向量的范数与矩阵的范数1
- 格式:ppt
- 大小:418.50 KB
- 文档页数:17
矩阵的1范数
求矩阵的1,和2范数
1.向量的范数:
0范数,向量中⾮零元素的个数。
1范数,为绝对值之和。
2范数,就是通常意义上的模。
⾮穷范数,就是取向量的最⾮值。
但是向量的范数和矩阵的范数关系不⾮,百度了好久也没看到狠⾮的东西,下⾮我来总结⾮下:
矩阵的范数:(是矩阵之间距离度量的⾮法)
A=[010;100;-100]
A=
010
100
-100
>> norm(A,1)
ans =
矩阵的2范数(norm(A,2)):指矩阵A与矩阵A的转置相乘后得到B,再对矩阵B的最⾮特征值开⾮,还是例⾮:
A=[010;100;-100];
>>B=A*A';
>> [V,D]=eig(B)%V是特征向量,D是特征值V=
01.00000
-0.70710-0.7071
-0.707100.7071
D=
000
010
002
>> sqrt(2)
ans =
1.4142
>> norm(A,2)
ans =
1.4142
既然矩阵的2范数是距离度量的⾮种,那么矩阵的2范数越⾮,则两矩阵的相似性越⾮。
由于知识有限,解释的不好见谅(没有看出2范数和欧⾮距离的关系)。
(⾮⾮上那些讲得迷迷糊糊好点吧)。
矩阵范数和向量范数的关系矩阵范数和向量范数是线性代数中常用的概念,它们之间存在一定的关系。
本文将从矩阵范数和向量范数的定义、性质以及它们之间的联系等方面进行阐述。
我们来介绍矩阵范数和向量范数的定义。
矩阵范数是定义在矩阵上的一种范数,它可以将一个矩阵映射为一个非负的实数。
常见的矩阵范数有Frobenius范数、1-范数、2-范数和∞-范数等。
以Frobenius范数为例,对于一个矩阵A,它的Frobenius范数定义为矩阵元素平方和的平方根,即∥A∥F = √(∑∑|aij|^2)。
向量范数是定义在向量空间中的一种范数,它可以将一个向量映射为一个非负的实数。
常见的向量范数有1-范数、2-范数和∞-范数等。
以2-范数为例,对于一个向量x,它的2-范数定义为向量元素平方和的平方根,即∥x∥2 = √(∑|xi|^2)。
矩阵范数和向量范数之间存在一定的联系。
首先,对于一个n维向量x,可以将其看作是一个n×1的矩阵。
此时,向量范数就可以看作是矩阵范数的一种特殊情况。
例如,向量的2-范数就是矩阵的2-范数。
因此,矩阵范数可以看作是向量范数的推广。
矩阵范数和向量范数之间满足一些性质。
例如,对于一个矩阵A和一个向量x,满足以下性质:1. 三角不等式:对于任意的矩阵A和向量x,有∥A∥ + ∥x∥ ≤∥A + x∥。
2. 齐次性:对于任意的矩阵A和实数α,有∥αA∥ = |α|∥A∥。
3. 子多重性:对于任意的矩阵A和B,有∥AB∥ ≤ ∥A∥∥B∥。
我们来讨论矩阵范数和向量范数的联系。
通过定义可以看出,矩阵范数和向量范数都是对于矩阵或向量的度量。
矩阵范数可以看作是对矩阵的度量,而向量范数可以看作是对向量的度量。
矩阵范数和向量范数都满足范数的定义,即满足非负性、齐次性和三角不等式。
在应用中,矩阵范数和向量范数有着广泛的应用。
矩阵范数可以用于矩阵的相似性度量、矩阵的特征值估计等问题。
而向量范数可以用于向量的相似性度量、向量的正则化等问题。
向量和矩阵的范数一、引言向量和矩阵是线性代数中最基本的概念之一,而范数则是线性代数中一个非常重要的概念。
范数可以用来度量向量或矩阵的大小,也可以用来衡量它们之间的距离。
在本文中,我们将讨论向量和矩阵的范数。
二、向量范数1. 定义向量范数是一个函数,它将一个向量映射到一个非负实数。
它满足以下条件:(1)非负性:对于任意的向量x,有||x||≥0;(2)齐次性:对于任意的标量α和向量x,有||αx||=|α|·||x||;(3)三角不等式:对于任意的向量x和y,有||x+y||≤||x||+||y||。
2. 常见范数(1)L1范数:也称为曼哈顿距离或城市街区距离。
它定义为所有元素绝对值之和:||x||1=∑i=1n|xi| 。
(2)L2范数:也称为欧几里得距离。
它定义为所有元素平方和再开平方根:||x||2=(∑i=1nxi^2)1/2 。
(3)p范数:它定义为所有元素p次方和的p次方根:||x||p=(∑i=1n|xi|^p)1/p 。
(4)无穷范数:它定义为所有元素绝对值中的最大值:||x||∞=ma xi|xi| 。
三、矩阵范数1. 定义矩阵范数是一个函数,它将一个矩阵映射到一个非负实数。
它满足以下条件:(1)非负性:对于任意的矩阵A,有||A||≥0;(2)齐次性:对于任意的标量α和矩阵A,有||αA||=|α|·||A||;(3)三角不等式:对于任意的矩阵A和B,有||A+B||≤||A||+||B||。
2. 常见范数(1)Frobenius范数:也称为欧几里得范数。
它定义为所有元素平方和再开平方根:||A||F=(∑i=1m∑j=1naij^2)1/2 。
(2)一范数:它定义为每列元素绝对值之和的最大值:||A||1=maxj(∑i=1m|aij|) 。
(3)二范数:它定义为矩阵A的最大奇异值:||A||2=σmax(A) 。
(4)∞范数:它定义为每行元素绝对值之和的最大值:||A||∞=maxi(∑j=1n|aij|) 。