材料分析测试 第八章 透射电子显微分析讲解
- 格式:ppt
- 大小:15.73 MB
- 文档页数:121
材料科学研究方法-透射电子显微成像分析透射电子显微镜成象原理与图象解释金相显微镜及扫描电镜均只能观察物质表面的微观形貌,它无法获得物质内部的信息。
而透射电镜由于入射电子透射试样后,将与试样内部原子发生相互作用,从而改变其能量及运动方向。
显然,不同结构有不同的相互作用。
这样,就可以根据透射电子图象所获得的信息来了解试样内部的结构。
由于试样结构和相互作用的复杂性,因此所获得的图象也很复杂。
它不象表面形貌那样直观、易懂。
因此,如何对一张电子图象获得的信息作出正确的解释和判断,不但很重要,也很困难。
必须建立一套相应的理论才能对透射电子象作出正确的解释。
如前所述电子束透过试样所得到的透射电子束的强度及方向均发生了变化,由于试样各部位的组织结构不同,因而透射到荧光屏上的各点强度是不均匀的,这种强度的不均匀分布现象就称为衬度,所获得的电子象称为透射电子衬度象。
衬度(contrast)定义 ?衬度(contrast)定义:两个相临部分的电子束强度差对于光学显微镜,衬度来源是材料各部分反射光的能力不同。
?当电子逸出试样下表面时,由于试样对电子束的作用,使得透射到荧光屏上的强度是不均匀的,这种强度不均匀的电子象称为衬度象。
其形成的机制有两种: 1.相位衬度如果透射束与衍射束可以重新组合,从而保持它们的振幅和位相,则可直接得到产生衍射的那些晶面的晶格象,或者一个个原子的晶体结构象。
仅适于很薄的晶体试样≈100? 。
――高分辨像原子序数衬度 2. 振幅衬度振幅衬度是由于入射电子通过试样时,与试样内原子发生相互作用而发生振幅的变化,引起反差。
振幅衬度主要有质厚衬度和衍射衬度两种:①质厚衬度由于试样的质量和厚度不同,各部分对入射电子发生相互作用,产生的吸收与散射程度不同,而使得透射电子束的强度分布不同,形成反差,称为质-厚衬度。
第一节质厚衬度原理透过试样不同部位时,散射和透射强度的比例不同质厚衬度来源于入射电子与试样物质发生相互作用而引起的吸收与散射。
纳米材料的透射电子显微镜分析一.实验原理在透射电子显微镜电子光学系统中,薄样品对电子束的散射和衍射作用可形成电子显微像衬度或电子衍射花样。
通过观察和研究像衬度及电子衍射花样,可分析样品的微观形貌、尺寸大小和晶体结构。
电子显微图像衬度主要有3种:质厚衬度、衍射衬度和相位衬度。
(1)质厚衬度:由于试样各处组成物质的原子种类和厚度不同,使得对电子散射能力不同,而造成的一种像衬度。
(2)衍射衬度:晶体试样在进行透射电镜观察时,由于各处晶体取向和结构不同,满足布拉格衍射条件的程度不同,使得对试样下表面处有不同的衍射效果,从而在下表面形成随位置而异的衍射振幅分布,由此而形成的一种像衬度。
(3)相位衬度:由透射束与衍射束发生相互干涉,形成一种反映晶体点阵周期性的条纹和结构像,这种像衬度是因透射束与衍射束相位相干而形成的,故称相位衬度。
因此,采用不同的实验条件可以得到不同的衬度像。
另外,透射电镜配置X-Ray能谱仪后,可获得试样微区(nm-µm)元素成分信息。
X-Ray能谱仪是将透射电镜中高能电子入射试样后使原子内壳层电子被激发电离后原子在恢复基态的过程中产生的X射线信号进行收集、放大处理,并按能量展开成谱,利用谱峰的特征能量值确定元素种类,根据谱的强度分析计算各元素含量。
