第二讲 参数方程
- 格式:ppt
- 大小:764.50 KB
- 文档页数:26
1.第二讲:曲线的参数方程参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y=f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O的参数其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O 其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r的圆所产生摆线的参数方程为φ是参数).。
第二讲 参数方程1.参数方程定义【例1】一架救援飞机在离地面500m 高处以100m/s 的速度作水平直线飞行。
为使投放的救援物资准确落于灾区指定的地面(不计空气阻力)飞行员应如何确定投放时机呢?在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
【参数方程运用举例】【例2】已知曲线C 的参数方程是23()21x tt y t =⎧⎨=+⎩为参数(1) 判断点()()12M 01M 54,,,与曲线C 的位置关系。
(2) 已知点()3M 6a ,在曲线C 上,求a 的值。
【练习】已知等腰直角ABC ∆,B 为直角定点,且在x 轴的正方向上运动,A 在y 轴正方向上运动,2AB =,求点C 轨迹的参数方程.如何找合理的参数,1、参数一般要有几何意义或物理意义;2、动点(),M x y 中的变量,x y 与参数间的关系容易找到。
2.圆的参数方程(1)圆心在原点:___________________________;(2)圆心不在原点:_____________________________.【运用举例】【例3】圆O 的半径为2,P 是圆上的动点,Q (6,0),M 是PQ 的中点。
当点P 绕O 运动时,求点M 的轨迹的参数方程.探究1:若将条件改为3=呢3.参数方程与普通方程的互化(消参法、代入法,注意范围的相容性)探究2:例3中对应的普通方程的是____________________________【例4】把下列的参数方程化为普通方程,并说明他们各表示什么曲线(1)参数方程)(.2s 1y ,cos sin x 为参数θθθθ⎩⎨⎧+=+=in (2)参数方程)(.2-1y 1,t x 为参数t t ⎪⎩⎪⎨⎧=+=【练习】(3))t (.t 1t y ,t 1t x 为参数⎪⎪⎩⎪⎪⎨⎧-=+= 【例5】求椭圆的参数方程一个参数方程:14y 9x 22=+。
参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t=⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝ ⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则yx 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个.6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A .直线B .圆C .线段D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .011.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。
第2讲参数方程【2013年高考会这样考】考查直线、圆和圆锥曲线的参数方程以及简单的应用问题.【复习指导】复习本讲时,应紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程与普通方程互化的一些方法.* j KAOJlZlZHlFtJAaXUE —................................. * ............... . ....... .. ............ Q1》考基自主导学基础梳理1.参数方程的意义在平面直角坐标系中,如果曲线上的任意一点的坐标x, y都是某个变量的函数|X并且对于t的每个允许值,由方程组所确定的点M(x, y)都在这条曲沪ft,线上,则该方程叫曲线的参数方程,联系变数x,y的变数t是参变数,简称参数•相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.常见曲线的参数方程的一般形式"x= x o + tcos a(1)经过点P o(x o,y o),倾斜角为a的直线的参数方程为* (t为参y=y0+ tsin a数).设P是直线上的任一点,则t表示有向线段P o P的数量.x= rcos 6,⑵圆的参数方程y=^ (6为参数)•⑶圆锥曲线的参数方程抛物线—2px的参数方程为2pt,(t为参数).y= 2pt双基自测一、 、,、 x =— 1 — t , 、” 八、”1 .极坐标方程p= cos B 和参数方程 (t 为参数)所表示的图形分别ly = 2+1是()•A .直线、直线B .直线、圆C .圆、圆D .圆、直线Xx 2 22解析 Tpcos A x ,.・.cos 0=-代入到 P= cos 9,得 p=" , x ,/x + y= x 表p p示圆.|x =— 1 — t , 又T 相加得x +y = 1,表示直线.1 x = 3+ cos 0,2 彳 x — + 2t ,严 2 —笳0⑵l y -5+臥x= cos a,得y — 1 = sin a, ②①2+②2 得:x 2 + (y — 1)2= 1. 