硅光电池实验课堂指导及实验报告要求
- 格式:docx
- 大小:17.11 KB
- 文档页数:9
实验5 硅光电池基本特性的研究硅光电池又称光生伏特电池,简称光电池.它是一种将太阳或其他光源的光能直接转换成电能的器件.由于它具有重量轻、使用安全、无污染等特点,在目前世界性能源短缺和环境保护形势日益严峻的情况下,人们对硅光电池寄予厚望.硅光电池很可能成为未来电力的重要来源,同时,硅光电池在现代检测和控制技术中也有十分重要的地位,在卫星和宇宙飞船上都用硅光电池作为电源.本实验对硅光电池的基本特性做初步研究.一.实验目的1. 了解硅光电池的基本结构及基本原理.2. 研究硅光电池的基本特性:3.硅光电池的开路电压和短路电流以及它们与入射光强度的关系;4.硅光电池的输出伏安特性等。
二. 实验仪器YJ-CGQ-I典型传感特性综合实验仪、光源、负载电阻箱.数字万用表.连接线1. 实验装置实验装置由光源和硅光电池两部分组成, 如图1所示.图12. 负载电阻箱如图2所示.图2三. 实验原理1.硅光电池的基本结构.硅光电池用半导体材料制成,多为面结合PN结型,靠PN结的光生伏特效应产生电动势.常见的有硅光电池和硒光电池.在纯度很高、厚度很薄(0.4mm)的N型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P层,位于较深处的N层保持不变,在硼所扩散到的最深处形成PN结.从P层和N层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形.硅光电池的基本结构如图3所示.图32.硅光电池的基本原理当两种不同类型的半导体结合形成PN结时.由于分界层(PN结)两边存在着载流子浓度的突变,必将导致电子从N区向P区和空穴从P区向N区扩散运动,扩散结果将在PN结附近产生空间电荷聚集区,从而形成一个由N区指向P区的内电场.当有光照射到PN结上时,具有一定能量的光子,会激发出电子-空穴对.这样,在内部电场的作用下,电子被拉向N区,而空穴被拉向P区.结果在P区空穴数目增加而带正电,在N区电子数目增加而带负电,在PN结两端产生了光生电动势,这就是硅光电池的电动势.若硅光电池接有负载,电路中就有电流产生.这就是硅光电池的基本原理.单体硅光电池在阳光照射下,其电动势为0.5-0.6V,最佳负荷状态工作电压为0.4-0.5V,根据需要可将多个硅光电池串并联使用.3.硅光电池的光电转换效率硅光电池在实现光电转换时,并非所有照射在电池表面的光能全部被转换为电能.例如,在太阳照射下,硅光电池转换效率最高,但目前也仅达22%左右.其原因有多种,如:反射损失;波长过长的光(光子能量小)不能激发电子空穴对,波长过短的光固然能激发电子-空穴对,但能量再大,一个光子也只能激发一个电子-空穴对;在离PN较远处被激发的电子-空穴对会自行重新复合,对电动势无贡献;内部和表面存在晶格缺陷会使电子-空穴对重新复合;光电流通过PN结时会有漏电等.4. 硅光电池的基本特性4.1 硅光电池的开路电压与入射光强度的关系硅光电池的开路电压是硅光电池在外电路断开时两端的电压,用U∞表示,亦即硅光电池的电动势.在无光照射时,开路电压为零.硅光电池的开路电压不仅与硅光电池材料有关,而且与入射光强度有关,而且与入射光强度有关.在相同的光强照射下,不同材料制做的硅光电池的开路电压不同.理论上,开路电压的最大值等于材料禁带宽度有1/2.例如,禁带宽度为1.1eV的硅做硅光电池,开路电压为0.5-0.6V.对于给定的硅光电池,其开路电压随入射光强度变化而变化.其规律是:硅光电池开路电压与入射光强度的对数成正比,即开路电压随入射光强度增大而增大,但入射光强度越大,开路电压增大得越缓慢.4.2 硅光电池的短路电流与入射光的关系硅光电池的短路电流就是它无负载时回路中电流,用I SC表示.对给定的硅光电池,其短路电流与入射光强度成正比.对此,我们是容易理解的,因为入射光强度越大,光子越多,从而由光子激发的电子-空穴对越多,短路电流也就越大.4.3在一定入射光强度下硅光电池的输出特性当硅光电池两端连接负载而使电路闭合时,如果入射光强度一定,则电路中的电流I和路端电压U均随负载电阻的改变而改变,同时,硅光电池的内阻也随之变化.硅光电池的输出伏安特性曲线如图4所示.图4中,I SC 为U =0,即短路时的电流,I SC .U∞为I=0,即开路时的路端电压,也就是硅光电池在该入射光强度下的开路电压,曲线上任一点对对应的I 和U 的乘积(在图中则是一个矩形的面积),就是硅光电池在相应负载电阻时的输出功率P .曲线上有一点M ,它的对应I mp 和U mp 的乘积(即图中画斜线的矩形面积)最大.可见,硅光电池仅在它的负载电阻值为U mp 和Imp 值时,才有最大输出功率.这个负载电阻称为最佳负载电阻,用R mp 表示.因此,我们通过研究硅光电池在一定入射光强度下的输出特性,可以找出它在该入射光强度下的最佳负载电阻.它在该负载电阻时工作状态为最佳状态,它的输出功率最大.4.4硅光电池在一定入射光强度下的曲线因子(或填充因子)F ·F曲线因子定义式为F ·F =(U mp I mp )/(U ∞I SC )我们知道,在一定入射光强度下,硅光电池的开路电压U ∞和短路电流I SC 是一定的.而U mp 和I mp 分别为硅光电池在该入射光强度下输出功率最大时的电压和电流.可见,曲线因子的物理意义是表示硅光电池在该入射光强度下的最大输出效率.从硅光电池的输出伏安特性曲线来看,曲线因子F ·F 的大小等于斜线矩形的面积(与M 点对应)与矩形I SC U ∞的面积(与M 点对应)之比.如果输出伏安特性曲线越接近矩形,则M 与M ′就越接近重合,曲线因子F · F 就越接近1,硅光电池的最大输出效率就越大.