向量的范数与矩阵的范数2
- 格式:ppt
- 大小:453.00 KB
- 文档页数:17
矩阵的1范数
求矩阵的1,和2范数
1.向量的范数:
0范数,向量中⾮零元素的个数。
1范数,为绝对值之和。
2范数,就是通常意义上的模。
⾮穷范数,就是取向量的最⾮值。
但是向量的范数和矩阵的范数关系不⾮,百度了好久也没看到狠⾮的东西,下⾮我来总结⾮下:
矩阵的范数:(是矩阵之间距离度量的⾮法)
A=[010;100;-100]
A=
010
100
-100
>> norm(A,1)
ans =
矩阵的2范数(norm(A,2)):指矩阵A与矩阵A的转置相乘后得到B,再对矩阵B的最⾮特征值开⾮,还是例⾮:
A=[010;100;-100];
>>B=A*A';
>> [V,D]=eig(B)%V是特征向量,D是特征值V=
01.00000
-0.70710-0.7071
-0.707100.7071
D=
000
010
002
>> sqrt(2)
ans =
1.4142
>> norm(A,2)
ans =
1.4142
既然矩阵的2范数是距离度量的⾮种,那么矩阵的2范数越⾮,则两矩阵的相似性越⾮。
由于知识有限,解释的不好见谅(没有看出2范数和欧⾮距离的关系)。
(⾮⾮上那些讲得迷迷糊糊好点吧)。
矩阵f范数与向量2范数相容证明在线性代数中,矩阵f范数和向量2范数是两个常见的范数概念。
它们在矩阵和向量的运算和分析中起着重要作用。
而证明矩阵f范数与向量2范数相容的性质,则是深入了解这两个概念的关键之一。
我们来简单地回顾一下矩阵f范数和向量2范数的定义。
矩阵A的f 范数定义如下:(1). 对于一个n×m的矩阵A,其f范数定义为:||A||_f = (\sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}|^2)^{1/2}其中a_ij表示矩阵A的第i行第j列的元素,||A||_f表示矩阵A的f范数。
而对于一个n维的向量x,其2范数定义为:(2). 向量x的2范数定义为:||x||_2 = (\sum_{i=1}^{n} |x_i|^2)^{1/2}其中x_i表示向量x的第i个元素,||x||_2表示向量x的2范数。
我们的任务是要证明矩阵f范数与向量2范数的相容性。
也就是说,我们需要证明对于任意的n×m矩阵A和n维向量x,有以下关系成立:(3). ||Ax||_2 ≤ ||A||_f * ||x||_2现在让我们来证明这个性质。
我们要从矩阵A的f范数定义出发,利用向量x的2范数定义来推导出式(3)。
我们可以将矩阵A表示为列向量a_1, a_2, ..., a_m的形式,即A =[a_1, a_2, ..., a_m],其中a_i表示矩阵A的第i列向量。
根据矩阵向量乘法的定义,我们有Ax = x_1*a_1 + x_2*a_2 + ... +x_m*a_m。
其中x_i表示向量x的第i个元素。
在这里,我们可以利用矩阵A的f范数定义进行变换。
我们可以将矩阵A的f范数表示为矩阵A每一列向量的2范数的最大值。
也就是说,(4). ||A||_f = max{||a_1||_2, ||a_2||_2, ..., ||a_m||_2}而根据向量2范数的性质,我们知道对于任意的向量y,有||Ay||_2 ≤ ||A||_f * ||y||_2。