答案 x 2+ (y —1)2= 1考向二 直线与圆的参数方程的应用x= 2+ tcos a,(9为参数)和直线1 :[y=V 3 + tsin a (其中t 为参数,a 为直线I 的倾斜角).(1)当a=争寸,求圆上的点到直线I 距离的最小值; ⑵当直线I 与圆C 有公共点时,求a 的取值范围.2 2椭圆 a 2+決 1的参数方程为x= acos 6,y= bsin 6 (6为参数).2 2双曲线字一y 2=i 的参数方程为x = asec 札 y= tan ©(©为参数).尸 2 +1,答案 Dx= 1 —2t,2.若直线' (t为实数)与直线4x+ ky= 1垂直,则常数k=y= 2+ 3t --------- x= 1 —2t,解析参数方程所表示的直线方程为3x+ 2y= 7,由此直线与直线归2+ 3t,3 44x+ ky= 1 垂直可得—2X—k = —1,解得k= — 6.答案—6x= 5cos 93.二次曲线' ________________________ (9是参数)的左焦点的坐标是.y = 3sin 92 2解析题中二次曲线的普通方程为25+1=1左焦点为(一4,o).答案(—4,0)x= 2t,4.(2011广州调研)已知直线I的参数方程为:,(t为参数),圆C的极ly= 1 + 4t坐标方程为p= 2©sin 9,则直线I与圆C的位置关系为____________ .[审题视点](1)求圆心到直线I的距离,这个距离减去圆的半径即为所求;(2)把圆x = 2t ,解析 将直线I 的参数方程:化为普通方程得,y = 1 + 2x ,圆 尸2 2y = 1+ 4tsin B 的直角坐标方程为x 2+ (y —/2)2= 2,圆心(0,迄)到直线y = 1 + 2x 的距离为上丄,因为该距离小于圆的半径,所以直线I 与圆C 相交.1 + 4 答案相交x=V5cos 0,(0W 0< n 和y= sin 0(t € R ),它们的交点坐标为5 2 4 2x = 4y ,A 5y + 16y - 16= 0.答案■曲 KAOXIAN^TA44JIUDAOX|…八」Q2 * 考向探究导析2 425 . (2011广东)已知两曲线参数方程分别为< 解析 x=J5cos Bx22i (ow o< n 得,5+y = 1(y 》0)由峠由qy= sin 0x£t 2 * 1,4(t € R ) 得,y =t贝 U x =5y 2= 1又0>0,得交点坐标为;1,(1)1[审题视点](1)利用平方关系消参数9;(2)代入消元法消去t.cos 9= x — 3, 2 2解⑴由已知* 由三角恒等式cos2 9+ sin2 9= 1,0n 9= 2 — y,可知(x —3)2+ (y—2)2= 1,这就是它的普通方程.(2)由已知t= 2x —2,代入y= 5 + -^t中,得y= 5+f(2x—2), 即卩,3x—y+ 5—,3= 0就是它的普通方程.亠壬参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围.x= COS a,【训练1】(2010陕西)参数方程(a为参数)化成普通方程为l y= 1 + sin ax = COs a,解析y = 1 + sina,x= 1 + cos 9,【例2】?已知圆C:」y= sin 9的参数方程化为直角坐标方程,将直线的参数方程代入得关于参数t 的一元二次 方程,这个方程的A> 0.解 ⑴当 a 訴寸,直线I 的直角坐标方程为,3x +y — 3,3 = 0,圆C 的圆心坐 标为(i,o),圆心到直线的距离d =2^2^= , 3,圆的半径为1,故圆上的点到直线 I 距离的最小值为.3—1.⑵圆C 的直角坐标方程为(x — 1)2+ y 2= 1,将直线I 的参数方程代入圆C 的直角 坐标方程,得t 2+ 2(cos a+ ■ 3sin "t + 3 = 0,这个关于t 的一元二次方程有解, 故 A=4(cos a+寸3sin a 2- 12>0,则 sin 2(a+ 才卜|,即 sin (久+号》爭或 sin ;a+ gF —与3又0W aV n 故只能sin :a+¥,即3^ a +詐 ^,即詐 炸寸fX 如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角 坐标方程. 【训练2】 已知直线I 的参数方程为/= 1 + t ,(参数t € R ),圆C 的参数方程$ = 4— 2tx= 2cos 0+ 2,为y = 2sin0 (参数濮[0,2 n ,求直线1被圆C 所截得的弦长• 解 由f =1 +2,消参数后得普通方程为2x + y — 6 = 0,y= 4— 2t消参数后得普通方程为 (x — 2)2 + y 2= 4,显然圆心坐标为 (2,0),半径为2.由于圆心到直线2x + y — 6= 0的距离为d =考向三 圆锥曲线的参数方程的应用2【例3】?求经过点(1,1),倾斜角为135。
第2讲 参数方程一、知识梳理1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数,从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.2.直线、圆和圆锥曲线的参数方程名称普通方程参数方程直线 y -y 0=k (x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)圆 (x -x 0)2+(y -y 0)2=R 2⎩⎪⎨⎪⎧x =x 0+R cos θy =y 0+R sin θ (θ为参数且0≤θ<2π)椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎪⎨⎪⎧x =a cos t y =b sin t (t 为参数且0≤t <2π)抛物线 y 2=2px (p >0)⎩⎪⎨⎪⎧x =2pt2y =2pt(t 为参数) 1.