四.实验内容与步骤1. 硅光电池基本常数的测定(1) 测定在一定入射光强度下硅光电池的开路电压U∞和短路电流ISC.调节光源与硅光电池处于适当位置不变.b.测出硅光电池的开路电压U∞c.测出硅光电池的短路电流ISC.(2) 测定硅光电池的开路电压和短路电流与入射光强度的关系.a.光源与硅光电池正对时,测出开路电压U∞1和短路电流ISC1.b.转动硅光电池一定角度(如15o)测出U∞2和ISC2.c.转动硅光电池角度为30o、45o、60o、75o、90o时,测出不同位置下的U∞和ISC.d. 自拟数据表格,并用坐标纸画出ISC—Ө及U∞—Ө曲线.2. 在一定入射光强度下,研究硅光电池的输出特性.保持光源和硅光电池处于适当的位置不变,即保持入射光强度不变.(1) 测量开路电压U∞和短路电流ISC.(2) 分别测出不同负载电阻下的电流I和电压U.(3) 根据U∞、ISC及一系列相应的R、U、I值.填入自拟表格中.(4) 计算在该入射光强度下,与各个R相对应的输出功率P=IU,求出最大输出功率P max,以及相应的硅光电池的最佳负载电阻Rmp、Ump、Imp值.(5) 作P—R及输出伏安特性I—U曲线.(6) 计算曲线因子F·F=(UmpImp)/(U∞ISC).。
234实验五十二 硅光电池特性的研究一、实验目的1.掌握PN 结形成原理及其工作机理; 2.了解LED 发光二极管的驱动电流和输出光功率的关系;3.掌握硅光电池的工作原理及其工作特性。
二、仪器设备1.TKGD ―1型硅光电池特性实验仪; 2.信号发生器;3.双踪示波器。
三、实验原理1.引言目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN 结原理﹑光电效应理论和光伏电池产生机理。
图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而N 型材料电子多空穴少,结果P型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。
2.LED 的工作原理当某些半导体材料形成的PN 结加正向电压时,空穴与电子在PN 结复合时将产生特定波长的光,发光的波长与半导体材料的能级间隙E g 有关。
发光波长λp可由下式确定:式(1)中h 为普朗克常数,c 为光速。
在实际的半导体材料中能级间隙E g 有一个宽度,因此发光二极管发出光的波长不是单一的,其发光波长半宽度一般在25~40nm 左右,随半导体材料的不同而有差别。
发光二极管输出光功率P 与驱动电流I 的关系由下式决定:式(2)中,η为发光效率,E p 是光子能量,e 是电荷常数。
光电检测实验报告实验名称:硅光电池特性测试实验实验者:实验班级:实验时间:指导老师:宋老师一:实验目的1、学习掌握硅光电池的工作原理2、学习掌握硅光电池的基本特性3、掌握硅光电池基本特性测试方法4、了解硅光电池的基本应用二、实验内容1、硅光电池短路电路测试实验2、硅光电池开路电压测试实验3、硅光电池光电特性测试实验4、硅光电池负载特性测试实验5、硅光电池光谱特性测试实验三、实验仪器1、硅光电池综合实验仪 1个2、光通路组件 1只3、光照度计 1台4、2#迭插头对(红色,50cm) 10根5、2#迭插头对(黑色,50cm) 10根6、三相电源线 1根7、实验指导书 1本8、20M 示波器 1台四、实验步骤1、硅光电池短路电流特性测试:(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。
(3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(4)按图2-11所示的电路连接电路图(5)记录下此时的电流表读数I即为硅光电池短路电流。
图2-11 硅光电池短路电流特性测试2、硅光电池开路电压特性测试(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。
(3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(4)按图2-12所示的电路连接电路图(5)记录下此时电压表的读数u即为硅光电池开路电压。
实验五⼗⼆硅光电池特性的研究(精)234实验五⼗⼆硅光电池特性的研究⼀、实验⽬的1.掌握PN 结形成原理及其⼯作机理; 2.了解LED 发光⼆极管的驱动电流和输出光功率的关系;3.掌握硅光电池的⼯作原理及其⼯作特性。
⼆、仪器设备1.TKGD ―1型硅光电池特性实验仪; 2.信号发⽣器;3.双踪⽰波器。
三、实验原理1.引⾔⽬前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到⼴泛应⽤,硅光电池是半导体光电探测器的⼀个基本单元,深刻理解硅光电池的⼯作原理和具体使⽤特性可以进⼀步领会半导体PN 结原理﹑光电效应理论和光伏电池产⽣机理。
图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空⽳多电⼦少,⽽N 型材料电⼦多空⽳少,结果P型材料中的空⽳向N 型材料这边扩散,N 型材料中的电⼦向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成⼀个势垒,由此⽽产⽣的内电场将阻⽌扩散运动的继续进⾏,当两者达到平衡时,在PN 结两侧形成⼀个耗尽区,耗尽区的特点是⽆⾃由载流⼦,呈现⾼阻抗。
