铁氧体基础知识教程文件
- 格式:ppt
- 大小:529.00 KB
- 文档页数:14
第三十四讲、镍锌铁氧体(NiZnFe2O4)及其工艺教学目标:熟悉镍锌铁氧体(NiZnFe2O4)的工艺职业技能教学点:1添加剂2离子取代新课教学:在1~100MHz范围内,NiZnFe2O4应用最广泛。
使用频率高、频带宽。
由于Ni2+不易变价,故可在氧气氛中烧结,以避免Fe2+离子的产生。
电阻率ρ可达106Ω.cm 以上。
缺点是:Ni资源缺乏,故生产成本较高。
一、基本配方Fe2O3的含量接近于50mol%时,μi最高。
对(Ni0.32Zn0.68O)1-x(Fe2O3)1+x的配方,结果显示:1、当x>0时,密度随x值的增加而下降,从而导致μi值的下降;2、当x<0时,会产生非磁性相,因而μi随x负值的增大而下降;3、随着Ni含量的增加,Fe2O3的下降,这主要是由于偏离λs、K1较小的区域;4、ZnO含量因使用频率与具体用途而异,当用于1MHz以下较低频段时ZnO含量可适当提高,甚至可达35%。
使用频率的增高,要求ZnO含量随之减小,甚至可低到百分之几(摩尔比)。
表10-1列出了一般通讯用NiZn铁氧体的配方与截止频率的关系:表10-1般通讯用NiZn铁氧体的配方(mol%百分比)与截止频率NiZnFe2O4用于大功率高频场中(因此称为高频磁),需要的是高饱和磁感应强度。
通常取NiFe2O4:ZnFe2O4=60%:40%的配比,即Ni0.6Zn0.4Fe2O4。
二、添加剂的影响1、添加Co2O 3在NiZnFe2O4中添加少量的钴,可以产生感生各向异性,有利于提高截止频率,降低损耗。
另一方面由于Co3+的存在,将会在μi-T曲线上呈现第二峰,有利于改善温度特性。
为了同时改善温度系数,添加平面六角的Co2Y铁氧体(Co2Y=Ba2Co2Fe12O22=2BaO.2CoO.6Fe2O3)十分有效。
添加Co2Y主要是Co、Ba离子的作用,Co离子呈几何有序排列,使畴壁稳定在能量最低位置,Ba2+半径大,可以起钉扎畴壁的作用。
锰锌铁氧体综述1.1MnZn铁氧体中的金属离子分布尖晶石型铁氧体用普通的结构式可表示为:何就F貯)[呼號Rm ⑴A位B位式中:用圆括弧()表示A位;用方括弧[]表示B位。
这个结构式表示A位上有x 份的Fe3+,(1-x)份M2+;在B位上有(2-x)份的Fe3+, x份的M2+。
这里x为变量,称为反分布率。
如果:⑴x=0,结构式为(閻岀)[甩娜]04,表示M2+全部在A位,Fe3+全在B位,这种结构的铁氧体称为正型尖晶石结构,如Zn、Cd、Ca铁氧体。
⑵x=1,结构式为(Fe3+)[]能咆沪']04,表示M2+全部在B位,而Fe3+—半占据A位,另一半占据B位,这种结构的铁氧体称为反型尖晶石结构,如Li、Cu、Fe、Co、Ni铁氧体。
⑶O v x v 1,表示在A位置和B位置上两种金属离子都存在,称为混合型尖晶石结构。
尖晶石铁氧体中金属离子的分布比较复杂,决定阳离子在A和B位上分布的因素有:离子半径、电子组态、静电能、极化效应和离子价态平衡等。
锌铁氧体为ZnFe2O4正型尖晶石结构的铁氧体,其离子分布式为(綸沖)[二「]O4;锰铁氧体MnFe2O4为混合型尖晶石结构的铁氧体,即任:)[工斗1 F W「:]O4,锰锌铁氧体MnZnFe2O4也为混合型尖晶石结构的铁氧体,我们假设x(x v 1)份的锌铁氧体与(1-x)份的锰锌铁氧体固熔,即有:心「]O4+)1-x(渤:舟,兔D[.y 4.. ]O4(-二二)[:二-:1「.…]O4(2)1.2MnZn铁氧体的自发磁化理论⑴亚铁磁性的奈耳分子场理论为了解释铁氧体的特征,奈耳将反铁磁性的定域分子场理论应用到亚铁磁性中。