直线参数方程的三个应用及一个易错点 (1)三个应用:已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).①若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→| |M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2;②若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22;③若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.(2)一个易错点:在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正余弦值.否则参数不具备该几何含义.2.掌握圆的参数方程的两种应用(1)解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.(2)求距离的问题,通过设圆的参数方程,就转化为求三角函数的值域问题. 二、教材衍化1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上解析:选B.由⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.解析:直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过点(3,0),则3-a =0, 所以a =3. 答案:3一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K(1)不注意互化的等价性致误; (2)直线参数方程中参数t 的几何意义不清致误; (3)交点坐标计算出错致错.1.若曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos 2θ,y =sin 2θ(θ为参数),则曲线C 上的点的轨迹是( ) A .直线x +2y -2=0 B .以(2,0)为端点的射线 C .圆(x -1)2+y 2=1D .以(2,0)和(0,1)为端点的线段解析:选D.将曲线C 的参数方程化为普通方程得x +2y -2=0(0≤x ≤2,0≤y ≤1).故选D.2.已知直线⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数)上两点A ,B 对应的参数值是t 1,t 2,则|AB |=( )A .|t 1+t 2|B .|t 1-t 2|C.a 2+b 2|t 1-t 2| D .|t 1-t 2|a 2+b 2解析:选 C.依题意,A (x 0+at 1,y 0+bt 1),B (x 0+at 2,y 0+bt 2),则|AB |=[x 0+at 1-(x 0+at 2)]2+[y 0+bt 1-(y 0+bt 2)]2=a 2+b 2|t 1-t 2|.故选C.3.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2,y =22t(t 为参数),则C 1与C 2交点的直角坐标为________.解析:由ρ(cos θ+sin θ)=-2,得x +y =-2 ①.又⎩⎪⎨⎪⎧x =t 2,y =22t ,消去t ,得y 2=8x ②. 联立①②得⎩⎪⎨⎪⎧x =2,y =-4,即交点坐标为(2,-4).答案:(2,-4)参数方程与普通方程的互化(自主练透) 1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解:(1)由t 2-1≥0⇒t ≥1或t ≤-1⇒0<x ≤1或-1≤x <0.由⎩⎨⎧x =1t①,y =1tt 2-1②,①式代入②式得x 2+y 2=1.其中⎩⎪⎨⎪⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)由x =2+sin 2θ,0≤sin 2θ≤1 ⇒2≤2+sin 2θ≤3⇒2≤x ≤3,⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θ,y =-1+1-2sin 2θ⇒ ⎩⎪⎨⎪⎧x -2=sin 2θ,y =-2sin 2θ⇒2x +y -4=0(2≤x ≤3). 2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线.解:曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,所以曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等.对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.参数方程的应用(师生共研)(2020·安徽宣城模拟)在直角坐标系xOy 中,圆O 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =4+t (t 为参数).(1)若直线l 与圆O 相交于A ,B 两点,求弦长|AB |,若点P (2,4),求|P A |·|PB |的值; (2)以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2cos θ+23sin θ,圆O 和圆C 的交点为P ,Q ,求弦PQ 所在直线的直角坐标方程.