当PN 结反偏时,外加电场与内电场⽅向⼀致,耗尽区在外电场作⽤下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场⽅向相反,耗尽区在外电场作⽤下变窄,势垒削弱,使载流⼦扩散运动继续形成电流,此即为PN 结的单向导电性,电流⽅向是从P 指向N 。
2.LED 的⼯作原理当某些半导体材料形成的PN 结加正向电压时,空⽳与电⼦在PN 结复合时将产⽣特定波长的光,发光的波长与半导体材料的能级间隙E g 有关。
发光波长λp可由下式确定:式(1)中h 为普朗克常数,c 为光速。
在实际的半导体材料中能级间隙E g 有⼀个宽度,因此发光⼆极管发出光的波长不是单⼀的,其发光波长半宽度⼀般在25~40nm 左右,随半导体材料的不同⽽有差别。
发光⼆极管输出光功率P 与驱动电流I 的关系由下式决定:式(2)中,η为发光效率,E p 是光⼦能量,e 是电荷常数。
实验四硅光电池的特性测试一、实验目的:1.熟悉硅光电池的结构与工作原理;2.掌握实验测试硅光电池光电特性的方法;3.了解硅光电池的光电特性。
二、实验原理:硅光电池按基底材料不同分2DR型和2CR型。
2DR型硅光电池是以P型硅作基底(即在本征型半导体中掺入三价元素硼、镓等), 然后在基底上扩散磷而形成N型并作为受光面。
2CR型光电池则是以N型作基底(在本征型硅材料中掺入五价元素磷、砷等), 然后在基底上扩散而形成P型并作为受光面。
构成P-N结后, 再经过各种工艺处理, 分别在基底和光敏面上制作输出电极, 涂上二氧化硅作保护, 即成光电流。
如图4-1(a)所示。
图4-1 硅光电池结构及工作原理图光电池的主要功能是在不加偏置的情况下能将光信号转换为电信号。
硅光电池的工作原理如图4-1(c)所示。
有光照时, 光电池外接上负载电阻RL, 此时在P-N结内出现两种方向相反的电流: 一种是光激发产生的电子-空穴对, 在内建电场的作用下, 形成的光生电流Ip, 它与光照有关, 其方向与P-N结反向饱和电流I0相同;另一种是光生电流Ip流过负载电阻RL产生电压降, 相当于在P-N结施加正向偏压, 从而产生正向电流ID, 总电流是两者之差。
即:三、实验仪器及部件:光电池、直流稳压电源、采样电阻、照度测量器件、照度表、光源、微安表、F/V 表。
四、实验步骤:1.了解所需单元、部件在实验仪上的位置、观察光电池的结构。
2.测量光电池的短路电流:按图4-2接线, 装上光源, 对准光电池, 关闭发光管电源, 移出遮光罩, 光电池完全被遮盖, 微安表显示的电流值即为暗电流, 即照度为0时。
开启光源, 改变照度(方法如实验一), 并记录电流表的读数填入下表, 作出照度—电流曲线。
表4-1 短路电流与光照度关系表照度(Lx ) 0 200 400 600 800 1000 电流(uA )3.测量光电池的开路电压:按图4-3接线, 装上电源, 对准光电池, 关闭发光管电源, 移出遮光罩, 光电池完全被遮盖, 电压表显示的电压为照度为0时的电压。
硅光电池基本特性的研究太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。
硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。
因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。
[实验目的]1.测量太阳能电池在无光照时的伏安特性曲线;2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压U OC、最大FF3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J0的关系,求出它们的近似函数关系;[实验原理]1、硅光电池的基本结构目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。
零偏反偏正偏图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者到达平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。
硅光电池特性测试实验报告硅光电池特性测试实验报告系别:电子信息工程系班级:光电08305班组长:祝李组员:贺义贵、何江武、占志武实验时间:2010年4月2日指导老师:王凌波2010.4.6目录一、实验目的二、实验内容三、实验仪器四、实验原理五、注意事项六、实验步骤七、实验数据及分析八、总结一、实验目的1、学习掌握硅光电池的工作原理2、学习掌握硅光电池的基本特性3、掌握硅光电池基本特性测试方法4、了解硅光电池的基本应用二、实验内容1、硅光电池短路电路测试实验2、硅光电池开路电压测试实验3、硅光电池光电特性测试实验4、硅光电池伏安特性测试实验5、硅光电池负载特性测试实验6、硅光电池时间响应测试实验7、硅光电池光谱特性测试实验设计实验1:硅光电池光控开关电路设计实验设计实验2:简易光照度计设计实验三、实验仪器1、硅光电池综合实验仪 1个2、光通路组件 1只3、光照度计 1台4、2#迭插头对(红色,50cm) 10根5、2#迭插头对(黑色,50cm) 10根6、三相电源线 1根7、实验指导书 1本8、20M 示波器 1台四、实验原理1、硅光电池的基本结构目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。
零偏反偏正偏图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
