5-3 向量范数和矩阵范数的相容
- 格式:ppt
- 大小:3.71 MB
- 文档页数:17
第四章 矩阵范数理论及其应用知识要点:1、向量范数及其性质(范数与赋范空间,n 维向量的1-范数1x 、2-范数2x 、p -范数px 和∞范数x∞,pp lim xx ∞→∞=,aP a xPx =,2H H PxPx x P Px ==,有限维赋范空间的范数是等价的)2、矩阵范数及其相容性(Frobenius 范数,FEn =,相容性:AB A B ≤,1E ≥)3、算子范数(定义,列范数,行范数,谱范数)4、矩阵范数的应用(矩阵序列及幂级数的收敛性,矩阵条件数,摄动理论、矩阵的谱半径)§4.1 向量范数及其性质一、范数与赋范线性空间定义1:如果线性空间V 中的任一向量x ,都对应—个实值函数()f x (记为x ),并满足以下三个条件(称为范数公理):(1)非负性:0x ≠时, x >0;0x =时, x =0。
(2)齐次性:ax =a x ,a K ∈,x V ∈。
(3)三角不等式:x y +≤x +y ,,x y V ∈。
则称x 为V 上向量x 的范数(norm ),V 称为赋范线性空间(normed linear space )。
易证x y -满足距离公理,称之为x 与y 的范数诱导的距离。
若0n x x -→,则称nx 收敛于x ,记为n x x →。
例1:对于连续函数空间[,]C a b 中的向量()f x ,可如下定义范数为:1()()baf t f t dt =⎰,()max ()a t bf t f t ∞≤≤=,1()()bpppa f t f t dt ⎡⎤=⎢⎥⎣⎦⎰,1p ≤<∞。
分别称之为1-范数,∞-范数,p -范数。
注:需要用到数学专业的一些函数不等式,才能证明上述范数的正确性。
性质1:对于赋范线性空间V 上任意的x ,定义实函数()f x x =,则()f x 为V 上的连续函数,即0x x →时,0()()f x f x →,其中0x V ∈。
矩阵论/矩阵分析视频公开课武汉理工大学理学院统计学系金升平本视频内容:矩阵范数与向量范数的相容性矩阵范数诱导的向量范数矩阵范数与向量范数的相容性的概念,为矩阵与向量的联合起来进行分析,提供了理论保障“矩阵范数诱导的向量范数”将告诉我们:对于任意矩阵范数,都可找到与之相容的向量范数二、矩阵范数与向量范数的相容性1. 矩阵范数与向量范数的相容性定义3,v m v Ax A x ≤⋅则称矩阵范数∙m 与向量范数∙v 相容.设∙m 是Cn×n上矩阵范数,∙v 是C n上向量范数,如果, ,n nnA Cx C ⨯∀∈∈下标使用的原因:矩阵--m atrix ,向量--v ector定理1(1) 矩阵范数分别与相容;1, m F ⋅⋅12, ⋅⋅(2) 矩阵范数与向量范数相容.m ∞⋅12, , ∞⋅⋅⋅以矩阵范数与向量范数为例证之.1m ⋅1⋅设(),n nij A a C⨯=∈()12,,,.Tnn x x x x C =∈则11111nnnnij j ij i j i j jAx a x a x =====≤∑∑∑∑和的绝对值小于等绝对值之和。
将x j 放大11111.n n ij m i j nk k a x A x ===⎛⎫⎪⎝≤⎭=⋅∑∑∑2. 由矩阵范数诱导的向量范数, .Hnvmx xax C =∈设是上一个矩阵范数,取,0.na C a ∈≠且m⋅n nC⨯定义可以证明,它是上的向量范数,称为由矩阵范数nC ∙m所诱导的向量范数.事实上,(1) 正定性:当0≠x ∈C n时,xa H≠OHvmxxa =>而当x =0Hxxa ==(2)齐次性:当时,C λ∈HHvvmmxxaxaxλλλλ===(3)三角不等式:()HH Hv mmx y x y axa ya+=+=+HHmmxaya≤+v vx y=+定理2Cn×n上任意一矩阵范数∙m与它所诱导的向量范数∙v 相容.()Hv mAx Ax a=证明只需证相容性即可()HmA xa=()Hm mA xa≤m vA x=See you next time武汉理工大学理学院统计学系金升平矩阵论/矩阵分析视频公开课矩阵范数与向量范数的相容性矩阵范数诱导的向量范数(完)下一讲内容:向量范数诱导的矩阵范数。
向量与矩阵范数在欧氏空间与酉空间中,我们通过向量的内积定义了下列的长度,对于一般的线性空间,能否引入一个类似于长度而又比其更广泛的概念呢?这就是范数的概念。
向量范数与矩阵范数是应用非常广泛的重要概念,从范数可导出向量与向量,矩阵与矩阵之间的距离,进而引进向量序列和矩阵序列收敛性问题.它是矩阵分析与计算的基础.§1 向量范数定义1.1 设V 是数域()或C R 上的线性空间,如果对于任意V ∈x 按照某种法则对应于一个实数x,且满足:1) 非负性0≥x .当且仅当=x 0时,0=x ; 2) 齐次性k k =x x;3) 三角不等式 对任意,V ∈x y 总有,+≤+x y x y;则称实数x为线性空间V 上向量x 的范数.简称向量范数.定义了范数的线性空间V 称为赋范线性空间.由定义1.1可以看出,向量范数是定义在线性空间上的非负实值函数,它具有下列性质:(1) 当≠x 0时,11||||=x x ;(2) 对任意向量V ∈x ,有||||||||-=x x ;(3)||||||||||||||y -≤-x y x ; (4)||||||||||||||y -≤+x y x .性质(1)与(2)是显然成立的,下面证明性质(3) 因为||||||||||||||||=-+≤-+x x y y x y y , 所以||||||||||||-≤-x y x y .同理可证||||||||||||||()||||||-≤-=--=-y x y x x y x y , 即||||||||||||-≥--x y x y .综上有||||||||||||||y -≤-x y x .若用y -代替性质(3)中的y ,便得到性质(4).n C 上最著名的范数是p 范数,也称赫尔德(hölder )范数11()nppi pk x ==∑x,T 12(,,,)n n x x x =∈x C .这里1p ≤<∞,其中最常用的是1,2p =时的p 范数,即11nik x ==∑x ;12221()ni k x ==∑x 。
