向量范数
- 格式:ppt
- 大小:1.04 MB
- 文档页数:5
3.3 范数3.3.1 向量范数在一维空间中,实轴上任意两点距离用两点差的绝对值表示。
绝对值是一种度量形式的定义。
范数是对函数、向量和矩阵定义的一种度量形式。
任何对象的范数值都是一个非负实数。
使用范数可以测量两个函数、向量或矩阵之间的距离。
向量范数是度量向量长度的一种定义形式。
范数有多种定义形式,只要满足下面的三个条件即可定义为一个范数。
同一向量,采用不同的范数定义,可得到不同的范数值。
定义3.1对任一向量,按照一个规则确定一个实数与它对应,记该实数记为,若满足下面三个性质:(1),有,当且仅当时,(非负性)(2),,有(齐次性)(3.37)(3),,有(三角不等式)那么称该实数为向量的范数。
几个常用向量范数向量的范数定义为其中,经常使用的是三种向量范数。
或写成例3.5 计算向量的三种范数。
向量范数的等价性有限维线性空间中任意向量范数的定义都是等价的。
若是上两种不同的范数定义,则必存在,使均有或(证明略)向量的极限有了向量范数的定义,也就有了度量向量距离的标准,即可定义向量的极限和收敛概念了。
设为上向量序列,若存在向量使,则称向量列是收敛的(是某种向量范数),称为该向量序列的极限。
由向量范数的等价知,向量序列是否收敛与选取哪种范数无关。
向量序列,收敛的充分必要条件为其序列的每个分量收敛,即存在。
若,则就是向量序列的极限。
例3.6 求向量序列极限向量。
解:算出每个向量分量的极限后得在计算方法中,计算的向量序列都是数据序列,当小于给定精度时,取为极限向量。
3.3.2 矩阵范数矩阵范数定义定义3.2 如果矩阵的某个非负实函数,记作,满足条件:(1)当且仅当时,(非负性)(2)(齐次性)(3)对于任意两个阶数相同的矩阵有(三角不等式性)(4)矩阵为同阶矩阵(相容性)则称为矩阵范数。
矩阵的算子范数常用的矩阵范数是矩阵的算子范数,可用向量范数定义:设,记方阵的范数为,那么或(3.38)称为矩阵的算子范数或从属范数。
向量范数定义1. 设,满足1. 正定性:║x║≥0,║x║=0 iff x=02. 齐次性:║cx║=│c│║x║,3. 三角不等式:║x+y║≤║x║+║y║则称Cn中定义了向量范数,║x║为向量x的范数.可见向量范数是向量的一种具有特殊性质的实值函数.常用向量范数有,令x=( x1,x2,…,xn)T1-范数:║x║1=│x1│+│x2│+…+│xn│2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)^1/2∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)易得║x║∞≤║x║2≤║x║1≤n1/2║x║2≤n║x║∞定理中任意两种向量范数║x║α,║x║β是等价的,即有m,M>0使m║x║α≤║x║β≤M║x║可根据范数的连续性来证明它.由定理1可得定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则║x(k)-x║→0(k→∞) iff xj(k)-xj→0,j=1,2,…,n(k→∞)其中xj(k)是x(k)的第j个分量,xj是x的第j个分量.此时称{x(k)}收敛于x,记作x(k) →x(k→∞),或 .三、矩阵范数定义2. 设,满足1. 正定性:║X║≥0,║X║=0 iff X=02. 齐次性:║cX║=│c│║X║,3. 三角不等式:║X+Y║≤║X║+║Y║4. 相容性: ║XY║≤║X║║Y║则称Cn×n中定义了矩阵范数,║X║为矩阵X的范数.注意, 矩阵X可视为n2维向量,故有前三条性质.因此定理1,2中向量的等价性和向量序列收敛的概念与性质等也适合于矩阵.第四条,是考虑到矩阵乘法关系而设.更有矩阵向量乘使我们定义矩阵范数向量范数的相容性:║Ax║≤║A║║x║所谓由向量范数诱导出的矩阵范数与该向量范数就是相容的.定理3. 设A是n×n矩阵,║?║是n维向量范数则║A║=max{║Ax║:║x║=1}= max{║Ax║/║x║: x≠0}是一种矩阵范数,称为由该向量范数诱导出的矩阵范数或算子范数,它们具有相容性或者说是相容的.单位矩阵的算子范数为1可以证明任一种矩阵范数总有与之相容的向量范数.例如定义:║x║=║X║,X=(xx…x)常用的三种向量范数诱导出的矩阵范数是1-范数:║A║1= max{║Ax║1:║x║1=1}=2-范数:║A║2=max{║Ax║2:║x║2=1}= ,λ1是AHA的最大特征值.∞-范数:║A║∞=max{║Ax║∞:║x║∞=1}=此外还有Frobenius范数: .它与向量2-范数相容.但非向量范数诱导出的矩阵范数.四、矩阵谱半径定义3.设A是n×n矩阵,λi是其特征值,i=1,2,…,n.称为A的谱半径.谱半径是矩阵的函数,但非矩阵范数.对任一矩阵范数有如下关系:ρ(A)≤║A║因为任一特征对λ,x,Ax=λx,令X=(xx…x),可得AX=λX.两边取范数,由矩阵范数的相容性和齐次性就导出结果.定理 3.矩阵序列I,A,A2,…Ak,…收敛于零的充分必要条件是ρ(A)。