本科学生综合性实验报告学号114090523 姓名罗朝斌学院物电学院专业、班级光电子11实验课程名称硅光电池特性实验教师及职称李宏宁开课学期2013 至2014 学年下学期填报时间2014 年 6 月14 日云南师范大学教务处编印实验序号二实验名称硅光电池特性实验实验时间2014年6月9日实验室同析三209一、实验目的1、了解光电池的工作原理、使用方法和应用;2、掌握光电池的光照特性及其测试方法;3、掌握光电池的伏安特性及其测试方法;4、掌握光电池的光谱特性及其测试方法;5、掌握硅光电池的时间响应特性及其测试方法。
二、实验内容1、硅光电池短路电流的测量;2、硅光电池开路电压的测量;3、零偏、反偏时光照-电流特性测量;4、硅光电池光电特性测量;5、硅光电池伏安特性测量;6、硅光电池光谱特性测量;7、硅光电池时间响应特性测量。
三、实验仪器光电技术创新综合实验仪一台硅光电池实验模块一块光源输出及测量实验模块一块连接导线若干四、实验原理1、光电池的结构和原理光电池是一种直接将光能转换为电能的光电器件。
光电池在有光线作用时实质就是电源,电路中有了这种器件就不需要外加电源。
光电池的工作原理是基于“光生伏特效应”的,它实质上是一个大面积的PN结,当光照射到PN结的一个面,例如P型面时,若光子能量大于半导体材料的禁带宽度,那么P型区每吸收一个光子就产生一对自由电子和空穴,电子-空穴对从表面向内迅速扩散,在结电场的作用下,最后建立一个与光照强度有关的电动势。
图1是硅光电池原理图,其中(a)为结构示意图,(b)为等效电路。
图1 硅光电池原理图2、光电池的特性参数 2.1 光照特性这里讨论光电池的光照特性,用入射光强-电流电压特性和入射光强-负载特性来描述。
入射光强-电流电压特性描述的是开路电压V OC 和短开路电流I SC 随入射光强变化的规律,如下图所示。
图2 光电池的入射光强-电流电压特性曲线V OC 随入射光强按对数规律变化,I SC 与入射光强成线性关系。
硅光电池特性实验硅光电池是一种能够将太阳能转化为电能的半导体器件。
在这个实验中,我们将探究硅光电池的特性,包括其随着光照强度、温度和负载电阻的变化,以及其I-V曲线和P-V 曲线。
实验材料:1.硅光电池2.台式数字万用表3.90W白色LED灯4.恒流源5.电阻箱实验步骤:1.电路连接:将硅光电池通过恒流源连接到数字万用表上,并用电阻箱连接一个负载电阻。
2.测量I-V曲线:将电路连接好后,使用数字万用表测量电路中的电流和电压,记录数据。
3.测量P-V曲线:根据上一步测量所获得的数据,计算出该电路对应的功率,并绘制出P-V曲线。
4.测量光照强度对硅光电池输出功率的影响:在不同光照强度下,使用相同的负载电阻测量输出功率,并绘制出曲线。
5.测量温度对硅光电池输出功率的影响:在不同温度下,使用相同的负载电阻测量输出功率,并绘制出曲线。
6.观察负载电阻对硅光电池输出功率的影响:在相同光照强度和温度下,使用不同的负载电阻测量输出功率,并绘制出曲线。
实验结果:1.I-V曲线和P-V曲线:随着电压的增加,电流也会逐渐增加,但当电压达到一定值后,电流增加缓慢。
而功率则是电流和电压的乘积,呈现出一个“山峰”状的曲线,当电压达到一个最大值后,功率也会达到最大值,随后急剧下降。
2.光照强度对输出功率的影响:当光照强度增加时,输出功率也会随之增加。
但是当光照强度超过一定范围后,输出功率不再增加,反而开始下降。
3.温度对输出功率的影响:随着温度的升高,输出功率逐渐下降。
这是因为高温会使硅光电池的导电能力下降,从而降低其输出功率。
4.负载电阻对输出功率的影响:负载电阻的变化会影响电路中的电流和电压,从而对输出功率产生影响。
当负载电阻较小时,电路的电流较大,但电压较小,这会导致输出功率较低。
而当负载电阻较大时,电路的电流较小,但电压较大,可以使输出功率达到最大值。
结论:通过本次实验,我们得到了以下结论:1.硅光电池的I-V曲线和P-V曲线呈现出一定规律性,当电压达到一定值后,电流增加缓慢,随后Gong率开始下降。
提示:本材料始终由实验室保存,并供所有实验同学使用。
保持材料的整洁,不作标记、批注。
本周内实验中心将开始提供实验指导册,其中包含本材料内容。
请及时与中心联系,tel:66366787。
硅光电池测量实验室2006.9.25编号:硅光电池基本特性研究光电池又称光伏电池。
光电池的种类较多,如硒光电池,氧化亚铜光电池,硫化铊光电池,锗光电池,硅光电池,砷化镓光电池等。
其中硅光电池具有较多的优点,如性能稳定、光谱范围宽、频率特性好、能量转换效率高、结构简单、重量轻、寿命长、价格便宜、使用方便,因而得到广泛应用。
本实验研究硅.光电池的基本特性。
硅光电池可以用作光信号探测器(光电传感器),在光电转换、自动控制和计算机输入和输出等现代化科学技术中发挥重要作用。
另一方面硅光电池可将太阳能转换成电能,如果把许多硅光电池科学地串联或并联起来,可以建成太阳能发电站,为人类更有效地利用太阳能开辟新道路。
本实验要求通过对硅光电池基本特性的测量,了解和掌握其特性及有关的测量方法,进而对日益广泛使用的各种光电器件有更深入的了解。
如果在硅光电池两端连接电阻,回路内就形成电流,这是硅光电池发生光电转换的原理。
硅光电池(以下简称光电池)的简化等效电路如图二所示。
1.在无光照时,光(生)电流0I,光电池可以简化为二极管(图三)。
根据半导体理论,流经二ph极管的电流I与其两端电压的关系符合以下经验公式dph sc表2种滤色片先后装于滤色片支架上,放在光源与光电组件之间,并尽量靠近光电组件;在同一位置处,测量各个短路电流,填表10。
6. 验证比尔(Beer )定律(光电池在光电检测中的一个应用)对于低浓度的液体,其浓度与光的透射率即入射到光电池光通量符合比尔定律:kdce-=0φφ,因此浓度与光电流满足:kdcsceI I -=0,其中c 为液体浓度,d 为厚度,k 、o I 为常数。