I 、向量的范数向量x ∈R n的范数f(x )是定义在R n空间上取值为非负实数且满足下列性质的函数:1对于所有的x ≠ 0,x ∈R n有f(x )>0; (非负性) 2 对于所有的α∈R 有f(αx )=αf(x ); (正齐性) 3对于所有的x,y ∈R n有f(x+y )≤f(x )+f(y ). (三角不等式)一、 一般情况下,f(x )的具体模式如下:p x = p ni pix 11)(∑=,p 1≥ 也称它为p-范数。
下证p-范数满足上述的三个性质:1、对于所有的x ∈R n,x ≠ 0,p ni pix 11)(∑=显然是大于0的,故性质1 成立。
2、 由pxα = pni pix 11)(∑=α = αp ni pi x 11)(∑= = αp x 知性质2 成立。
3、欲验证性质3,我们的借助下列不等式:设p>1,q>1,且p 1 + q1 = 1,则对所有的0,≥βα有αββα≥+qpqp证:考虑函数p tptt -=1)(ϕ,因为)1(1)(11'-=-p t pt ϕ,由()t 'ϕ=0 t=1,又因为01)1(''<-=pqϕ,所以当t = 1的时候)(t ϕ取最大值,则有:p p ttp111-≤-, 令t = q pβα,代入可得: q p p q ppq p1111=-=-⎪⎪⎭⎫⎝⎛βαβα, 化简之后即得: αββα≥+qpqp证毕!又令∑=)(1i px x piα,∑=)(1i qy y qiβ,代入上不等式可得:∑∑+)()(iq i i p iy y x x qqpp∑∑≥)()(11y x yx i qi pqpii,两边同时对i 求和,并利用关系式p 1 + q1 = 1可知:∑∑≥+=∑∑∑∑∑)()(11)()(1y x yx y y x x i qi piq i ip i qpiiqqpp从而有:∑∑≤∑)()(11y x y x i qi pqpii另一方面,又有:∑+∑++=-yx y x y x iip pi i ii 1)(1y x y x ii p ii +≤∑+-yy x x y x ip ip i i i i ∑+∑+--+=11()()()()()()∑∑-+∑∑-≤++y y x x y x ipiiq p ipiiq p pqpq111111()()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑-=+∑+y x y x ipip piiqp pq1111()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑=+∑+y x y x ipip piippq111 左右两边同时除以()∑+y x iipq1得:()()()∑∑≤∑++y x y x ipipiip ppp111。
§2.2 矩阵的范数我们知道:向量本身可以看作是矩阵,而一般的矩阵又有自身的运算特点,比如矩阵的乘法运算。
因此,我们定义矩阵的范数时需要考虑矩阵的本身的特点,这就有了我们以下要讨论的内容:一、 矩阵的范数1.矩阵范数的定义设||||:m n C R ×→i 是实值函数,若它满足下述三个条件: (1) 非负性:,||||0,and ||||00m n A C A A A ×∀∈≥=⇔= (2) 齐次性:,,||||||||||m n k C A C kA k A ×∀∈∈= (3) 三角不等式:,,||||||||||||m n A B C A B A B ×∀∈+≤+ 则称||||i 为广义矩阵范数,若||||i 还满足下述第四个性质: (4) 相容性:,,||||||||||||m n n l A C B C AB A B ××∀∈∈≤i 则称||||i 为矩阵范数。
注:在相容性的定义中,n l B C ×∈,m l AB C ×∈,实数||||B ,||||AB 的定义规则与实数||||A 的定义规则相同。
2. 矩阵范数的连续性与向量的情况一样,对于矩阵序列而言,它也有极限的概念。
设矩阵序列(){}k A ,其中()k m n A C ×∈,若()k A 的每一个元素()k ij a 均有极限ij a ,则称矩阵序列(){}k A 有极限()ij A a =,或者说(){}k A 收敛到矩阵A ,记作()()lim ()k k k A A A A →+∞=→不收敛的矩阵序列称为发散的。
当然,也可按照范数定义矩阵的收敛性。
即若()lim 0k k A A →∞−=则称(){}k A 在范数||||i 意义下收敛于A 。
由三角不等式,可推知,,m n A B C ×∀∈有||||||||||||||A B A B −≥−。