矩阵论/矩阵分析视频公开课武汉理工大学理学院统计学系金升平本视频内容:矩阵范数与向量范数的相容性矩阵范数诱导的向量范数矩阵范数与向量范数的相容性的概念,为矩阵与向量的联合起来进行分析,提供了理论保障“矩阵范数诱导的向量范数”将告诉我们:对于任意矩阵范数,都可找到与之相容的向量范数二、矩阵范数与向量范数的相容性1. 矩阵范数与向量范数的相容性定义3,v m v Ax A x ≤⋅则称矩阵范数∙m 与向量范数∙v 相容.设∙m 是Cn×n上矩阵范数,∙v 是C n上向量范数,如果, ,n nnA Cx C ⨯∀∈∈下标使用的原因:矩阵--m atrix ,向量--v ector定理1(1) 矩阵范数分别与相容;1, m F ⋅⋅12, ⋅⋅(2) 矩阵范数与向量范数相容.m ∞⋅12, , ∞⋅⋅⋅以矩阵范数与向量范数为例证之.1m ⋅1⋅设(),n nij A a C⨯=∈()12,,,.Tnn x x x x C =∈则11111nnnnij j ij i j i j jAx a x a x =====≤∑∑∑∑和的绝对值小于等绝对值之和。
将x j 放大11111.n n ij m i j nk k a x A x ===⎛⎫⎪⎝≤⎭=⋅∑∑∑2. 由矩阵范数诱导的向量范数, .Hnvmx xax C =∈设是上一个矩阵范数,取,0.na C a ∈≠且m⋅n nC⨯定义可以证明,它是上的向量范数,称为由矩阵范数nC ∙m所诱导的向量范数.事实上,(1) 正定性:当0≠x ∈C n时,xa H≠OHvmxxa =>而当x =0Hxxa ==(2)齐次性:当时,C λ∈HHvvmmxxaxaxλλλλ===(3)三角不等式:()HH Hv mmx y x y axa ya+=+=+HHmmxaya≤+v vx y=+定理2Cn×n上任意一矩阵范数∙m与它所诱导的向量范数∙v 相容.()Hv mAx Ax a=证明只需证相容性即可()HmA xa=()Hm mA xa≤m vA x=See you next time武汉理工大学理学院统计学系金升平矩阵论/矩阵分析视频公开课矩阵范数与向量范数的相容性矩阵范数诱导的向量范数(完)下一讲内容:向量范数诱导的矩阵范数。
向量与矩阵范数在欧氏空间与酉空间中,我们通过向量的内积定义了下列的长度,对于一般的线性空间,能否引入一个类似于长度而又比其更广泛的概念呢?这就是范数的概念。
向量范数与矩阵范数是应用非常广泛的重要概念,从范数可导出向量与向量,矩阵与矩阵之间的距离,进而引进向量序列和矩阵序列收敛性问题.它是矩阵分析与计算的基础.§1 向量范数定义1.1 设V 是数域()或C R 上的线性空间,如果对于任意V ∈x 按照某种法则对应于一个实数x,且满足:1) 非负性0≥x .当且仅当=x 0时,0=x ; 2) 齐次性k k =x x;3) 三角不等式 对任意,V ∈x y 总有,+≤+x y x y;则称实数x为线性空间V 上向量x 的范数.简称向量范数.定义了范数的线性空间V 称为赋范线性空间.由定义1.1可以看出,向量范数是定义在线性空间上的非负实值函数,它具有下列性质:(1) 当≠x 0时,11||||=x x ;(2) 对任意向量V ∈x ,有||||||||-=x x ;(3)||||||||||||||y -≤-x y x ; (4)||||||||||||||y -≤+x y x .性质(1)与(2)是显然成立的,下面证明性质(3) 因为||||||||||||||||=-+≤-+x x y y x y y , 所以||||||||||||-≤-x y x y .同理可证||||||||||||||()||||||-≤-=--=-y x y x x y x y , 即||||||||||||-≥--x y x y .综上有||||||||||||||y -≤-x y x .若用y -代替性质(3)中的y ,便得到性质(4).n C 上最著名的范数是p 范数,也称赫尔德(hölder )范数11()nppi pk x ==∑x,T 12(,,,)n n x x x =∈x C .这里1p ≤<∞,其中最常用的是1,2p =时的p 范数,即11nik x ==∑x ;12221()ni k x ==∑x 。