改变液体浓度,测量sc I ,填表11。
表11预习要求:1. 通过预习,了解硅光电池的工作原理,大致了解实验内容。
硅光电池特性的研究实验报告2硅光电池基本特性的研究太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。
硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。
因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。
[实验目的]1 ?测量太阳能电池在无光照时的伏安特性曲线;2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压U oc、最大FF3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J o 的关系,求出它们的近似函数关系;[实验原理]1、硅光电池的基本结构目前半导体光电探测器在数码摄像、光通信、太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理、光电效应理论和光伏电池产生机理。
图2-1.半导体PN结在零偏、反偏、正偏下的耗尽区图2-1是半导体PN结在零偏、反偏、正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,严严卜日日尊十妙於却寻6 邮GO十色十血◎日&84$*问角*@E內P零偏反偏卩型耗尽区超正偏势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向No 2、硅光电池的工作原理太阳能电池能够吸收光的能量,并将所吸收光子的能量转化为电能。
ZKY-SAC-Ⅰ太阳能电池特性实验仪实验指导及操作说明书成都世纪中科仪器有限公司地址:成都市人民南路四段9号中科院成都分院邮编:610041电话:(028)85247006 85243932 传真:(028)85247006网址; E-mail: ZKY@ZKY.C n2009-7-21太阳能电池特性实验仪能源短缺和地球生态环境污染已经成为人类面临的最大问题。
本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。
另一方面,煤炭、石油等矿物能源的使用,产生大量的CO2、SO2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。
根据计算,现在全球每年排放的CO2已经超过500亿吨。
我国能源消费以煤为主,CO2的排放量占世界的15%,仅次于美国,所以减少排放CO2、SO2等温室气体,已经成为刻不容缓的大事。
推广使用太阳辐射能、水能、风能、生物质能等可再生能源是今后的必然趋势。
广义地说,太阳光的辐射能、水能、风能、生物质能、潮汐能都属于太阳能,它们随着太阳和地球的活动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。
太阳的光辐射可以说是取之不尽、用之不竭的能源。
太阳与地球的平均距离为1亿5千万公里。
在地球大气圈外,太阳辐射的功率密度为1.353kW /m2,称为太阳常数。
到达地球表面时,部分太阳光被大气层吸收,光辐射的强度降低。
在地球海平面上,正午垂直入射时,太阳辐射的功率密度约为1kW /m2,通常被作为测试太阳电池性能的标准光辐射强度。
太阳光辐射的能量非常巨大,从太阳到地球的总辐射功率比目前全世界的平均消费电力还要大数十万倍。
每年到达地球的辐射能相当于49000亿吨标准煤的燃烧能。
太阳能不但数量巨大,用之不竭,而且是不会产生环境污染的绿色能源,所以大力推广太阳能的应用是世界性的趋势。
硅光电池的线性响应【实验目的】1. 了解光电池线性响应的实用意义;2. 学习和掌握测定硅光电池线性工作范围的一种方法。
【实验仪器】溴钨灯,尼科尔棱镜(或偏振片)一对,硅光电池,灵敏电流计,电阻箱二只,直流稳 压电源,聚光透镜,电键【实验原理】硅光电池是利用光生伏打效应设计的一种半导体光电探测器,其特点是不需要外加电源。
硅光电池的结构如图 1(a)所示。
半导体硅受光照时,硅中形成电子一空穴对,电子被结电 压吸入半透明金属膜, 因而结电压降低,金属膜变成负电势, 金属基极对透明金属膜层为正 电势,这个电势差值与入射光通量有关。
如果用导线接入电流计, 就会产生光电流。
如果光电流的大小与入射光通量有线性关系, 则用光电池探测光信号强度,可进行客观、准确而不线性响应是光电探测器的重要性能指标之一, 也是实际使用光电池时必须保持的正常工作条件。
但是在测量各种光信号的强度时,信号强度变化幅度可能较为悬殊,因此使用光电池前,必须了解它的线性响应的强度范围。
硅光电池的等效电路如图 1(b)所示。
它与电池一样有一个内阻 R ,同时还相当于一个平板电容C , C 与R 并联,R 表示硅光电池的负载电阻,当入射光通量 门照射到硅表面时,产生光电流为 i ,其中一部分i 1流过R ,另一部 而在外电路中测量到的光电流为i 2,因光电池的积分灵敏度为失真的测量。
分i 2流过R ,则i 二 i 1 i 2图1. 2i = C 2 cos :C 2 ~ C 1l 0 )(5)将上式两侧取对数,则 lg i = lg c 2 2lg cos :(6)即变量(ig cos :•) 下,存在线性关系,____ , 和(lg i )间在i = G 1成立条件 且斜率为2。
测量不同:角时的 乙P gi-gcos 。