二.实验仪器1.透射电子显微镜:JEM-2010 (HR)2.X-Ray能谱仪:Oxford INCA3.制样设备:超声波发生器,双喷减薄仪,离子减薄仪三.样品制备方法1.粉末分散法取少量粉末样品置于洁净的小烧杯中,加入适量与试样不发生反应的溶剂(例如:无水乙醇、丙酮、蒸馏水等),将烧杯置于超声波发生器水浴槽中进行超声振荡,使粉末样品充分分散,形成悬浮液。
把碳增强的微栅网放在滤纸上,再将此悬浮液滴在微栅网上面,等溶剂挥发干燥后,才可将微栅网装入样品台。
2.电解减薄法用于金属和合金薄膜试样的制备。
3.离子减薄法用于陶瓷、半导体以及多层薄膜截面等材料的薄膜试样制备。
第二篇电子显微分析电子显微分析是基于电子束(波)与材料的相互作用而建立的各种材料现代分析方法。
电子显微分析方法以材料微观形貌、结构与成分分析为基本目的。
从分析原理(技术基础)来看,各种电子显微分析方法中的一些方法也可归于光谱分析(如电子探针)、能谱分析(如电子激发俄歇能谱)和衍射分析(如电子衍射)等方法范畴。
电子显微分析主要介绍透射电子显微分析、扫描电子显微分析及电子探针分析这些基本的、得到广泛应用的分析方法。
第七章透射电子显微分析电子光学基础1.电子波有何特征?与可见光有何异同?答:电子波具有粒子性和波动性波粒二象性,电子显微镜中常用的加速电压为100—200kv,电子波长为0.00370—0.00251nm,大约是可见光(390~760nm)的十万分之一。
3.电磁透镜的像差是怎样产生的,如何来消除和减少像差?答:<1>像差分为两类:几何像差和色差。
•几何像差是因为透镜磁场几何形状上的缺陷而造成的。
几何主要指球差和像散。
•色差是由于电子波的波长或能量发生一定幅度的改变而造成的。
<2>第一,采取稳定加速电压的方法可有效地减小色差。
第二,单一能量或波长的电子束照射样品物质时,将与样品原子的核外电子发生非弹性散射。
一般来说,样品越厚,电子能量损失或波长变化幅度越大,色差散焦斑越大,透镜像分辩率越差。
所以应尽可能减小样品厚度,以利于提高透镜像的分辩率。
(球差:球差即球面像差,是由电磁透镜磁场中,近轴区域对电子束的折射能力与远轴区域不同而产生的。
球差除了影响分辨本领外,还会引起图像畸变。
像散:是由透镜磁场非旋转对称引起的一种像差。
像散散焦斑与焦距差ΔfA成正比,透镜磁场非旋转对称性越明显,焦距差越大,散焦斑越大,透镜的分辨率越差。
像散可以用机械、静电或电磁式消像散器适当地加以补偿矫正。
)4.说明影响光学显微镜和电磁透镜分辨率的关键因素是什么?如何提高电磁透镜的分辨率?答:1.影响光学显微镜分辨本领主要取决于照明波长和光差介质,因此式Δr0= 0.61λ/nsinα故若要提高光学显微镜的分辨本领,关键是要有短波长的照明源。
电子行业透射电子显微分析1. 引言透射电子显微分析(Transmission Electron Microscopy,TEM)是一种非常重要的材料分析技术,在电子行业中有着广泛的应用。
通过TEM 技术,我们可以观察材料的微观结构,并了解其原子级别的成分和性质。
本文将介绍电子行业中透射电子显微分析的原理、仪器及其在电子行业中的应用。
2. 原理透射电子显微分析的原理是利用电子束与样品相互作用产生的散射信号来观察样品的微观结构。
当入射电子束通过样品时,它们与样品中的原子和结构相互作用,会发生散射、吸收、透射等现象。
通过探测和分析这些散射信号,我们可以获得关于样品的丰富信息。
透射电子显微分析主要包括以下几个方面的原理:2.1 透射电子显微镜(TEM)的工作原理透射电子显微镜是透射电子显微分析的核心设备。