【解】 (1)由直线l 的参数方程⎩⎪⎨⎪⎧x =2+t ,y =4+t (t 为参数),消去参数t 可得x -y +2=0,即直线l 的普通方程为x -y +2=0.圆O 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),根据sin 2θ+cos 2θ=1消去参数θ,可得x 2+y 2=4,所以圆心O 到直线l 的距离d =22=2,故弦长|AB |=2r 2-d 2=2 2.把直线l 的参数方程标准化可得⎩⎨⎧x =2+22t ,y =4+22t ,将其代入圆O 的方程x 2+y 2=4得t 2+62t +16=0,设A ,B 两点对应的参数分别为t 1,t 2, 所以|P A |·|PB |=|t 1t 2|=16.(2)圆C 的极坐标方程为ρ=2cos θ+23sin θ,利用ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y ,可得圆C 的普通方程为x 2+y 2=2x +23y .因为圆O 的直角坐标方程为x 2+y 2=4,所以弦PQ 所在直线的直角坐标方程为4=2x +23y ,即x +3y -2=0.(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0; ③|M 0M 1||M 0M 2|=|t 1t 2|.1.(2020·日照模拟)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3,直线l 过点P (0,-3)且倾斜角为π3.(1)求曲线C 的直角坐标方程和直线l 的参数方程;(2)设直线l 与曲线C 交于A ,B 两点,求|P A |+|PB |的值. 解:(1)曲线C :ρ=4cos ⎝⎛⎭⎫θ-π3⇒ρ=4cos θcos π3+4sin θsin π3, 所以ρ2=2ρcos θ+23ρsin θ, 即x 2+y 2=2x +23y ,得曲线C 的直角坐标方程为(x -1)2+(y -3)2=4.直线l 的参数方程为⎩⎨⎧x =12t ,y =-3+32t(t 为参数).(2)将⎩⎨⎧x =12t ,y =-3+32t(t 为参数)代入曲线C 的直角坐标方程,得⎝⎛⎭⎫12t -12+⎝⎛⎭⎫32t -232=4,整理得t 2-7t +9=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=7,t 1t 2=9,所以t 1>0,t 2>0,所以|P A |+|PB |=t 1+t 2=7.2.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17=|5sin (θ+φ)-a -4|17,φ满足tan φ=34.当-a -4≤0,即a ≥-4时,d 的最大值为a +917 .由题设得a +917=17,所以a =8;当-a -4>0,即a <-4时,d 的最大值为-a +117,由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.参数方程与极坐标方程的综合应用(师生共研)(2020·淄博模拟)在平面直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎨⎧x =3+t cos α,y =2+t sin α(α为参数).在以坐标原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中,曲线C 的极坐标方程为ρ=21+3cos 2θ,直线l 与曲线C 相交于不同的两点A ,B .(1)若α=π6,求直线l 的普通方程和曲线C 的直角坐标方程;(2)若|OP |为|P A |与|PB |的等比中项,其中P (3,2),求直线l 的斜率. 【解】 (1)因为α=π6,所以直线l 的参数方程为⎩⎨⎧x =3+32t ,y =2+12t (t 为参数).消t 可得直线l 的普通方程为x -3y +3=0. 因为曲线C 的极坐标方程ρ=21+3cos 2θ可化为ρ2(1+3cos 2θ)=4,所以曲线C 的直角坐标方程为4x 2+y 2=4. (2)设直线l 上两点A ,B 对应的参数分别为t 1,t 2,将⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α代入曲线C 的直角坐标方程4x 2+y 2=4可得4(3+t cos α)2+(2+t sin α)2=4,化简得(4cos 2α+sin 2α)t 2+(83cos α+4sin α)t +12=0, 因为|P A |·|PB |=|t 1t 2|=124cos 2α+sin 2α,|OP |2=7, 所以124cos 2α+sin 2α=7,解得tan 2α=165. 因为Δ=(83cos α+4sin α)2-48(4cos 2α+sin 2α)>0 即2sin α(23cos α-sin α)>0,可知tan α>0, 解得tan α=455,所以直线l 的斜率为455.(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.1.(2020·河南省第五次测评)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =5cos α,y =2+5sin α(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4ρcos θ-3.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,A ,B 的中点为M ,点P (0,-1),求|PM |·|AB |的值. 