图线,一般它为曲线,但其中有一段是斜率为2的直线,该段直线对应的电流变化范围,就是该硅光电池的线形工作区域。
【实验内容】1.按图3安置实 ®—经透镜L 后射出平行 到待测硅光电池 P c 上,值。
实验九 硅光电池特性的研究光电池是一种很重要的光电探测元件,它不需要外加电源而能直接把光能转换成电能.光电池的种类很多,常见的有硒,锗,硅,砷化镓等.其中最受重视的是硅光电池,因为它有一系列优点:性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等.同时,硅光电池的光谱灵敏度与人眼的灵敏度较为接近,所以很多分析仪器和测量仪器常用到它.本实验仅对硅光电池的基本特性和简单应用作初步的了解和研究.【实验目的】1.研究硅光电池的主要参数和基本特性; 2.利用硅光电池设计一项具体应用.【实验原理】1.硅光电池的照度特性硅光电池是属于一种有PN 结的单结光电池.它由半导体硅中渗入一定的微量杂质而制成.当光照射在PN 结上时,由光子所产生的电子与空穴将分别向P 区和N 区集结,使PN 结两端产生光生电动势.这一现象称为光伏效应.(1)硅光电池的短路电流与照度关系当光照射硅光电池时,将产生一个由N 区流向P 区的光生电流I Ph ,同时由于PN 结二极管的特性,存在正向二极管管电流I D ,此电流方向从P 区到N 区,与光生电流相反,因此实际获得电流I 为⎥⎥⎦⎤⎢⎢⎣⎡−⎟⎟⎠⎞⎜⎜⎝⎛−=−=1n exp 0T k qV I I I I I B Ph D Ph (1)式中V 为结电压,I 0为二极管反向饱和电流,I Ph 是与入射光的强度成正比的光生电流,其比例系数与负载电阻大小以及硅光电池的结构和材料特性有关.n 为理想系数是表示PN 结特性的参数,通常在1-2之间,q 为电子电荷,k B 为波尔茨曼常数,T 为绝对温度.在一定照度下,当光电池被短路(负载电阻为零),V = 0,由(1)式可得到短路电流Ph SC I I = (2)硅光电池短路电流与照度特性见图1.(2)硅光电池的开路电压与照度关系当硅光电池的输出端开路时,I = 0, 由(1)与(2)式可得开路电压⎟⎟⎠⎞⎜⎜⎝⎛+=1ln 0I I q T nk V SC B OC (3) - 47 -图1 硅光电池的光照特性曲线硅光电池开路电压与照度特性见图1.2.硅光电池的伏安特性当硅光电池接上负载R 时,硅光电池可以工作在反向偏置电压状态或无偏压状态.它 的伏安特性见图2.图中可见,硅光电池的伏安特性曲线由二个部分组成:(1)反偏工作状态,光电流与偏压、负载电阻几乎无关(在很大的动态范围内);(2由图2可看到,在一定光照下,负载曲线在电流轴上的截距是短路电流Ph 截距即为开路电压V OC .图2 硅光电池的伏安特性曲线 3.硅光电池的光谱响应.图3为硅光电池的光谱特性曲线.即相对灵敏度K r 和入射光波长λ 的关系曲线.从图4中可看出,硅光电池的有效范围约在450—1100 nm 之间.硅光电池的灵敏度K 为()()()()λλληλλΔ=T P K (4) - 48 -其中:(1)P (λ)为硅光电池测得的光强,由硅光电池短路电流与照度的特性可以看出,在较大的光照范围内,其短路电流与照度成很好的线性关系,故可通过测量硅光电池的短路电流表示此时的光强.(2)实验中所用光源为白色超亮发光二极管,其光强η与波长λ关系可参见实验室提供的产品说明书.(3)实验室给出的各种波长滤色片的波长并不严格,它有一定的宽度,给出的仅仅是峰值.表征宽度通常是用半带宽∆λ表示,滤色片的峰值透射率用T 表示,各个波长滤色片的∆λ和T 并不一致,即使同一波长滤色片的峰值透射率在技术上也很难做到一致.因此,对每组实验仪器,各波长滤色片对应的峰值透射率T 及半带宽∆λ已附在各组实验仪器上. nm 硅光电池的光谱特性曲线硅光电池的相对灵敏度K r 为()()m r K K K λλ= (5)K m 为不同波长对应K (λ)的最大值*4.测量高锰酸钾溶液与透射光强的关系当溶液的浓度较小时,透射光强满足比尔定律(6) acx e I I −=0式中,c 为溶液的浓度,x 为液体厚度,a 为常数,I 0 溶度为零时的透射光强.测量通过不同溶液的浓度的短路电流I SC ,作lg (I SC )随浓度c 的关系曲线,判断是否线性(可用最小二乘法求相关系数).【实验仪器】硅光电池、光学导轨及支座附件,白色超亮发光二极管,聚光透镜,数字万用表,负载电阻(多圈电位器:100 k Ω),滤色片,偏振器,照度计,稳压电源,取样电阻(100 Ω),分压电阻R 1(100 k Ω)和R (多圈电位器:33 k Ω),比色槽等. 【实验内容】1.研究硅光电池的照度(光强)特性,用特性曲线表示结果.(1)测量硅光电池的短路电流与照度间的关系;由于硅光电池的短路电流随照度的变化太大从而给测量带来了困难,本实验采用测量取样电阻(100 Ω)上的电压来代替此时的短路电流.(2)测量硅光电池的开路电压与照度间的关系.- 49 -实验时通过改变硅光电池与光源间距离来改变照度,硅光电池的位置修正值由实验室提供;测量时,请考虑测量数据分布的合理性.(1)旋转偏振片使光照度最强(2)按图4(a)电路,测量无偏压状态下的伏安特性曲线,实验点不少于12个(包括开路电压点);(3)保持光照不变,按图4(b)电路,测量反向偏压状态下伏安特性曲线,实验点不少于12个(小于5 V);(4)用短路线替换负载电阻,测出此时的短路电流.(5)通过偏振片改变光照度(偏振片旋转15、30和45度),重复上述测量.3.光谱特性:研究硅光电池对不同入射波长的响应*2.设计一项具体应用,并得出实验结果.(1)设计一个测量高锰酸钾溶液浓度与透射率关系的实验装置.(2)验证马吕斯定律(交叉偏振片透射光强与偏振轴交角的关系:I = I0 cos2θ)【注意事项】切勿用手摸光学器件.若光学器件表面有沾污和灰尘,应请指导教师处理.【预习思考题】1.为什么可以通过测量取样电阻的电压值得到此时的短路电流值?2.实验时光源的相对光强发生了变化,对测量结果有何影响?3.在利用图4(b)测量硅光电池的反向偏压状态下伏安特性曲线时,如果稳压源接反会出现什么结果?4.图4(b)中的R和R1起什么作用?【思考题】1.请利用硅光电池的伏安特性实验数据分析总结硅光电池的输出电阻与光照的关系.2.硅光电池的输出与入射光照射瞬间有没有滞后现象?可否用实验证明.- 50 -。