矩阵范数和向量范数的关系矩阵范数和向量范数是线性代数中常用的概念,它们之间存在一定的关系。
本文将从矩阵范数和向量范数的定义、性质以及它们之间的联系等方面进行阐述。
我们来介绍矩阵范数和向量范数的定义。
矩阵范数是定义在矩阵上的一种范数,它可以将一个矩阵映射为一个非负的实数。
常见的矩阵范数有Frobenius范数、1-范数、2-范数和∞-范数等。
以Frobenius范数为例,对于一个矩阵A,它的Frobenius范数定义为矩阵元素平方和的平方根,即∥A∥F = √(∑∑|aij|^2)。
向量范数是定义在向量空间中的一种范数,它可以将一个向量映射为一个非负的实数。
常见的向量范数有1-范数、2-范数和∞-范数等。
以2-范数为例,对于一个向量x,它的2-范数定义为向量元素平方和的平方根,即∥x∥2 = √(∑|xi|^2)。
矩阵范数和向量范数之间存在一定的联系。
首先,对于一个n维向量x,可以将其看作是一个n×1的矩阵。
此时,向量范数就可以看作是矩阵范数的一种特殊情况。
例如,向量的2-范数就是矩阵的2-范数。
因此,矩阵范数可以看作是向量范数的推广。
矩阵范数和向量范数之间满足一些性质。
例如,对于一个矩阵A和一个向量x,满足以下性质:1. 三角不等式:对于任意的矩阵A和向量x,有∥A∥ + ∥x∥ ≤∥A + x∥。
2. 齐次性:对于任意的矩阵A和实数α,有∥αA∥ = |α|∥A∥。
3. 子多重性:对于任意的矩阵A和B,有∥AB∥ ≤ ∥A∥∥B∥。
我们来讨论矩阵范数和向量范数的联系。
通过定义可以看出,矩阵范数和向量范数都是对于矩阵或向量的度量。
矩阵范数可以看作是对矩阵的度量,而向量范数可以看作是对向量的度量。
矩阵范数和向量范数都满足范数的定义,即满足非负性、齐次性和三角不等式。
在应用中,矩阵范数和向量范数有着广泛的应用。
矩阵范数可以用于矩阵的相似性度量、矩阵的特征值估计等问题。
而向量范数可以用于向量的相似性度量、向量的正则化等问题。
向量和矩阵的范数一、引言向量和矩阵是线性代数中最基本的概念之一,而范数则是线性代数中一个非常重要的概念。
范数可以用来度量向量或矩阵的大小,也可以用来衡量它们之间的距离。
在本文中,我们将讨论向量和矩阵的范数。
二、向量范数1. 定义向量范数是一个函数,它将一个向量映射到一个非负实数。
它满足以下条件:(1)非负性:对于任意的向量x,有||x||≥0;(2)齐次性:对于任意的标量α和向量x,有||αx||=|α|·||x||;(3)三角不等式:对于任意的向量x和y,有||x+y||≤||x||+||y||。
2. 常见范数(1)L1范数:也称为曼哈顿距离或城市街区距离。
它定义为所有元素绝对值之和:||x||1=∑i=1n|xi| 。
(2)L2范数:也称为欧几里得距离。
它定义为所有元素平方和再开平方根:||x||2=(∑i=1nxi^2)1/2 。
(3)p范数:它定义为所有元素p次方和的p次方根:||x||p=(∑i=1n|xi|^p)1/p 。
(4)无穷范数:它定义为所有元素绝对值中的最大值:||x||∞=ma xi|xi| 。
三、矩阵范数1. 定义矩阵范数是一个函数,它将一个矩阵映射到一个非负实数。