解:(1)曲线C 1的普通方程为x 2+(y -2)2=5.由ρ2=x 2+y 2,ρcos θ=x ,得曲线C 2的直角坐标方程为x 2+y 2-4x +3=0.(2)将两圆的方程x 2+(y -2)2=5与x 2+y 2-4x +3=0作差得直线AB 的方程为x -y -1=0.点P (0,-1)在直线AB 上,设直线AB 的参数方程为⎩⎨⎧x =22t ,y =-1+22t (t 为参数),代入x 2+y 2-4x +3=0化简得t 2-32t +4=0,所以t 1+t 2=32,t 1t 2=4. 因为点M 对应的参数为t 1+t 22=322,所以|PM |·|AB |=⎪⎪⎪⎪⎪⎪t 1+t 22·|t 1-t 2|=322×(t 1+t 2)2-4t 1t 2=322×18-4×4=3. 2.(2019·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t 2,y =4t 1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 解:(1)因为-1<1-t 21+t 2≤1,且x 2+⎝⎛⎭⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1, 所以C 的直角坐标方程为x 2+y 24=1(x ≠-1). l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎫α-π3+117.当α=-2π3时,4cos ⎝⎛⎭⎫α-π3+11取得最小值7,故C 上的点到l 距离的最小值为7.[基础题组练]1.(2020·安徽巢湖模拟)在平面直角坐标系xOy 中,已知直线l :⎩⎨⎧x =-12t ,y =3+32t (t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4sin(θ+π3). (1)求曲线C 的直角坐标方程.(2)设点M 的直角坐标为(0,3),直线l 与曲线C 的交点为A ,B ,求|MA |+|MB |的值. 解:(1)把ρ=4sin ⎝⎛⎭⎫θ+π3,展开得ρ=2sin θ+2 3 cos θ,两边同乘ρ得ρ2=2ρsin θ+23ρcos θ ①.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入①, 即得曲线C 的直角坐标方程为x 2+y 2-23x -2y =0 ②.(2)将⎩⎨⎧x =-12t ,y =3+32t代入②式,得t 2+33t +3=0,点M 的直角坐标为(0,3).设这个方程的两个实数根分别为t 1,t 2, 则t 1+t 2=-33,t 1·t 2=3, 所以t 1<0,t 2<0.则由参数t 的几何意义即得|MA |+|MB |=|t 1+t 2|=3 3.2.(2020·太原模拟)在直角坐标系中,圆C 的参数方程为:⎩⎨⎧x =1+2cos α,y =3+2sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆C 的极坐标方程;(2)若直线l :⎩⎪⎨⎪⎧x =t cos φ,y =t sin φ(t 为参数)被圆C 截得的弦长为23,求直线l 的倾斜角.解:(1)圆C :⎩⎪⎨⎪⎧x =1+2cos α,y =3+2sin α,消去参数α得(x -1)2+(y -3)2=4,即x 2+y 2-2x -23y =0,因为ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ.所以ρ2-2ρcos θ-23ρsin θ=0,ρ=4cos ⎝⎛⎭⎫θ-π3. (2)因为直线l :⎩⎪⎨⎪⎧x =t cos φ,y =t sin φ的极坐标方程为θ=φ,当θ=φ时ρ=4cos ⎝⎛⎭⎫φ-π3=2 3. 即cos ⎝⎛⎭⎫φ-π3=32, 所以φ-π3=π6或φ-π3=-π6.所以φ=π2或φ=π6,所以直线l 的倾斜角为π6或π2.3.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=21-cos θ.(1)求曲线C 2的直角坐标方程;(2)设M 1是曲线C 1上的点,M 2是曲线C 2上的点,求|M 1M 2|的最小值. 解:(1)因为ρ=21-cos θ,所以ρ-ρcos θ=2, 即ρ=ρcos θ+2.因为x =ρcos θ,ρ2=x 2+y 2,所以x 2+y 2=(x +2)2,化简得y 2-4x -4=0. 所以曲线C 2的直角坐标方程为y 2-4x -4=0.(2)因为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2,所以2x +y +4=0.所以曲线C 1的普通方程为2x +y +4=0.因为M 1是曲线C 1上的点,M 2是曲线C 2上的点,所以|M 1M 2|的最小值等于点M 2到直线2x +y +4=0的距离的最小值. 不妨设M 2(r 2-1,2r ),点M 2到直线2x +y +4=0的距离为d ,则d =2|r 2+r +1|5=2⎣⎡⎦⎤⎝⎛⎭⎫r +122+345≥325=3510, 当且仅当r =-12时取等号.所以|M 1M 2|的最小值为3510.4.在直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)写出曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.解:(1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1;曲线D 的直角坐标方程为x 2+y 2+2x-23y =0.