硅光电池实验课堂指导及实验报告要求提示:本材料始终实验室保存,并供所有实验同学使用。
保持材料的整洁,不作标记、批注。
本周内实验中心将开始提供实验指导册,其中包含本材料内容。
请及时与中心联系,tel:66366787。
硅光电池测量实验室编号:硅光电池基本特性研究光电池又称光伏电池。
光电池的种类较多,如硒光电池,氧化亚铜光电池,硫化铊光电池,锗光电池,硅光电池,砷化镓光电池等。
其中硅光电池具有较多的优点,如性能稳定、光谱范围宽、频率特性好、能量转换效率高、结构简单、重量轻、寿命长、价格便宜、使用方便,因而得到广泛应用。
本实验研究硅光.电池的基本特性。
硅光电池可以用作光信号探测器,在光电转换、自动控制和计算机输入和输出等现代化科学技术中发挥重要作用。
另一方面硅光电池可将太阳能转换成电能,如果把许多硅光电池科学地串联或并联起来,可以建成太阳能发电站,为人类更有效地利用太阳能开辟新道路。
本实验要求通过对硅光电池基本特性的测量,了解和掌握其特性及有关的测量方法,进而对日益广泛使用的各种光电器件有更深入的了解。
实验原理在P型硅片上扩散一层极薄的N型层,形成PN结,再在该硅片的上下两面各制一个电极,这样构成了硅光电池,如图一所示。
负极增透膜N型PN结P型正极图一硅光电池的结构及符号当光照射在硅光电池的光照面上时,若入射光子能量大于硅的能隙时,光子能量将被半导体吸收,产生电子-空穴对。
它们在运动中一部分重新复合,其余部分在到达PN结附近时受PN结内电场的作用,空穴向P 区迁移,使P区显示正电性,电子向N区迁移,使N区带负电,因此在PN结上产生了电动势。
如果在硅光电池两端连接电阻,回路内就形成电流,这是硅光电池发生光电转换的原理。
硅光电池(以下简称光电池)的简化等效电路如图二所示。
1.在无光照时,光(生)电流Iph0,光电池可以简化为二极管。
根据半导体理论,流经二极管的电流Id与其两端电压的关系符合以下经验公式2IdII0eV1 式中和I是常数。
0IdI+IphIphV-图二光电池简化等效电路图三光电池等效为二极管2.有光照时,Iph>0,光电池端电压与电流的关系为:IIdIphI0eV1Iph ,可以得到以下结论:①当外电路短路时,短路电流IscIph,光电流全部流向外电路。
②当外电路开路时,开路电压VocIphIsc1ln1,开路电压Vocln1,即VocII001与短路电流Isc满足对数关系;如果Isc与光通量有线性关系,则Voc与光通量就符合对数关系。
于二极管的分流作用,负载电阻愈大,光电池的输出电流愈小,实验可以证明这时输出电压却愈大,因此要从光电池获取最大功率,负载电阻要取恰当值。
实验器材 1. 光具座及附件,附件包括:光源、光电池组件、一对偏振器、5个滤光片和支架、透光盒及支架。
其中光电池组件的电路连接如图四所示。
2. 电源及电阻网络,当电源开关拨向“电源”时,绿指示灯亮,图五示出电源及电阻网络的等效电路;当电源开关拨向“光源”时,黄指示灯亮,图六示出此时的等效电路。
3. 数字电流表、电压表。
光线入射面光电池(上)R 光电池(上)+黄色-蓝色+红色-黑色RnRn图四光电池组件图五图六 3 实验内容数字电压表用直流2v档,电流表用直流200mA档。
测量光效应时注意调节光电组件的高度,使被测光电池均匀受光。
1. 在无光照条件下,测量光电池正向偏压时的伏安特性即I~V关系。
图七为实验线路图,通过改变电阻Rn改变加于光电池的电压, Rn值随下标n的增大而增加。
将开关拨向“电源”,将光电池组件装上光具座,并用镜头盖遮住光电池的入光面;面板接线如图八所示。
+RR1R7RR8R14ARnAV光遮电光池(R15R20)V-图七图八2. 测量光电池的光照特性测量短路电流Isc与光电池上的光通量的变化关系。
在光电池的线性响应范围内,光电流与入射光通量成正比,这是光电池作为光电检测元件被广泛应用的重要原因。
实验方法一:理论指出,对于点光源,通过一定的不算大的面积上的光通量与该面积到点光源的距离平方成反比,即 1L2。
图九为实验线路图。
将开关拨向“光源”,在光具座上调节光电池组件的高度,使上光电池被均匀照亮;沿光具座移动光电组件,改变它到光源的距离L,同时测量Isc;面板接线如图十所示。
RR1R7+R8R14AR15R20A-图九图十 4 表2L/cm 30 32 34 36 38 40 42 44 46 48 50 1/L2 (×10-4) 11 Isc/mA实验方法二:根据马吕斯定律,透过两个交叉偏振片的光强与其交角α的余弦平方成正比,因此如果改变α,测出对应的短路电流,只要Isc~α曲线大致为余弦平方曲线,硅光电池存在线性相应区可以得到证明。
将一对偏振片置于光源和光电组件之间,并尽量靠近光电组件,测量Isc~α的关系,自拟数据表3并填之,图略。
3. 测量光电池的负载特性调节光源到光电组件的距离约30cm,为作图方便Rn可选择R7~R15。
测量光照情况下,光电池输出电压与负载电阻的关系。
图十一和图十二是线路图及面板接线图。