奈耳以反型尖晶石铁氧体的晶体结构为基础,建立了亚铁磁性的简单分子场理论。
奈耳把尖晶石结构抽象成两种次晶格,即A位和B位,并认为A位和B 位之间的相互作用是主要的相互作用,并且具有相当大的负值。
绝对零度时,这种相互作用导致磁矩按如下方式取向:A位所有离子磁矩都平行排列,其磁矩为M A;B位所有离子磁矩都平行排列,其磁矩为M B。
铁氧体(铁氧体磁环-铁氧体磁珠)在抑制电磁干扰(EMI)中的应用用铁氧体磁性材料抑制电磁干扰(EMI)是经济简便而有效的方法,已广泛应用于计算机等各种军用或民用电子设备。
那么什么是铁氧体呢?如何选择,怎样使用铁氧体元件呢?这篇文章将对这些问题作一简要介绍。
一、什么是铁氧体抑制元件铁氧体是一种立方晶格结构的亚铁磁性材料,它的制造工艺和机械性能与陶瓷相似。
但颜色为黑灰色,故又称黑磁或磁性瓷。
铁氧体的分子结构为MO·Fe2O3,其中MO为金属氧化物,通常是MnO或ZnO。
衡量铁氧体磁性材料磁性能的参数有磁导率μ,饱和磁通密度Bs,剩磁Br和矫顽力Hc等。
对于抑制用铁氧体材料,磁导率μ和饱和磁通密度Bs是最重要的磁性参数。
磁导率定义为磁通密度随磁场强度的变化率。
μ=△B/△H对于一种磁性材料来说,磁导率不是一个常数,它与磁场的大小、频率的高低有关。
当铁氧体受到一个外磁场H作用时,例如当电流流经绕在铁氧体磁环上的线圈时,铁氧体磁环被磁化。
随着磁场H的增加,磁通密度B增加。
当磁场H场加到一定值时,B值趋于平稳。
这时称作饱和。
对于软磁材料,饱和磁场H只有十分之几到几个奥斯特。
随着饱和的接近,铁氧体的磁导率迅速下降并接近于空气图1 铁氧体的B-H曲线的导磁率(相对磁导率为1)如图1所示。
铁氧体的磁导率可以表示为复数。
实数部分μ'代表无功磁导率,它构成磁性材料的电感。
虚数部分μ"代表损耗,如图2所示。
μ=μ'-jμ"图2 铁氧体的复数磁导率磁导率与频率的关系如图3所示。
在一定的频率范围内μ'值(在某一磁场下的磁导率)保持不变,然后随频率的升高磁导率μ'有一最大值。
频率再增加时,μ'迅速下降。
代表材料损耗的虚数磁导率μ"在低频时数值较小,随着频率增加,材料的损耗增加,μ"增加。
如图3所示,图中tanδ=μ"/μ'图3 铁氧体磁导率与频率的关系图4 铁氧体抑制元件的等效电路(a)和阻抗矢量图(b)二、铁氧体抑制元件的阻抗和插入损耗当铁氧体元件用在交流电路时,铁氧体元件是一个有损耗的电感器,它的等效电路可视为由电感L和损耗电阻R组成的串联电路,如图4所示。
一、铁氧体磁性材料分类1、按晶格类型分类按晶格类型分类,有以下三种类型:1.1尖晶石型铁氧体尖晶石型铁氧体的化学分子式为MFe204,M是指离子半径与二价铁离子相近的二价金属离子Mn2+、Zn2+、Cu2+、Ni2+、Mg2+、Co2+等)或平均化学价为二价的多种金属离子组(如Li+0.5Fe3+0.5)。
使用不同的替代金属,可以合成不同类型的铁氧体。
(以Zn2+替代Fe2+所合成的复合氧化物ZnFe204称为锌铁氧体,以Mn2+替代Fe2+所合成的复合氧化物MnFe204称为锰铁氧体)。
通过控制替代金属,可以达到控制材料磁特性的目的。