它由电子源、透镜系统、样品台、探测器和图像采集系统等组成。
电子源产生高速电子束,通过透镜系统聚焦到样品上。
样品与电子束相互作用,产生散射或透射信号。
探测器接收并记录这些信号,并通过图像采集系统生成样品的图像。
2.2 晶体学原理透射电子显微分析可以通过对样品中的晶体结构进行观察和分析,获得关于晶体结构的信息。
晶体学原理涉及到晶体的结构、晶胞参数、晶体缺陷等内容。
通过探测电子束的散射模式和衍射图样,可以确定样品的晶体结构和晶胞参数。
2.3 电子束与样品的相互作用当电子束与样品相互作用时,会发生散射、吸收和透射等现象。
散射过程中,电子束与样品中的原子或晶体结构相互作用,会改变其传播方向和速度,从而产生散射信号。
吸收过程中,电子束被样品中的原子或结构吸收或散射,导致电子束的衰减。
透射过程中,电子束可以透过样品而不发生散射或吸收。
根据不同的散射和吸收方式,可以获得样品不同的信息。
3. 仪器透射电子显微分析需要使用透射电子显微镜和其他相关设备来进行实验和观察。
这些仪器具有高分辨率、高稳定性和高探测灵敏度等特点,为透射电子显微分析提供了必要的工具。
透射电⼦显微镜实验讲义⼀、实验名称透射电⼦显微镜⽤于⽆机纳⽶材料的检测。
⼆、实验⽬的1.认知透射电⼦显微镜的基本原理,了解有关仪器的主要结构;2.学习利⽤此项电⼦显微技术观察、分析物质结构的⽅法,主要包括:常规成像、⾼分辨成像、电⼦衍射和能谱分析等;3.重点帮助学⽣掌握纳⽶材料等的微观形貌和结构测试结果的判读,主要包括:材料的尺⼨、⼤⼩均匀性、分散性、⼏何形状,以及材料的晶体结构和⽣长取向等。
三、实验原理透射电⼦显微技术⾃20世纪30年代诞⽣以来,经过数⼗年的发展,现已成为材料、化学化⼯、物理、⽣物等领域科学研究中物质微观结构观察、测试⼗分重要的⼿段,尤其是近20多年来,纳⽶材料研究的快速发展⼜赋予这⼀电⼦显微技术以极⼤的⽣命⼒,可以这样说,没有透射电⼦显微镜,就⽆法开展纳⽶材料的研究。
透射电⼦显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,⽽透射电⼦显微镜则以⾼速运动的电⼦束为“光源”。
在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电⼦显微镜中,相应的电⼦聚焦功能是电磁透镜,它利⽤了带电粒⼦与磁场间的相互作⽤。
在真空系统中,由电⼦枪发射出的电⼦经加速后,通过磁透镜照射在样品上。
透过样品的电⼦被电⼦透镜放⼤成像。
成像原理是复杂的,可发⽣透射、散射、吸收、⼲涉和衍射等多种效应,使得在相平⾯形成衬度(即明暗对⽐),从⽽显⽰出透射、衍射、⾼分辨等图像。
对于⾮晶样品⽽⾔,形成的是质厚忖度像,当⼊射电⼦透过此类样品时,成像效果与样品的厚度或密度有关,即电⼦碰到的原⼦数量越多,或样品的原⼦序数越⼤,均可使⼊射电⼦与原⼦核产⽣较强的排斥作⽤——电⼦散射,使⾯通过物镜光阑参与成像的电⼦强度降低,忖度像变淡。
另外,对于晶体样品⽽⾔,由于⼊射电⼦波长极短,与物质作⽤满⾜布拉格(Bragg)⽅程,产⽣衍射现象,在衍射衬度模式中,像平⾯上图象的衬度来源于两个⽅⾯,⼀是质量、厚度因素,⼆是衍射因素;在晶体样品超薄的情况下(如10nm左右),可使透射电⼦显微镜具有⾼分辨成像的功能,可⽤于材料结构的精细分析,此时获得的图像为相位衬度,它来⾃样品上不同区域透过去的电⼦(包括散射电⼦)的相位差异。