(2)点A ⎝⎛⎭⎫22,π4,则⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sinπ3(t 为参数),代入x 29+y 24=1中可得,314t 2+(8+183)t +16=0,设M ,N 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[综合题组练]1.(2020·广州模拟)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =2+7cos α,y =7sin α(α为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos θ,直线l 的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的极坐标方程与直线l 的直角坐标方程;(2)若直线l 与曲线C 1,C 2在第一象限分别交于A ,B 两点,P 为曲线C 2上的动点,求△P AB 面积的最大值.解:(1)依题意得,曲线C 1的普通方程为(x -2)2+y 2=7,曲线C 1的极坐标方程为ρ2-4ρcos θ-3=0.直线l 的直角坐标方程为y =3x .(2)曲线C 2的直角坐标方程为(x -4)2+y 2=16, 设A ⎝⎛⎭⎫ρ1,π3,B ⎝⎛⎭⎫ρ2,π3, 则ρ21-4ρ1cos π3-3=0,即ρ21-2ρ1-3=0, 得ρ1=3或ρ1=-1(舍),又ρ2=8cos π3=4,则|AB |=|ρ2-ρ1|=1.C 2(4,0)到l 的距离d =|43|4=23,以AB 为底边的△P AB 的高的最大值为4+23,则△P AB 的面积的最大值为12×1×(4+23)=2+ 3.2.(2020·南昌模拟)在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρcos θ-ρsin θ=2,曲线C 的极坐标方程为ρsin 2θ=2P cos θ(P >0).(1)求直线l 过点(-2,-4)的参数方程;(2)已知直线l 与曲线C 交于N ,Q 两点,M (-2,-4),且|NQ |2=|MN |·|MQ |,求实数P 的值.解:(1)将x =ρcos θ,y =ρsin θ代入直线l 的极坐标方程,得直线l 的直角坐标方程为x -y -2=0.所以直线l 过点(-2,-4)的参数方程为⎩⎨⎧x =-2+22t ,y =-4+22t (t 为参数).(2)由ρsin 2θ=2P cos θ(P >0), 得(ρsin θ)2=2Pρcos θ(P >0),将ρcos θ=x ,ρsin θ=y 代入,得y 2=2Px (P >0).将直线l 的参数方程与曲线C 的直角坐标方程联立,得t 2-22(4+P )t +8(4+P )=0,(*)Δ=8P (4+P )>0.设点N ,Q 分别对应参数t 1,t 2,恰好为上述方程的根, 则|MN |=t 1,|MQ |=t 2,|NQ |=|t 1-t 2|.由题设得(t 1-t 2)2=|t 1t 2|,即(t 1+t 2)2-4t 1t 2=|t 1t 2|. 由(*)得t 1+t 2=22(4+P ),t 1t 2=8(4+P )>0, 则有(4+P )2-5(4+P )=0,得P =1或P =-4.因为P >0,所以P =1.3.(2020·栖霞模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t (t 为参数,a >0),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=-4 2. (1)设P 是曲线C 上的一个动点,当a =23时,求点P 到直线l 的距离的最小值; (2)若曲线C 上所有的点都在直线l 的右下方,求实数a 的取值范围.解:(1)由ρcos ⎝⎛⎭⎫θ+π4=-42,得到ρ(cos θ-sin θ)=-8, 因为ρcos θ=x ,ρsin θ=y , 所以直线l 的普通方程为x -y +8=0.设P (23cos t ,2sin t ),则点P 到直线l 的距离d =|23cos t -2sin t +8|2=|4sin ⎝⎛⎭⎫t -π3-8|2=22|sin ⎝⎛⎭⎫t -π3-2|, 当sin ⎝⎛⎭⎫t -π3=1时,d min =22, 所以点P 到直线l 的距离的最小值为2 2.(2)设曲线C 上任意点P (a cos t ,2sin t ),由于曲线C 上所有的点都在直线l 的右下方, 所以a cos t -2sin t +8>0对任意t ∈R 恒成立. a 2+4sin(t -φ)<8,其中cos φ=2a 2+4,sin φ=a a 2+4.从而a 2+4<8.由于a >0,解得0<a <215. 即a ∈(0,215).4.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.解:(1)由⎩⎪⎨⎪⎧x =-5+2cos t ,y =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos (θ+π4)=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎫2,π2, 设点P 的坐标为(-5+2cos t ,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=|-6+2cos ⎝⎛⎭⎫t +π4|2.所以d min =42=22,又|AB |=2 2. 所以△P AB 面积的最小值是S =12×22×22=4.。