3.3 范数3.3.1 向量范数在一维空间中,实轴上任意两点距离用两点差的绝对值表示。
绝对值是一种度量形式的定义。
范数是对函数、向量和矩阵定义的一种度量形式。
任何对象的范数值都是一个非负实数。
使用范数可以测量两个函数、向量或矩阵之间的距离。
向量范数是度量向量长度的一种定义形式。
范数有多种定义形式,只要满足下面的三个条件即可定义为一个范数。
同一向量,采用不同的范数定义,可得到不同的范数值。
若X是数域K上的线性空间,泛函║·║: X->R 满足:1. 正定性:║x║≥0,且║x║=0 <=> x=0;2. 正齐次性:║cx║=│c│║x║;3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。
那么║·║称为X上的一个范数。
常用范数这里以C^n空间为例,R^n空间类似。
最常用的范数就是p-范数。
若x=[x1,x2,...,xn]^T,那么║x║p=(|x1|^p+|x2|^p+...+|xn|^p)^{1/p}可以验证p-范数确实满足范数的定义。
其中三角不等式的证明不是平凡的,这个结论通常称为闵可夫斯基(Minkowski)不等式。
当p取1,2,∞的时候分别是以下几种最简单的情形:1-范数:║x║1=│x1│+│x2│+…+│xn│2-范数:║x║2=(│x1│^2+│x2│^2+…+│xn│^2)^1/2∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)其中2-范数就是通常意义下的距离。
矩阵范数一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。
所以矩阵范数通常也称为相容范数。
如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。
对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。
I 、向量的范数向量x ∈R n的范数f(x )是定义在R n空间上取值为非负实数且满足下列性质的函数:1ο对于所有的x ≠ 0,x ∈R n有f(x )>0; (非负性)2ο对于所有的α∈R 有f(αx )=αf(x ); (正齐性) 3ο对于所有的x,y ∈R n有f(x+y )≤f(x )+f(y ). (三角不等式)一、 一般情况下,f(x )的具体模式如下:p x = p ni pix 11)(∑=,p 1≥ 也称它为p-范数。
下证p-范数满足上述的三个性质:1、对于所有的x ∈R n,x ≠ 0,p ni pix 11)(∑=显然是大于0的,故性质1ο成立。
2、 由pxα = pni pix 11)(∑=α = αp ni pix 11)(∑= = αp x 知性质2ο成立。
3、欲验证性质3ο,我们的借助下列不等式:设p>1,q>1,且p 1 + q1 = 1,则对所有的0,≥βα有αββα≥+qpqp证:考虑函数ptptt -=1)(ϕ,因为)1(1)(11'-=-p t pt ϕ,由()t 'ϕ=0 t=1,又因为01)1(''<-=pqϕ,所以当t = 1的时候)(t ϕ取最大值,则有:p p ttp111-≤-, 令t = q pβα,代入可得:q p p q ppq p1111=-=-⎪⎪⎭⎫⎝⎛βαβα, 化简之后即得: αββα≥+qpqp证毕!又令∑=)(1i px x piα,∑=)(1i qy y qiβ,代入上不等式可得:∑∑+)()(iq i i p iy y x x qqpp∑∑≥)()(11y x yx i qi pqpii,两边同时对i 求和,并利用关系式p 1 + q1 = 1可知:∑∑≥+=∑∑∑∑∑)()(11)()(1y x yx y y x x i qi piq i ip i qpiiqqpp从而有:∑∑≤∑)()(11y x y x i qi pqpii另一方面,又有:∑+∑++=-yx y x y x iip pii ii 1)(1y x y x ii p ii +≤∑+-yy x x y x ip ip i i ii ∑+∑+--+=11()()()()()()∑∑-+∑∑-≤++y y x x y x ipiiq p ipiiq p pqpq111111()()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑-=+∑+y x y x ipip piiqp pq1111()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑=+∑+y x y x ipip piipp111 左右两边同时除以()∑+y x iip1得:()()()∑∑≤∑++y x y x ipipiip ppp111。
向量范数定义
向量范数是一种向量空间内距离的衡量度量,它在众多范数中占有重要地位。
形式上,向量范数可以用以下形式表示:
||x||=(∑|xᵢ|p)^(1/p)
其中,x是一个n维向量,xᵢ表示n维向量的第i个元素,p>0表示范数的阶数。
在数学中,向量范数是衡量向量长度的一种方法,它具有以下几个重要性质:非负性,齐次性,三角不等式,正交性等。