它满足以下条件:(1)非负性:对于任意的矩阵A,有||A||≥0;(2)齐次性:对于任意的标量α和矩阵A,有||αA||=|α|·||A||;(3)三角不等式:对于任意的矩阵A和B,有||A+B||≤||A||+||B||。
2. 常见范数(1)Frobenius范数:也称为欧几里得范数。
它定义为所有元素平方和再开平方根:||A||F=(∑i=1m∑j=1naij^2)1/2 。
(2)一范数:它定义为每列元素绝对值之和的最大值:||A||1=maxj(∑i=1m|aij|) 。
(3)二范数:它定义为矩阵A的最大奇异值:||A||2=σmax(A) 。
(4)∞范数:它定义为每行元素绝对值之和的最大值:||A||∞=maxi(∑j=1n|aij|) 。
一、向量的范数定义1 设x=(x1 ,x2,…,x n )n ,y=(y1 ,y2,…,y n )n∈R n (或C n )。
将实数(或复数),称为向量x,y的数量积。
将非负实数或称为向量x的欧氏范数。
对向量x,y的数量积有:1. (αx,y)=α(x,y).α为实数(或(x,αy)=(x,y),α为复数);2. (x,y)=(y,x)[(x,y)=(,)];3. (x1 +x2 ,y)=(x1 ,y)+(x2 ,y);4. (Cauchy-Schwarz不等式)(5.1)等式当且仅当x与y线形相关时成立。
对向量x的欧氏范数有:1. ‖x‖2≥0, ‖x‖2 =0当且仅当x=0时成立;2. ‖αx‖2=|α|‖x‖2,任意的α∈R(或α∈C),3. ‖x+y‖2≤‖x‖2 +‖y‖2 (三角不等式),(5.2)注(5.1)和(5.2)有下面的事实得到(x+ty,x+ty)=(x,x)+2(x,y)t+(y,y)t2≥0由一元二次方程根的判别定理可知(5.1)成立;取t=1,再利用(5.1)得即得(5.2)。
定义2(向量的范数) 如果向量x∈R n (或C n )的某个实值函数N(x)=‖x‖, 满足条件:(1) ‖x‖≥0(‖x‖=0当且仅当x=0)(正定条件),(2) ‖αx‖=|α|·‖x‖,任意的α∈R(或α∈C),(3) ‖x+y‖≤‖x‖+‖y‖(三角不等式),则称N(x)是R n (或C n )上的一个向量范数(或模)。
下面我们给出几种常用的向量范数。
1. 向量的∞-范数(最大范数):(5.3)2. 向量的1-范数:3. 向量的2-范数:(5.4)4. 向量的p-范数:(5.5)例6 计算向量x=(1,-2,3)T的各种范数。
解:定理6(N(x)的连续性) 设非负函数N(x)=‖x‖为R n上任一向量范数,则N(x)是x的分量x1 ,x2,…,x n的连续函数。
证明设其中e i=(0,…,1,0,…,0)T, . 只须证明当x→y时N(x)→N(y)即成。
f范数和2范数的关系
f范数和2范数的关系:2范数是由向量范数诱导而来,F范数是直接定义。
是两种不同的度量方式。
向量2范数指矩阵A的2范数,就是A的转置共轭矩阵与矩阵A的积的最大特征根的平方根值,是指空间上两个向量矩阵的直线距离。
类似于求棋盘上两点间的直线距离。
是对应元素平方和:
Frobenius范数,简称F-范数,是一种矩阵范数,记为||·||F。
矩阵A的Frobenius范数定义为矩阵A各项元素的绝对值平方的总和。
2范数表示矩阵或向量的最大奇异值,max(svd(X))而F范数表示矩阵所有元素平方和的开方根。
矩阵的f范数计算公式是矩阵的核范数:矩阵的奇异值(将矩阵svd分解)之和,这个范数可以用来低秩表示(因为最小化核范数,相当于最小化矩阵的秩—低秩)。
矩阵A的2范数就是A乘以A的转置矩阵特征根最大值的开根号如A={ 1 -2-3 4 }那么A的2范数就是(15+221^1/2)^1/2 了。