由一种金属离子替代而成的铁氧体称为单组分铁氧体。
由两种或两种以上的金属离子替代可以合成出双组分铁氧体和多组分铁氧体。
锰锌铁氧体(Mn-ZnFe204)和镍锌铁氧体(Ni-ZnFe24)就是双组分铁氧体,而锰镁锌铁氧体(Mn-Mg-ZnFe204)则是多组分铁氧体。
1.2磁铅石型铁氧体磁铅石型铁氧体是与天然矿物--磁铅石Pb(Fe7.5Mn3.5Al0.5Ti0.5)O19有类似晶体结构的铁氧体,属于六角晶系,分子式为MFe12O19,M为二价金属离子Ba2+、Sr2+、Pb2+等。
通过控制替代金属,可以获得性能改善的多组分铁氧体。
1.3石榴石型铁氧体石榴石型铁氧体是指一种与天然石榴石(Fe,Mg)3A12(Si04)3:有类似晶体结构的铁氧体,属于立方晶系,分子式为R3Fe5Ol2,R表示三价稀土金属离子Y3+、Sm3+、Eu3+、Gd3+、Tb3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+或Lu3+等。
Y3Fe5O12(YIG)钇铁石榴石是目前最常用的石榴石型铁氧体。
1.4钙钛矿型铁氧体钙钛矿型铁氧体是指一种与钙钛矿(CaTi03)有类似晶体结构的铁氧体,分子式为MFeO3,M表示三价稀土金属离子。
其他金属离子M3+或(M2++M4+)也可以置换部分Fe3+,组成复合钙钛矿型铁氧体。
锰锌铁氧体电阻率-概述说明以及解释1.引言1.1 概述锰锌铁氧体是一种重要的磁性材料,具有广泛的应用领域。
它是由锰氧化物、锌氧化物和铁氧化物等混合物组成,经过高温烧结制成。
锰锌铁氧体具有良好的导电性能和磁性能,因此在电子元器件、通讯设备、电力设备等领域得到了广泛的应用。
电阻率是一个衡量材料导电性能的重要指标,描述了材料对电流运输的阻碍程度。
对于锰锌铁氧体来说,它的电阻率决定了材料在电路中的电导特性。
因此,研究锰锌铁氧体的电阻率特性对于深入了解其导电行为,优化材料的性能具有重要意义。
在本文中,我们将详细介绍锰锌铁氧体的基本概念、制备方法和物理性质。
特别是,我们将重点讨论锰锌铁氧体的电阻率特性,探究其受温度、压力等因素的影响。
通过实验研究和理论分析,我们将揭示锰锌铁氧体电阻率的变化规律,并探讨与其它物理性质的相互关系。
通过本文的论述,我们希望能够更好地认识锰锌铁氧体的电阻率特性,为其在各个领域的应用提供科学依据。
同时,我们也希望通过对锰锌铁氧体的电阻率研究,为其他磁性材料的电导行为提供借鉴和启示。
最后,我们将对未来锰锌铁氧体电阻率方面的研究进行展望,并指出待解决的问题和可能的研究方向。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文主要围绕锰锌铁氧体的电阻率展开讨论,共分为以下几个部分:1. 引言:介绍文章的背景和研究意义,以及锰锌铁氧体在电子工业中的应用前景。
2. 正文:包括两个主要部分,分别对锰锌铁氧体的基本介绍和电阻率特性进行详细阐述。
2.1 锰锌铁氧体的基本介绍:介绍锰锌铁氧体的组成、制备方法以及物理性质等方面的基本情况,为后续对其电阻率特性的讨论提供必要的背景知识。
2.2 锰锌铁氧体的电阻率特性:重点探究锰锌铁氧体在不同温度下的电阻率变化规律,分析其影响因素以及可能的机理,同时介绍现有的研究成果和实验方法。
3. 结论:对本文的主要内容进行总结和归纳,重申锰锌铁氧体的电阻率特性在电子领域的重要性,并提出未来研究的展望和方向。