例如,二范数表示它是一种最常见的模式,在数学中它有一个很简单的公式:||x||₂=(∑|xᵢ|²)^(1/2)
向量范数可以在众多场合中成功应用,包括线性空间,图论等。
以线性空间为例,里面的空间位置可以通过使用向量范数表示出来,因此向量范数在线性空间的应用非常广泛。
在实际应用中,向量范数是用来衡量向量和其他向量之间距离的度量方式,例如欧几里得距离可以使用二范数来计算。
总之,向量范数是一种衡量向量长度和距离的方法,具有许多重要性质,在众多实际应用中都发挥着重要作用,是众多度量方法中不可缺少的一环。
I 、向量的范数向量x ∈R n的范数f(x )是定义在R n空间上取值为非负实数且满足下列性质的函数:1对于所有的x ≠ 0,x ∈R n有f(x )>0; (非负性) 2 对于所有的α∈R 有f(αx )=αf(x ); (正齐性) 3对于所有的x,y ∈R n有f(x+y )≤f(x )+f(y ). (三角不等式)一、 一般情况下,f(x )的具体模式如下:p x = p ni pix 11)(∑=,p 1≥ 也称它为p-范数。
下证p-范数满足上述的三个性质:1、对于所有的x ∈R n,x ≠ 0,p ni pix 11)(∑=显然是大于0的,故性质1 成立。
2、 由pxα = pni pix 11)(∑=α = αp ni pi x 11)(∑= = αp x 知性质2 成立。
3、欲验证性质3,我们的借助下列不等式:设p>1,q>1,且p 1 + q1 = 1,则对所有的0,≥βα有αββα≥+qpqp证:考虑函数p tptt -=1)(ϕ,因为)1(1)(11'-=-p t pt ϕ,由()t 'ϕ=0 t=1,又因为01)1(''<-=pqϕ,所以当t = 1的时候)(t ϕ取最大值,则有:p p ttp111-≤-, 令t = q pβα,代入可得: q p p q ppq p1111=-=-⎪⎪⎭⎫⎝⎛βαβα, 化简之后即得: αββα≥+qpqp证毕!又令∑=)(1i px x piα,∑=)(1i qy y qiβ,代入上不等式可得:∑∑+)()(iq i i p iy y x x qqpp∑∑≥)()(11y x yx i qi pqpii,两边同时对i 求和,并利用关系式p 1 + q1 = 1可知:∑∑≥+=∑∑∑∑∑)()(11)()(1y x yx y y x x i qi piq i ip i qpiiqqpp从而有:∑∑≤∑)()(11y x y x i qi pqpii另一方面,又有:∑+∑++=-yx y x y x iip pi i ii 1)(1y x y x ii p ii +≤∑+-yy x x y x ip ip i i i i ∑+∑+--+=11()()()()()()∑∑-+∑∑-≤++y y x x y x ipiiq p ipiiq p pqpq111111()()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑-=+∑+y x y x ipip piiqp pq1111()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑=+∑+y x y x ipip piippq111 左右两边同时除以()∑+y x iipq1得:()()()∑∑≤∑++y x y x ipipiip ppp111。
向量的f范数向量的f范数是指该向量所有元素的绝对值上的和再开f次方,其中f为正实数。
它在数学和工程学领域中都有广泛的应用。
在统计学中,f范数被用来衡量模型复杂度,以及数据的稀疏性。
在机器学习中,f范数被广泛用来建立正则化模型,以避免过拟合。
以下是与向量的f范数相关的一些重要概念和应用。
一、L0范数L0范数是指让向量中非零元素的数量处于最小值。
由于它是一个组合优化问题,因此寻找L0范数的最小值是一个NP难问题。
这种范数的应用包括图像处理和大规模数据压缩等领域。
二、L1范数L1范数是指向量中元素的绝对值和。
这种范数可以用作正则化项,用来约束模型的复杂性。
它也可以用来产生稀疏解,因为它的梯度比L2范数的梯度更易于消除。
L1范数还可以用于特征选择。
三、L2范数L2范数是指向量中元素的平方和再开平方。
在机器学习中,L2范数常被用来计算向量的欧几里得距离。
它还可以被用来表示向量的长度。
L2范数在求解线性回归模型参数时也有重要应用。
四、Lp范数Lp范数是指向量中绝对值的p次方和再开p次方。
L1范数和L2范数是Lp范数的特殊情况。
Lp范数还可以用于产生稀疏解,并用于特定的图像处理和统计学问题中。
五、应用除了上述应用之外,向量的f范数还有许多其他应用。
在信号处理中,它可以用来评估信号的功率和分布。
在图像处理中,它可以用来衡量图像中的像素强度分布。
在人脸识别中,它可以用来比较不同人脸之间的相似程度。
在总结中,向量的f范数是一种重要的数学概念,它在数学、工程学、统计学、机器学习、图像处理、信号处理等领域中都有广泛的应用。
无论是计算向量的距离,衡量其长度,构建正则化模型还是进行特征选择,f范数都是一个不可或缺的工具。