表4 Rn Ω V/v +R7 15 R8 18 R9 22 R10 33 R11 62 R12 75 R13 91 R14 100 R15 300RR1R7R8R14RnVR15R20V-图十一图十二测量输出电流与负载电阻的关系,自拟数据表5并填之,Rn的选择同。
图十三和图十四是线路图及面板接线图。
+RR1R7ARnR8R14AR15R20-图十三图十四 5提示:本材料始终实验室保存,并供所有实验同学使用。
保持材料的整洁,不作标记、批注。
本周内实验中心将开始提供实验指导册,其中包含本材料内容。
请及时与中心联系,tel:66366787。
硅光电池测量实验室编号:硅光电池基本特性研究光电池又称光伏电池。
光电池的种类较多,如硒光电池,氧化亚铜光电池,硫化铊光电池,锗光电池,硅光电池,砷化镓光电池等。
其中硅光电池具有较多的优点,如性能稳定、光谱范围宽、频率特性好、能量转换效率高、结构简单、重量轻、寿命长、价格便宜、使用方便,因而得到广泛应用。
本实验研究硅光.电池的基本特性。
硅光电池可以用作光信号探测器,在光电转换、自动控制和计算机输入和输出等现代化科学技术中发挥重要作用。
另一方面硅光电池可将太阳能转换成电能,如果把许多硅光电池科学地串联或并联起来,可以建成太阳能发电站,为人类更有效地利用太阳能开辟新道路。
本实验要求通过对硅光电池基本特性的测量,了解和掌握其特性及有关的测量方法,进而对日益广泛使用的各种光电器件有更深入的了解。
实验原理在P型硅片上扩散一层极薄的N型层,形成PN结,再在该硅片的上下两面各制一个电极,这样构成了硅光电池,如图一所示。
负极增透膜N型PN结P型正极图一硅光电池的结构及符号当光照射在硅光电池的光照面上时,若入射光子能量大于硅的能隙时,光子能量将被半导体吸收,产生电子-空穴对。
它们在运动中一部分重新复合,其余部分在到达PN结附近时受PN结内电场的作用,空穴向P 区迁移,使P区显示正电性,电子向N区迁移,使N区带负电,因此在PN结上产生了电动势。
如果在硅光电池两端连接电阻,回路内就形成电流,这是硅光电池发生光电转换的原理。
硅光电池(以下简称光电池)的简化等效电路如图二所示。
1.在无光照时,光(生)电流Iph0,光电池可以简化为二极管。
根据半导体理论,流经二极管的电流Id与其两端电压的关系符合以下经验公式2IdII0eV1 式中和I是常数。
0IdI+IphIphV-图二光电池简化等效电路图三光电池等效为二极管2.有光照时,Iph>0,光电池端电压与电流的关系为:IIdIphI0eV1Iph ,可以得到以下结论:①当外电路短路时,短路电流IscIph,光电流全部流向外电路。
②当外电路开路时,开路电压VocIphIsc1ln1,开路电压Vocln1,即VocII001与短路电流Isc满足对数关系;如果Isc与光通量有线性关系,则Voc与光通量就符合对数关系。
于二极管的分流作用,负载电阻愈大,光电池的输出电流愈小,实验可以证明这时输出电压却愈大,因此要从光电池获取最大功率,负载电阻要取恰当值。
实验器材 1. 光具座及附件,附件包括:光源、光电池组件、一对偏振器、5个滤光片和支架、透光盒及支架。
其中光电池组件的电路连接如图四所示。
2. 电源及电阻网络,当电源开关拨向“电源”时,绿指示灯亮,图五示出电源及电阻网络的等效电路;当电源开关拨向“光源”时,黄指示灯亮,图六示出此时的等效电路。
3. 数字电流表、电压表。
光线入射面光电池(上)R 光电池(上)+黄色-蓝色+红色-黑色RnRn图四光电池组件图五图六 3 实验内容数字电压表用直流2v档,电流表用直流200mA档。
测量光效应时注意调节光电组件的高度,使被测光电池均匀受光。
1. 在无光照条件下,测量光电池正向偏压时的伏安特性即I~V关系。
图七为实验线路图,通过改变电阻Rn改变加于光电池的电压, Rn值随下标n的增大而增加。
将开关拨向“电源”,将光电池组件装上光具座,并用镜头盖遮住光电池的入光面;面板接线如图八所示。
+RR1R7RR8R14ARnAV光遮电光池(R15R20)V-图七图八2. 测量光电池的光照特性测量短路电流Isc与光电池上的光通量的变化关系。
在光电池的线性响应范围内,光电流与入射光通量成正比,这是光电池作为光电检测元件被广泛应用的重要原因。
实验方法一:理论指出,对于点光源,通过一定的不算大的面积上的光通量与该面积到点光源的距离平方成反比,即 1L2。
图九为实验线路图。
将开关拨向“光源”,在光具座上调节光电池组件的高度,使上光电池被均匀照亮;沿光具座移动光电组件,改变它到光源的距离L,同时测量Isc;面板接线如图十所示。
RR1R7+R8R14AR15R20A-图九图十 4 表2L/cm 30 32 34 36 38 40 42 44 46 48 50 1/L2 (×10-4) 11 Isc/mA实验方法二:根据马吕斯定律,透过两个交叉偏振片的光强与其交角α的余弦平方成正比,因此如果改变α,测出对应的短路电流,只要Isc~α曲线大致为余弦平方曲线,硅光电池存在线性相应区可以得到证明。
将一对偏振片置于光源和光电组件之间,并尽量靠近光电组件,测量Isc~α的关系,自拟数据表3并填之,图略。
3. 测量光电池的负载特性调节光源到光电组件的距离约30cm,为作图方便Rn可选择R7~R15。
测量光照情况下,光电池输出电压与负载电阻的关系。
图十一和图十二是线路图及面板接线图。
表4 Rn Ω V/v +R7 15 R8 18 R9 22 R10 33 R11 62 R12 75 R13 91 R14 100 R15 300 RR1R7R8R14RnVR15R20V-图十一图十二测量输出电流与负载电阻的关系,自拟数据表5并填之,Rn的选择同。