( A )
,A )
,B ) ,C ) ,D )
6.(2017威海中考)已知二次函数y =ax 2
+bx +c(a≠0)的图象如图所示,则正比例函数y =(b +c)x 与反比例函数y =a -b +c
x
在同一坐标系中的大致图象是( C )
,A ),B ),C ),D )
7.(2017北京二模)如图,点A 是反比例函数y =1
x (x>0)上的一个动点,连接OA ,过点O 作OB⊥OA,并且使
OB =2OA ,连接AB ,当点A 在反比例函数图象上移动时,点B 也在某一反比例函数图象y =k
x 上移动,k 的值为
( D )
A .2
B .-2
C .4
D .-4
(第7题图)
(第8题图)
8.(2017徐州中考)如图,在平面直角坐标系xOy 中,函数y =kx +b(k≠0)与y =m
x (m≠0)的图象相交于点
A(2,3),B(-6,-1),则不等式kx +b>m
x
的解集为( B )
A .x<-6
B .-6<x<0或x>2
C .x>2
D .x<-6或0<x<2
9.(2017怀化中考)如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2
x 的图象上,
AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =2,BD =1,EF =3,则k 1-k 2的值是( D )
A .6
B .4
C .3
D .2
10.(兰州中考)双曲线y =
m -1
x
在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是__m<1__.
11.(2017遵义二中一模)如图,函数y =-x 与函数y =-4
x 的图象相交于A ,B 两点,过A ,B 两点分别作y
轴的垂线,垂足分别为点C ,D ,则四边形ACBD 的面积为( D )
A .2
B .4
C .6
D .8
(第11题图)
(第12题图)
12.(2017遵义航中二模)如图,A 是反比例函数y =4
x 的图象上一点,过点A 作AB⊥y 轴于点B ,点P 在x 轴
上,则△ABP 的面积为__2__.
13.(2017宁波中考)已知△ABC 的三个顶点为A(-1,-1),B(-1,3),C(-3,-3),将△ABC 向右平移m(m>0)个单位长度后,△ABC 某一边的中点恰好落在反比例函数y =3
x
的图象上,则m 的值为__4或0.5__.
14.(兰州中考)如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A(3,1)在反比例函
数y =k
x
的图象上.
(1)求反比例函数y =k
x
的解析式;
(2)在x 轴的负半轴上存在一点P ,使得S △AOP =1
2
S △AOB ,求点P 的坐标;
(3)若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE.直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.
解:(1)∵点A(3,1)在反比例函数y =k
x 的图象上,
∴k =3×1=3, ∴反比例函数的解析式为y =3x
;
(2)∵A(3,1),AB ⊥x 轴于点C , ∴OC =3,AC =1. ∵∠OAC +∠AOC=90°, ∠BOC +∠AOC=90°, ∴∠OAC =∠BOC.
又∵∠ACO=∠OCB=90°, ∴△ACO ∽△OCB , ∴
AC OC =CO CB
, ∴OC 2
=AC·BC,可得BC =3,B(3,-3), ∴S △AOB =1
2×3×4=23,
∴S △AOP =1
2S △AOB = 3.
设点P 的坐标为(m ,0), ∴1
2×|m|×1=3, ∴|m|=2 3.
∵P 是x 轴的负半轴上的点, ∴m =-23,
∴点P 的坐标为(-23,0);
(3)点E 在该反比例函数的图象上,理由如下: 在Rt △OCB 中,OC =3,BC =3, ∴OB =BC 2
+OC 2
=2 3. ∵OA ⊥OB ,OA =2,AB =4, ∴sin ∠ABO =OA AB =24=1
2,
∴∠ABO =30°,
∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,
∴BO=BD=23,OA=DE=2,
∠BOA=∠BDE=90°,
∠ABD=30°+60°=90°,
而BD-OC=3,BC-DE=1,
∴E(-3,-1),
∵-3×(-1)=3,
∴点E在该反比例函数的图象上.。